Self-Constructed Context Decompilation with Fined-grained Alignment
Enhancement

Yunlong Feng, Dechuan Teng, Yang Xu, Honglin Mu,
Xiao Xu, Libo Qin, Qingfu Zhu*, Wanxiang Che
Harbin Institute of Technology, China
{ylfeng,dcteng,yxu,hlmu,xxu,lbqin,qfzhu,car} @ir.hit.edu.cn

Abstract

Decompilation transforms compiled code back
into a high-level programming language for
analysis when source code is unavailable. Pre-
vious work has primarily focused on enhanc-
ing decompilation performance by increasing
the scale of model parameters or training data
for pre-training. Based on the characteristics
of the decompilation task, we propose two
methods: (1) Without fine-tuning, the Self-
Constructed Context Decompilation (sc?dec)
method recompiles the LLM’s decompilation
results to construct pairs for in-context learn-
ing, helping the model improve decompilation
performance. (2) Fine-grained Alignment En-
hancement (FAE), which meticulously aligns
assembly code with source code at the state-
ment level by leveraging debugging informa-
tion, is employed during the fine-tuning phase
to achieve further improvements in decom-
pilation. By integrating these two methods,
we achieved a Re-Executability performance
improvement of approximately 3.90% on the
Decompile-Eval benchmark, establishing a
new state-of-the-art performance of 52.41%.
The code, data, and models are available at
https://github.com/AlongWY/sccdec.

1 Introduction

Decompilation is the process of converting com-
piled machine code or bytecode back into a high-
level programming language. This process is typ-
ically used to analyze how the software works
when the source code is not accessible (Brumley
et al., 2013; Katz et al., 2018; Hosseini and Dolan-
Gavitt, 2022; Xu et al., 2023; Armengol-Estapé
et al., 2023; Jiang et al., 2023; Wong et al., 2023).
Many tools have been developed for decompilation,
like Ghidra (Ghidra, 2024) and IDA Pro (Hex-Rays,
2024). However, these tools often struggle to gen-
erate human-readable code. The main challenge in
decompilation is that it’s hard to fully reconstruct

*Corresponding Author

AN funcO(num) {®
</> num H
SIc d

compile |
(funcO:
.‘} mov %edi,%eax
S50 and $0x1,%eax
asm | et
decompile |

D | int funco(int x) {
<’B return x & 1;
src |

Figure 1: Pipeline of the decompilation. The input
for decompilation tasks is typically assembly, with the
source code invisible. Additionally, the source code
obtained through decompilation usually does not exactly
match the original code.

the source code, especially details such as variable
names (Lacomis et al., 2019) and primary struc-
tures (Wei et al., 2007), which are frequently lost
during the compilation process.

Recent advances in large language models
(LLMs) have prompted researchers to view pro-
gramming languages as distinct linguistic sys-
tems, utilizing pre-trained code LLMs to ac-
complish various coding tasks (Lippincott, 2020;
Roziere et al., 2023; Guo et al., 2024; OpenAl,
2023). These models have demonstrated signifi-
cant performance improvements over traditional
techniques (Zeng et al., 2022; Xu et al., 2022),
making it feasible to apply LLMs to decompilation
challenges. For instance, Transformer-based mod-
els such as Slade (Armengol-Estapé et al., 2023)
and Nova (Jiang et al., 2023) have shown poten-
tial in using language models to translate binary
code back into more readable and structured source
code. Recently, Tan et al. (2024) developed and
released the first open-source LLM focused on de-
compilation, alongside the construction of the first

6603

Findings of the Association for Computational Linguistics: EMNLP 2024, pages 6603-6614
November 12-16, 2024 ©2024 Association for Computational Linguistics

https://github.com/AlongWY/sccdec

decompilation benchmark to evaluate the decompi-
lation capabilities of models. These efforts primar-
ily treat the decompilation task as a translation task,
training a robust decompilation model on extensive
synthetic data (Hosseini and Dolan-Gavitt, 2022;
Armengol-Estapé et al., 2023; Jiang et al., 2023;
Tan et al., 2024).

By analyzing the characteristics of decompila-
tion tasks, we have found two features:

* The decompiled code generated by the model
is usually compilable.

* The compiler can produce external debugging
information for the debugger.

Based on the characteristics of the decompila-
tion task, we propose two approaches: (1) Self-
Constructed Context Decompilation (sc’dec), a
tuning-free approach, leverages the decompilation
results from the model and specific compiler to de-
rive ground-truth (assembly code, source code)
pair closely related to the test sample. By incor-
porating the obtained pair as a demonstration ex-
ample within the context, we can fully leverage
the model’s in-context learning capabilities to en-
hance performance. (2) Fine-grained Alignment
Enhancement (FAE) introduces a new step-by-step
decompilation training objective in addition to the
end-to-end decompilation training objective that
relies on large-scale pre-training for implicit align-
ment. By leveraging debugging information de-
signed for debuggers, we can align assembly code
with high-level code at a finer statement level. This
allows the model to more faithfully preserve the
original functionality after decompilation.
Combining these two methods, we have achieved
an approximately 3.90% improvement in re-
executability performance based on llm4decompile
model (Tan et al., 2024), reaching a new state-of-
the-art performance of 52.41% re-executability.
To summarize, our contributions are as follows:

* We introduce Self-Constructed Context De-
compilation, which leverages the compilabil-
ity of decompilation results to construct better
contexts.

* We introduce Fine-grained Alignment En-
hancement, which fine-tunes the model using
fine-grained alignment data between assembly
code and source code derived from debug in-
formation. We also propose how to synthesize
its training data automatically.

* The experiments on the Decompile-Eval
benchmark show that our proposed model
achieves new state-of-the-art results.

2 Related Works

Decompilation has a long history, centered on con-
verting binary files into human-readable source
code. Traditional tools such as Hex-Rays IDA
Pro (Hex-Rays, 2024) and Ghidra (Ghidra, 2024)
predominantly rely on analyzing a program’s con-
trol flow graph (CFG) to perform this task (Brum-
ley et al., 2013). These tools operate by scrutiniz-
ing instructions within assembly code to construct
CFGs and identify common programming struc-
tures like if-else statements and loops (Wei et al.,
2007). However, they rely on intricate and error-
prone expert-built rule systems that frequently fail
with optimized binary code, a common practice
in commercial software development. Moreover,
traditional tools often generate outputs that closely
resemble assembly code representations, translat-
ing variables into registers and utilizing low-level
operations such as goto statements. This output is
not only challenging to comprehend but also oc-
casionally cannot be recompiled (Liu and Wang,
2020).

Inspired by neural machine translation, re-
searchers have begun to conceptualize decompi-
lation as a translation task, wherein machine-level
instructions are converted into readable source code
using neural networks. Initial endeavors employing
recurrent neural networks (RNNs) demonstrated
limited success (Katz et al., 2018). However, re-
cent advancements in natural language processing
(NLP) have facilitated the application of pre-trained
language models (LMs) in decompilation. Notable
examples include BTC (Hosseini and Dolan-Gavitt,
2022), Slade (Armengol-Estapé et al., 2023), and
Nova (Jiang et al., 2023), which mark significant
strides in the field. Recently, Tan et al. (2024)
created and released the first open-source large lan-
guage models specifically for decompilation and
established an evaluation benchmark that considers
the re-compilability and re-executability of decom-
piled code.

3 Method

In this section, we introduce the Self-Constructed
Context Decompilation method and Fine-grained
Alignment Enhancement fine-tuning. Figures 2
and 3 illustrate the methods.

6604

<funcB>:
mov %edi,%eax

and $0x1,%eax
ret @)

decompile |)

~N

This is the assembly code:
<func0>:
mov %edi,%eax

int funcO(int x) {
return x [# 1;

} should be & 2 ggg $0x1,%eax (::)
comp|Ie 1 What is the source code?
<funcO>: int funcO(int x) {

mov %edi,%eax

add $0x1,%eax
ret ®

Self Construct Pair

N return x + 1;
}

This_is the assembly code:
<func0>:
mov %edi,%eax

and $0x1,%eax @
ret

What is the source code?
(. J

I

(int funcO(int x) {
return x & 1;

I3

(& J

@ The assembly to decompile
@ Initial decompilation result form @
® Compiled result from @

Figure 2: The pipeline for Self-Constructed Context
Decompilation operates as follows: when the LLM de-
compiles and generates compilable code, we compile
this code to construct the context, and then use it to
decompile the initial assembly code again.

3.1 Self-Constructed Context Decompilation

In this section, we introduce the Self-Constructed
Context Decompilation (sc?dec) method designed
to enhance the performance of decompilation mod-
els. The method recompiles the decompiled code
generated by the model to construct the context.
The sc?dec method involves the following key
steps, as the Figure 2 shows:

1. Decompile: Initially, the model decompiles
the assembly code back to the target program-
ming language. We call it the initial decompi-
lation result.

2. Compile and Disassembly: Then we recom-
pile the initial decompilation result to obtain
the corresponding assembly code if the gener-
ated code is compilable.

3. Constructed Context: The self-constructed
context is then formed by concatenating the
generated C code with its corresponding as-
sembly code.

4. Decompile Again: Decompile the assembly
code with the self-constructed context again.

In this context, the assembly code precedes the C
code, resembling an example in the context. The fi-
nal input to the model is a concatenation of the self-
constructed context (with assembly code first and C
code second) and the original assembly code. This

User: Add inline comments that contain
the corresponding C code for the
assembly code first, then write the
equivalent C function.

T asm

<funcB>:

mov %edi,%eax
and $0x1,%eax
ret

Assistant: Here is the assembly code
with inline comments containing the
corresponding C code:

T asm

<funcB>:

mov %edi,%eax
and $0x1,%eax

ret

And here is the equivalent C function:

C
bool funcB(int num) {
return num % 2 !'= 0;
b
|\ J

Figure 3: An example of step-by-step decompilation
is presented, where the training objective requires the
model to generate C code progressively after each as-
sembly block. Fine-tuning the model with this objective
aids in learning the fine-grained correspondences be-
tween assembly and C code.

method leverages the additional context provided
by the generated C code and its corresponding as-
sembly code to improve the overall decompilation
performance.

3.2 Fine-grained Alignment Enhancement

To enhance the model’s ability to perceive the cor-
respondence between assembly code and its corre-
sponding source code, we propose a Fine-grained
Alignment Enhancement (FAE) method, which
constructs fine-grained alignment data between as-
sembly code and source code derived from debug
information. The method primarily includes two
training objectives: the End-to-end Decompilation
Objective and the Step-by-Step Decompilation Ob-
jective.

* End-to-end Decompilation Objective: In
the end-to-end decompilation task, the model
takes assembly code as input and directly gen-
erates the corresponding decompiled C code.
The goal of this task is to enable the model
to translate from assembly language to C lan-
guage without any intermediate steps. This ob-

6605

jective aims to prevent catastrophic forgetting
in the model. During training, we increase
the context length and ensure that the same
sample is not truncated, which enhances the
model’s ability to align assembly and C code.
Step-by-step Decompilation Objective: As
the Figure 3 shows, in the step-by-step decom-
pilation process, an intermediate form con-
taining both the assembly code and the corre-
sponding C code is first generated, followed
by the generation of the complete C code.
This step-by-step approach allows the model
to better understand the correspondence be-
tween assembly code and C code. Training
the model with the step-by-step decompilation
objective can enhance the model’s ability to
finely align assembly code with C code. It is
important to note that this form is used only
during training and not during inference.

During the training process, we employed two
different training objectives to enhance the model’s
decompile performance: an end-to-end decompile
objective and a step-by-step decompile objective.
They all take assembly code as input, but their
output formats are different.

3.2.1 Data Processing

By following the steps below, we can synthesize
some fine-grained alignment training data. The
synthesized data, as shown in Figure 3, is in a for-
mat of interleaved assembly and code output. We
expect the model to learn finer-grained alignment
between assembly and code from such data.

1. Compilation: We employed the “gcc” com-
piler to compile the selected function code
into binary shared libraries at various opti-
mization levels (including OO0, O1, O2, and
03). The debug option was enabled dur-
ing compilation to ensure the inclusion of
DWAREF debugging information in the com-
piled output. This debugging information is
crucial for subsequent disassembly and pars-
ing steps.

2. Disassembly: Subsequently, we used the
“objdump” tool to disassemble the compiled
binary shared libraries. The “-S” option
was utilized to include source code in the
disassembly output. Additionally, we used
the “~source-comment=;” option to prepend
each line of source code with a *“;” symbol,
facilitating easier parsing in later stages.

3. Data Parsing: The disassembly process
yielded a mixed output containing both as-
sembly code and source code, organized in
an alternating sequence of source code fol-
lowed by assembly code. We parsed the out-
put to extract the corresponding assembly and
source code for each function, ensuring accu-
rate alignment between the two.

4. Data Reorganization: Finally, we reorga-
nized the parsed content into a format where
the assembly code precedes the corresponding
source code in an alternating sequence.

Through these steps, we constructed a high-
quality training dataset that ensures each sample
contains comprehensive source code information
along with the corresponding assembly code. This
dataset will be used to train our model, aiming
to enhance its performance in tasks such as code
understanding and compilation optimization.

4 Experiments

4.1 Evaluation

In this section, we will introduce the benchmark
used in our evaluation process, Decompile-Eval
(Tan et al., 2024), which is specifically designed
to assess the decompilation capabilities of large
language models.

The Decompile-Eval benchmark is adapted from
the HumanEval benchmark, which includes 164
problems initially designed for code generation
tasks. These problems were translated into the
C programming language, and the corresponding
assembly code was generated at four optimization
levels (OO0, O1, O2, and O3). The correctness of
the decompilation results was tested using the test
cases from HumanEval. The primary metrics of
the Decompile-Eval benchmark are as follows:

* Re-compilability: This metric evaluates
whether the decompiled code produced by our
model can be successfully recompiled into ex-
ecutable binary without errors. A high recom-
pilability rate indicates that the decompiled
code is syntactically correct and adheres to
the constraints of the target language (in this
case, C).

* Re-executability: This metric assesses the
functional correctness of the decompiled code.
Specifically, it measures whether the recom-
piled binaries produce the expected outputs
when executed. The correctness of the output

6606

is determined using the testing methodology
provided by the HumanEval dataset, ensur-
ing a comprehensive evaluation of the logical
accuracy of the decompiled code.

In our experiment, we pay more attention to the
Re-executability, as it more accurately reflects the
overall decompilation capability of the model.

4.2 Training Details

Implementation We utilize Lora (Hu et al.,
2022) to fine-tune the llm4decompile-6.7b obtained
on Hugging Face (Wolf et al., 2019)., with rank set
to 32, alpha set to 64 and target set to all projection
layers . The optimizer is AdamW (Loshchilov and
Hutter, 2019), with a learning rate of 5e-5. The
maximum sequence length is set to 16384, and the
learning rate scheduler type is cosine, with a warm-
up period of 20 steps. The training process was
conducted for one epoch. LlamaFactory (Zheng
et al., 2024) and FlashAttention 2 (Dao, 2024) were
used for the fine-tuning of the model. All experi-
ments were done with an A100-SXM4-80GB. We
use greedy decoding for all experiments.

Training data We selected 10,000 samples from
the train_real_compilable subset of Exebench
(Armengol-Estapé et al., 2022) to synthesis the
training data. The selected functions exclusively
utilize the standard C library and do not include ad-
ditional data structures. The training data were syn-
thesized with gcc 11.4 provided by Ubuntu 22.04.

4.3 Baselines

We present several baselines in our experiments
and demonstrate the effectiveness of our proposed
methods.

4.3.1 Models

e GPT 4: One of the most powerful OpenAl
models, known for its advanced language un-
derstanding and generation capabilities (Ope-
nAl, 2023).

* deepseek-chat: A powerful conversational
Al model from DeepSeek, excelling in gener-
ating coherent and contextually relevant dia-
logues (DeepSeek-Al, 2024).

* llm4decompile-6.7b: The 6.7B open-access
decompilation LLM pre-trained on 15 billion

1q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj,
down_proj

bool funcO(int num) {
if (num <= 1) {
return false;
}
for (int 1 = 2; 1 * i <= num; i++) {
if (num % i == 0) {
return false;
}
}

return true;

|7

Figure 4: The example for 1-shot learning. In this
example, we have tried to cover common control logic
such as if statements, loops, and early returns as much
as possible. The example will be compiled with the
same optimization level as the target assembly code.

tokens of C source code and the corresponding
assembly code (Tan et al., 2024)2.

* llm4decompile-6.7b+FAE: The new model
was obtained by applying the Fine-grained
Alignment Enhancement method for fur-
ther fine-tuning based on the llm4decompile-
6.7b2.

4.3.2 Methods

* vanilla: Using specific prompts for different
models to directly request decompilation.

Prompt For GPT-4 and Deepseek Chat

What is the C source code of
— the assembly code below:
TTTasm

<asm>

Prompt For llm4decompile

This is the assembly code:
<asm>

What is the source code?

\

* 1-shot: We write a fixed example as the con-
text (Brown et al., 2020). The example will be
compiled with the same optimization level as
the target assembly code. The example shown
in Figure 4. In this example, we have tried to
cover common control logic such as if state-
ments, loops, and early returns as much as
possible.

2We use the latest version, llm4decompile-6.7b-v1.5.

6607

https://huggingface.co/LLM4Binary/llm4decompile-6.7b-v1.5

Re-Compilability

Re-Executability

Method
00 o1 02 03 AVG 00 0]} 02 03 AVG
GPT-4 (OpenAl, 2023)
vanilla 76.83 67.68 67.07 5793 67.38 20.73 1341 1341 1098 14.63
+sc?dec 7622 67.03 6524 56.10 66.15 3293 20.12 19.51 1341 21.49
1-shot 76.22 78.05 73.78 70.73 7470 31.71 20.12 19.51 21.34 23.17
+sc’dec 7439 76.22 7195 6890 72.87 4024 2561 2378 23.17 28.20
Deepseek Chat (DeepSeek-Al, 2024)
vanilla 62.20 51.83 47.56 4573 51.83 1037 549 488 549 6.55
+sc2dec 57.93 50.00 46.95 45.12 50.00 1341 671 671 732 8.54
1-shot 67.68 70.73 64.63 56.71 6494 1341 1037 793 732 9.76
+sc’dec 65.85 70.12 6220 53.66 6296 17.68 11.59 10.37 9.15 12.20
llm4decompile-6.7b (Tan et al., 2024)
vanilla 92.80 93.05 90.73 94.02 92.65 7024 4549 40.61 38.05 48.60
+sc’dec 92.68 92.80 90.12 9341 9226 71.34 47.56 4598 41.71 51.65
1-shot 93.05 93.29 9098 9390 9280 70.37 44.88 41.46 37.68 48.60
+sc’dec 93.05 92.68 90.37 9329 9235 71.59 4720 46.34 4146 51.65
retrieval 94.02 88.05 84.51 85.12 8793 65.73 32.68 38.66 36.22 43.32
llm4decompile-6.7b + FAE

vanilla 92.68 9244 93.66 93.17 9299 67.80 47.68 4573 4232 50.88
+sc’dec 92.07 91.59 91.71 9232 91.92 70.24 48.54 47.56 43.29 5241
1-shot 92.68 9232 93.66 92.80 92.87 67.68 4720 45.61 4195 50.61
+sc’dec 92.07 91.71 91.46 9195 91.80 70.24 48.05 47.20 43.17 52.16

Table 1: The main results of different methods across four optimization levels (00, O1, O2, O3), as well as their
average scores (AVQG). The results in bold represent the optimal performance, while those underlined indicate the
second-best performance. More results can be found in the Table 5.

* retrieval: We use the retrieval method (BM25
(Lu, 2024)) to get the context. The context is
generated by searching for the most similar
assembly code in the training set.

» sc2dec: The self-constructed context decom-
pilation we described in the Section 3.1.

+ 1-shot+sc’dec: We apply the sc?dec on the
1-shot method. Note that the 1-shot exam-
ple can only be applied to generate the initial
decompilation result in Figure 2.

4.4 Results

In this section, we present and analyze the perfor-
mance of different models. Our experiments aim to
evaluate the impact of various techniques, includ-
ing one-shot, self-constructed context decompila-
tion, and fine-tuning, on the model’s performance.
The main results are shown in Table 1.

Performance of the Base Model Through a com-
parative analysis of the experimental results in Ta-

ble 1, it is evident that different models exhibit
significant differences in re-executability across
various optimization levels (00, O1, 02, O3). The
base model, llIm4decompile-6.7b, performs best at
the OO0 optimization level with a score of 70.24%,
but its performance gradually declines at other op-
timization levels, with an average score of 48.60%.
Among models not fine-tuned with decompilation
tasks, GPT-4 achieved the best performance, with
an average re-executability score of 14.64%. Gen-
erally, their results on re-compilability metrics are
significantly higher than their performance on re-
executability metrics.

Context Sensitivity By comparing vanilla, 1-
shot, and retrieval methods based on the
llm4decompile-6.7b, it is observed that the model’s
performance can even decline after providing a
sample. In contrast, the dynamic samples gener-
ated through our self-constructed context method
yield an improvement in executability of over 2%

6608

Re-Compilability

Re-Executability

Method
00 01 02 03 AVG 00 0] 02 03 AVG
sc2dec 92.07 9159 91.71 9232 9192 70.24 48.54 47.56 4329 5241
sc?dec (O0) 92.68 9220 91.71 9232 9223 7024 4890 47.68 4293 51.83
sc2dec (O1) 92.68 91.59 93.54 9293 92.68 68.41 48.54 47.44 43.05 51.86
sc?dec (02) 92.68 9220 91.71 9232 9223 67.80 4890 47.68 4293 51.68
sc?dec (03) 92.68 91.59 9293 9232 9238 67.80 47.07 47.80 4341 51.52

Table 2: The results of our method across optimization levels. For cases such as “sc2dec (00)”, we assume that the
optimization level of asm code is entirely unknown and select a specific optimization level to compile the code to

construct the context.

int funcO(int a) {
for (dnt 1 = 0; 1 » i * i <= abs(a); i++)
if (i » i * i == abs(a))
return 1;
return 0O;
I3 Source code

int funcO(int n) {
int i;
if (n <0) n=-n;
/fFor (L =1; i %1% i<=n; i++)
/ if (i *i*i==n)
fl return 1;
/ return 0;

“‘ I Decompile

\| int funcO(int n) {
\ int i;
if (n < 0) n = -n;
\J if (nh == 0)
return 1;
for (1 = 1; 1 i % i <= n; i++)
if (i i % i ==n)
return 1;
return 0;

& SCZDecl

Figure 5: A case study for sc?dec, which is based on the
lim4decompile-6.7b with FAE. By applying the sc?dec
method, the model detects and fixes the mismatch be-
tween the code and assembly.

before and after fine-tuning. This indicates that
inappropriate samples may even have a detrimen-
tal effect in the decompilation domain, while our
method achieves a nearly stable performance en-
hancement without the need for retrieval.

1-shot is a Strong Baseline As shown in Table 1,
utilizing the 1-shot method significantly enhances
the model’s performance. Specifically, for GPT-4,
the model’s re-executability performance increased
from 14.64% to 23.17%, an approximate improve-
ment of 7%. In the open-source model Deepseek
Chat, performance improved from 6.55% to 9.76%,

reflecting a 3.21% enhancement. However, in the
case of the llm4decompile model, which had al-
ready been trained on decompilation tasks, there
was no performance improvement. Moreover, in
the llm4decompile model fine-tuned with Fine-
grained Alignment Enhancement, performance ac-
tually decreased from 50.88% to 50.61%, a reduc-
tion of approximately 0.27%.

Sc2dec Brings Further Performance Improve-
ment The Table 1 shows that applying sc2dec in-
dependently results in performance improvements
of 6.86% and 1.99% on GPT-4 and Deepseek Chat,
respectively. These improvements are lower than
those achieved by the 1-shot method, likely due to
the model’s low Re-Compilability metric. In other
words, a substantial portion of the code obtained
through decompilation is un-compilable, which im-
pedes the application of the sc2dec method. Fur-
thermore, when combined with the 1-shot method,
sc2dec can further enhance performance, achiev-
ing an additional 5% improvement for GPT-4,
bringing it to 28.20%, and a 2.44% improvement
for Deepseek Chat, bringing it to 12.20%. In
the case of llm4decompile-6.7b, due to the mod-
els’ relatively high Re-Compilability metric, the
sc2dec method significantly outperformed the 1-
shot method, increasing performance from 48.60%
to 51.65% and from 50.88% to 52.41%.

Best Performance with Combined Methods As
the Table 1 shows, by combining our Step-by-Step
Decompile tasks and context-based decompilation
methods, we ultimately achieved approximately a
3.90% performance improvement, surpassing the
performance of these methods when applied in-
dependently. This demonstrates that fine-tuning
and self-construct context methods are orthogo-
nal. Most notably, the combined method of fined-

6609

Re-Compilability

Re-Executability

Model

00 01 02 O3 AVG 00 01 02 O3 AVG
w/o tune 92.80 93.05 90.73 94.02 92.65 70.24 4549 40.61 38.05 48.60

FAE (End-to-End & Step-by-Step Decompilation Objective)
vanilla 92.68 9244 93.66 93.17 9299 67.80 47.68 4573 4232 50.88
+sc?dec 92.07 91.59 91.71 9232 91.92 70.24 48.54 47.56 4329 5241
1-shot 92.68 9232 93.66 92.80 92.87 67.68 47.20 45.61 4195 50.61
+sc?dec 92.07 91.71 91.46 9195 91.80 7024 48.05 47.20 43.17 52.16

End-to-End Decompilation Objective

vanilla 93.9 90.61 90.61 91.34 91.62 69.51 4329 422 40.73 48.93
+sc?dec 92.8 90.24 90.00 90.12 90.79 71.34 46.10 43.78 4244 5091
1-shot 93.9 90.73 90.37 91.22 91.55 69.51 44.02 42.68 40.61 49.21
+sc?dec 92.8 90.24 89.76 90.00 90.7 7122 46.46 4427 4256 51.13

Table 3: The results of ablation study. All results are based on the llm4decompile-6.7b model.

grained alignment enhancement and self-construct
context decompilation achieves the highest scores
across all optimization levels expect “O0”, with
scores of 48.54%, 47.56%, and 43.29% at the O1,
02, and O3 levels, respectively, and an overall av-
erage score of 52.41%.

4.5 Analysis

In this section, we will further analyze the experi-
mental results to study the effectiveness and sensi-
tivity of our method:

Mismatched Optimization Levels Leads to Per-
formance Degradation As the Table 2 shows,
the performance can degrade by 1% to 2% over-
all when constructing contexts that mismatch the
optimization levels of the target assembly code.
However, specific optimization levels may exhibit
different behaviors. For instance, using a fixed O3
optimization level to construct contexts while de-
compiling assembly optimized with O2 does not
result in significant performance degradation and
even better. In practical scenarios, using O3 to
construct contexts for binaries with unknown op-
timization levels might be a reasonable choice.

Case study of sc’dec As the Figure 5 shows,
the compiler has expanded the abs function, reduc-
ing the overhead of function calls. The model ini-
tially generated a piece of compilable but incorrect
code during direct decompilation, omitting the case
where the variable n equals 0. We compiled and
disassembled this code to construct a new sample.
By applying the sc?dec method with the context,
the model successfully identified the missing part

in the short segment of assembly code and gener-
ated the correct code, thus rectifying the error from
the previous inference.

Contribution of FAE The results in Table 1 show
that the application of Fine-grained Alignment En-
hancement (FAE) for further fine-tuning the model
significantly enhanced its re-executability perfor-
mance across all optimization levels except “O0”.
Notably, at optimization levels O2 and O3, the
scores improved by 5.12% and 4.27%, reaching
45.73% and 42.32%, respectively. The average per-
formance increased by 2.28%, achieving 50.88%.
This demonstrates the effectiveness of the Fine-
grained Alignment Enhancement method.

Ablation Study of FAE The results of ablation
experiments in Table 3 have demonstrated the effec-
tiveness of our proposed Step-by-Step Decompile
training objective. Removing the training objec-
tive results in approximately a 2% decline in Re-
Executability performance, regardless of whether
the sc2dec method is used, and notably, a 3.78% de-
cline at the “O2” optimization level. However, the
performance of the 1-shot remains unaffected, sup-
porting our hypothesis that the mismatch between
the training data form and the inference form leads
to performance degradation. Furthermore, retain-
ing only the End-to-end Decompilation training ob-
jective still yields little performance improvement,
about 0.33%. This improvement can be attributed
to the longer context provided during training, as
the samples are not truncated during training, al-
lowing the model to fully observe the assembly
code and its corresponding C code.

6610

5 Conclusion

In this paper, we introduce two methods based on
the characteristics of the decompilation task: Self-
Constructed Context Decompilation, which lever-
ages the compilability of decompilation results to
construct better contexts, and Fine-grained Align-
ment Enhancement, which fine-tunes the model us-
ing fine-grained alignment data between assembly
code and source code derived from debug informa-
tion. By integrating these methods, we achieved a
3.90% improvement in decompilation performance,
reaching a new state-of-the-art level of 52.41%.

Acknowledge

We gratefully acknowledge the support of the Na-
tional Natural Science Foundation of China (NSFC)
via grant 62236004, 62206078, 62441603 and
62476073.

Limitations

The sc?dec depends on the decompiled code gener-
ated by the model. If the decompiled code cannot
be recompiled, sc2dec will not be able to bene-
fit from it, necessitating that the decompiled code
has high re-compilability performance. For Fine-
grained Alignment Enhancement, we created a
Step-by-Step Decompile training objective, train-
ing with only 10,000 samples across four optimiza-
tion levels (O0-O3), without validating its perfor-
mance on larger datasets or bigger models. More-
over, fine-tuning led to a further decline in perfor-
mance in the 1-shot scenario.

Potential risks

Decompilation is a technique that converts com-
piled binary code back into human-readable source
code. While decompilation can be legal and useful
in certain contexts, it also entails several potential
risks. The primary potential risks are as follows:

* Intellectual Property Infringement: Decompi-
lation may violate the copyright and licensing
agreements of software. Unauthorized decom-
pilation can lead to copyright infringement,
thereby instigating legal disputes.

* Security Risks: Decompiled code may expose
the internal structure and implementation de-
tails of the software, providing attack vectors
for hackers. Malicious actors can exploit this
information to identify and exploit vulnerabil-
ities in the software.

* Ethical Concerns: Decompiling and analyzing
another’s code can be considered unethical,
especially when done without authorization.

References

Jordi Armengol-Estapé, Jackson Woodruff, Alexander
Brauckmann, José Wesley de Souza Magalhaes, and
Michael F. P. O’Boyle. 2022. Exebench: An ml-scale
dataset of executable c functions. In Proceedings of
the 6th ACM SIGPLAN International Symposium on
Machine Programming, MAPS 2022, page 50-59,
New York, NY, USA. Association for Computing
Machinery.

Jordi Armengol-Estapé, Jackson Woodruff, Chris Cum-
mins, and Michael F. P. O’Boyle. 2023. Slade: A
portable small language model decompiler for opti-
mized assembler. CoRR, abs/2305.12520.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers. Preprint, arXiv:2005.14165.

David Brumley, JongHyup Lee, Edward J. Schwartz,
and Maverick Woo. 2013. Native x86 decompila-
tion using semantics-preserving structural analysis
and iterative control-flow structuring. In Proceedings
of the 22th USENIX Security Symposium, Washing-
ton, DC, USA, August 14-16, 2013, pages 353-368.
USENIX Association.

Tri Dao. 2024. FlashAttention-2: Faster attention with
better parallelism and work partitioning. In Infer-
national Conference on Learning Representations
(ICLR).

DeepSeek-Al. 2024. Deepseek-v2: A strong, economi-
cal, and efficient mixture-of-experts language model.
Preprint, arXiv:2405.04434.

Ghidra. 2024. Ghidra software reverse engineering
framework.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wen-
feng Liang. 2024. Deepseek-coder: When the large
language model meets programming — the rise of
code intelligence. Preprint, arXiv:2401.14196.

Hex-Rays. 2024. Ida pro: a cross-platform multi-
processor disassembler and debugger.

6611

https://doi.org/10.1145/3520312.3534867
https://doi.org/10.1145/3520312.3534867
https://doi.org/10.48550/ARXIV.2305.12520
https://doi.org/10.48550/ARXIV.2305.12520
https://doi.org/10.48550/ARXIV.2305.12520
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/schwartz
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/schwartz
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/schwartz
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2405.04434
https://github.com/NationalSecurityAgency/ghidra
https://github.com/NationalSecurityAgency/ghidra
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://hex-rays.com/ida-pro/
https://hex-rays.com/ida-pro/

Iman Hosseini and Brendan Dolan-Gavitt. 2022. Be-
yond the C: retargetable decompilation using neural
machine translation. CoRR, abs/2212.08950.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

Nan Jiang, Chengxiao Wang, Kevin Liu, Xiangzhe
Xu, Lin Tan, and Xiangyu Zhang. 2023. Nova™:
Generative language models for binaries. Preprint,
arXiv:2311.13721.

Deborah S. Katz, Jason Ruchti, and Eric M. Schulte.
2018. Using recurrent neural networks for decompi-
lation. In 25th International Conference on Software
Analysis, Evolution and Reengineering, SANER 2018,
Campobasso, Italy, March 20-23, 2018, pages 346—
356. IEEE Computer Society.

Jeremy Lacomis, Pengcheng Yin, Edward J. Schwartz,
Miltiadis Allamanis, Claire Le Goues, Graham Neu-
big, and Bogdan Vasilescu. 2019. DIRE: A neural
approach to decompiled identifier naming. In 34th
IEEE/ACM International Conference on Automated
Software Engineering, ASE 2019, San Diego, CA,
USA, November 11-15, 2019, pages 628-639. IEEE.

Thomas Lippincott. 2020. Starcoder: A general neural
ensemble technique to support traditional scholar-
ship, illustrated with a study of the post-atlantic slave
trade. In 15th Annual International Conference of the
Alliance of Digital Humanities Organizations, DH
2020, Ottawa, Canada, July 20-25, 2020, Conference
Abstracts.

Zhibo Liu and Shuai Wang. 2020. How far we have
come: testing decompilation correctness of C decom-
pilers. In ISSTA °20: 29th ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis,
Virtual Event, USA, July 18-22, 2020, pages 475-4877.
ACM.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net.

Xing Han Lu. 2024. Bm25s: Orders of magnitude faster
lexical search via eager sparse scoring. Preprint,
arXiv:2407.03618.

OpenAl. 2022. ChatGPT.

OpenAl. 2023. GPT-4 Technical Report.
abs/2303.08774.

CoRR,

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Man-
ish Bhatt, Cristian Canton-Ferrer, Aaron Grattafiori,
Wenhan Xiong, Alexandre Défossez, Jade Copet,

Faisal Azhar, Hugo Touvron, Louis Martin, Nico-
las Usunier, Thomas Scialom, and Gabriel Synnaeve.
2023. Code llama: Open foundation models for code.
CoRR, abs/2308.12950.

Hanzhuo Tan, Qi Luo, Jing Li, and Yuqun Zhang. 2024.
Llm4decompile: Decompiling binary code with large
language models. Preprint, arXiv:2403.05286.

Tao Wei, Jian Mao, Wei Zou, and Yu Chen. 2007. A
new algorithm for identifying loops in decompilation.
In Static Analysis, 14th International Symposium,
SAS 2007, Kongens Lyngby, Denmark, August 22-24,
2007, Proceedings, volume 4634 of Lecture Notes in
Computer Science, pages 170—-183. Springer.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
and Jamie Brew. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. CoRR,
abs/1910.03771.

Wai Kin Wong, Huaijin Wang, Zongjie Li, Zhibo Liu,
Shuai Wang, Qiyi Tang, Sen Nie, and Shi Wu. 2023.
Refining decompiled C code with large language
models. CoRR, abs/2310.06530.

Frank F. Xu, Uri Alon, Graham Neubig, and Vincent Jo-
sua Hellendoorn. 2022. A systematic evaluation of
large language models of code. In Proceedings of the
6th ACM SIGPLAN International Symposium on Ma-
chine Programming, MAPS 2022, page 1-10, New
York, NY, USA. Association for Computing Machin-
ery.

Xiangzhe Xu, Zhuo Zhang, Shiwei Feng, Yapeng Ye,
Zian Su, Nan Jiang, Siyuan Cheng, Lin Tan, and
Xiangyu Zhang. 2023. Lmpa: Improving decompila-
tion by synergy of large language model and program
analysis. CoRR, abs/2306.02546.

Zhengran Zeng, Hanzhuo Tan, Haotian Zhang, Jing Li,
Yuqun Zhang, and Lingming Zhang. 2022. An ex-
tensive study on pre-trained models for program un-
derstanding and generation. In ISSTA '22: 31st ACM
SIGSOFT International Symposium on Software Test-
ing and Analysis, Virtual Event, South Korea, July 18
- 22, 2022, pages 39-51. ACM.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan
Ye, Zheyan Luo, and Yonggiang Ma. 2024. Llamafac-
tory: Unified efficient fine-tuning of 100+ language
models. arXiv preprint arXiv:2403.13372.

6612

https://doi.org/10.48550/ARXIV.2212.08950
https://doi.org/10.48550/ARXIV.2212.08950
https://doi.org/10.48550/ARXIV.2212.08950
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://arxiv.org/abs/2311.13721
https://arxiv.org/abs/2311.13721
https://doi.org/10.1109/SANER.2018.8330222
https://doi.org/10.1109/SANER.2018.8330222
https://doi.org/10.1109/ASE.2019.00064
https://doi.org/10.1109/ASE.2019.00064
https://dh2020.adho.org/wp-content/uploads/2020/07/373_StarCoderAgeneralneuralensembletechniquetosupporttraditionalscholarshipillustratedwithastudyofthepostAtlanticslavetrade.html
https://dh2020.adho.org/wp-content/uploads/2020/07/373_StarCoderAgeneralneuralensembletechniquetosupporttraditionalscholarshipillustratedwithastudyofthepostAtlanticslavetrade.html
https://dh2020.adho.org/wp-content/uploads/2020/07/373_StarCoderAgeneralneuralensembletechniquetosupporttraditionalscholarshipillustratedwithastudyofthepostAtlanticslavetrade.html
https://dh2020.adho.org/wp-content/uploads/2020/07/373_StarCoderAgeneralneuralensembletechniquetosupporttraditionalscholarshipillustratedwithastudyofthepostAtlanticslavetrade.html
https://doi.org/10.1145/3395363.3397370
https://doi.org/10.1145/3395363.3397370
https://doi.org/10.1145/3395363.3397370
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://arxiv.org/abs/2407.03618
https://arxiv.org/abs/2407.03618
https://chat.openai.com
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/ARXIV.2308.12950
https://arxiv.org/abs/2403.05286
https://arxiv.org/abs/2403.05286
https://doi.org/10.1007/978-3-540-74061-2_11
https://doi.org/10.1007/978-3-540-74061-2_11
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://doi.org/10.48550/ARXIV.2310.06530
https://doi.org/10.48550/ARXIV.2310.06530
https://doi.org/10.1145/3520312.3534862
https://doi.org/10.1145/3520312.3534862
https://doi.org/10.48550/ARXIV.2306.02546
https://doi.org/10.48550/ARXIV.2306.02546
https://doi.org/10.48550/ARXIV.2306.02546
https://doi.org/10.1145/3533767.3534390
https://doi.org/10.1145/3533767.3534390
https://doi.org/10.1145/3533767.3534390
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372

A Training examples

[User: # This is the assembly:

<func0>:

mov %edi,%eax
and $0x1,%eax
ret

What is the source code?

Assistant: bool funcO(int num) {
return num % 2 != 0;

}

.

Figure 6: The training example of end-to-end decompile objective.

(User: Add inline comments that contain the corresponding C code for the
assembly code first, then write the equivalent C function.
T asm

<func0>:

mov %edi,%eax
and $0x1,%eax
ret

Assistant: Here is the assembly code with inline comments containing the
corresponding C code:

T asm

<func0>:

; bool funcO(int num) {
mov %edi,%eax

and $0x1,%eax

; return num % 2 != 0;
ret

!

And here is the equivalent C function:
c

bool funcO(int num) {
return num % 2 != 0;

.
\ y

Figure 7: The training example of step-by-step decompile objective. Note that the workflow is only for training.

B Extra Results

The Model is More Sensitive to Compiler Series than to Versions: As the Table 4 shows, using a
compiler different from the one used during training to build the context can lead to significant performance
degradation. The model performs better when the context is built using the GCC compiler series, whereas
the performance is slightly worse when using the clang series. This may be due to the fact that the context
used during both the continued pre-training and fine-tuning stages was constructed with the GCC compiler
series. When different versions of GCC are used for construction, the performance of sc?dec stabilizes
around 52% for the fine-tuned model except “x86-64 gcc 14.1”. In contrast, when the context is built
using the clang series, the performance of sc?dec is slightly lower and more consistent, stabilizing around
51% for the fine-tuned model.

6613

Re-Compilability Re-Executability
00 Ol 02 03 AVG 00 Ol 02 03 AVG

x86-64 gcc 10.5 92.07 9098 91.71 9232 91.77 70.85 4732 47.80 43.05 52.26
x86-64 gcc 11.4 92.07 91.59 9232 9232 92.07 70.85 48.66 47.68 42.68 5247
x86-64 gcc 12.3 92.07 91.59 9232 9232 92.07 70.85 47.68 46.95 4256 52.01
x86-64 gcc 13.3 92.07 91.59 9232 9232 92.07 70.85 4793 46.59 42.68 52.01
x86-64 gcc 14.1 92.07 91.83 9244 9256 9223 70.85 47.07 4573 4195 51.40
x86-64 clang 14.0.0 92.68 9244 93.66 93.17 9299 69.02 48.05 4573 4244 51.31
x86-64 clang 15.0.0 92.68 9244 93.66 93.17 9299 69.02 48.29 45.73 4232 51.34
x86-64 clang 16.0.0 92.68 92.2 93.66 93.17 9293 69.02 48.05 4646 4232 51.46
x86-64 clang 17.0.1 92.68 9244 93.66 93.17 9299 69.02 48.05 46.71 4232 51.52
x86-64 clang 18.1.0 92.68 9244 93.66 93.17 9299 69.02 48.17 46.46 4232 5149

Compiler

Table 4: The re-executability of differnet models across different compilers. We selected the popular three versions
of both the clang and gcc series in Compiler Explorer. The compiler of Compiler Explorer may differ from the
compilers provided by Ubuntu in some default compilation options, which might result in slight differences in the
generated assembly code.

Method Re-Compilability Re-Executability
00 01 02 03 AVG 00 0)| 02 03 AVG
GPT-4 (OpenAl, 2023)

vanilla 76.83 67.68 67.07 5793 67.38 20.73 1341 1341 10.98 14.63
+sc2dec 7622 67.03 6524 56.10 66.15 3293 20.12 19.51 1341 21.49
1-shot 76.22 78.05 73.78 70.73 7470 31.71 20.12 19.51 21.34 23.17
+sc2dec 74.39 7622 7195 6890 72.87 40.24 25.61 2378 23.17 2820
GPT-3.5 Turbo (OpenAl, 2022)
vanilla 20.73 25.00 29.27 2195 2424 427 366 3.05 3.05 3.51
+sc?dec 18.29 22.56 28.66 20.12 2241 549 366 3.66 427 427
1-shot 49.39 4634 42.07 4085 44.66 1037 732 6.10 549 1731
+sc’dec 42.07 42.68 3659 34.15 38.87 1220 9.15 671 793 8.99
Deepseek Chat (DeepSeek-Al, 2024)
vanilla 6220 5183 4756 4573 51.83 1037 549 488 549 6.55
+sc2dec 57.93 50.00 46.95 45.12 50.00 1341 671 671 732 854
1-shot 67.68 70.73 64.63 56.71 6494 1341 1037 793 732 9.76
+sc2dec 65.85 70.12 6220 53.66 6296 17.68 11.59 10.37 9.15 12.20
Deepseek Coder (Guo et al., 2024)
vanilla 66.46 5793 4756 51.83 5595 9.15 6.10 671 698 7.01
+sc’dec 62.80 5427 4329 50.00 5259 1220 793 9.15 854 945
1-shot 5793 53.66 5244 48.17 53.05 11.59 1037 854 793 9.60
+sc’dec 56.10 51.83 51.22 4634 51.37 1524 11.58 1037 854 1143
llm4decompile-6.7b (Tan et al., 2024)
vanilla 92.80 93.05 90.73 94.02 92.65 70.24 4549 40.61 38.05 48.60
+sc2dec 92.68 92.80 90.12 9341 9226 71.34 4756 4598 41.71 51.65
1-shot 93.05 9329 9098 93.90 92.80 70.37 44.88 41.46 37.68 48.60
+sc2dec 93.05 92.68 90.37 9329 9235 71.59 4720 4634 4146 51.65
llm4decompile-6.7b + FAE
vanilla 92.68 9244 93.66 93.17 9299 67.80 47.68 4573 42.32 50.88
+sc2dec 92.07 91.59 91.71 9232 91.92 70.24 4854 47.56 4329 5241
1-shot 92.68 9232 93.66 92.80 92.87 67.68 4720 4561 4195 50.61
+sc2dec 92.07 91.71 91.46 9195 91.80 70.24 48.05 47.20 43.17 52.16

Table 5: The extra results of different methods across four optimization levels (00, O1, 02, O3), as well as their
average scores (AVG). The results in bold represent the optimal performance, while those underlined indicate the
second-best performance.

6614

https://godbolt.org

