FANTAstic SEquences and Where to Find Them:
Faithful and Efficient API Call Generation
through State-tracked Constrained Decoding and Reranking

Zhuoer Wang'!
Alexandros Papangelis®
Xinyan Zhao® Arijit Biswas®

Leonardo F. R. Ribeiro?
Rohan Mukherjee?
James Caverlee'
!Texas A&M University

Tzu-Yen Wang?
Angeliki Metallinou®
2Amazon

wang@tamu. edu

Abstract

API call generation is the cornerstone of large
language models’ tool-using ability that pro-
vides access to the larger world. However, ex-
isting supervised and in-context learning ap-
proaches suffer from high training costs, poor
data efficiency, and generated API calls that can
be unfaithful to the API documentation and the
user’s request. To address these limitations, we
propose an output-side optimization approach
called FANTASE. Two of the unique contribu-
tions of FANTASE are its State-Tracked Con-
strained Decoding (SCD) and Reranking com-
ponents. SCD dynamically incorporates ap-
propriate API constraints in the form of Token
Search Trie for efficient and guaranteed gen-
eration faithfulness with respect to the API
documentation. The Reranking component
efficiently brings in the supervised signal by
leveraging a lightweight model as the discrim-
inator to rerank the beam-searched candidate
generations of the large language model. We
demonstrate the superior performance of FAN-
TASE in API call generation accuracy, infer-
ence efficiency, and context efficiency with
DSTCS8 and API Bank datasets. Our code
is publicly available at https://github.com/
Edillower/FANTASE.

1 Introduction

In recent year, there has been a surge of interest
in enabling the automated tool-using capability of
intelligent systems (Schick et al., 2023; Mialon
et al., 2023). Specifically, as a bridge to the larger
world, Application Programming Interface (API)
calls allow virtual assistants to control smart-home
devices, retrieve information, make reservations,
and more on the user’s behalf. Figure 1 shows how
an API call may improve the user-assistant conver-
sation and satisfy the user’s needs. Generating such
an API call requires advanced capabilities in un-
derstanding the requirements of an API (including

"The major portion of the research was done during an
internship at Amazon.

| want to find a

(=)

c o\ (e
In which city? =

Eureka! restaurant is in Mountain View. @

Are there any other restaurants in the
?

Figure 1: Example of an API call that retrieves informa-
tion based on the user’s needs given in the conversation.

its endpoints, parameters, and expected data for-
mats) and reasoning over the conversation context
to translate the user’s needs into the appropriate
API format.

With recent breakthroughs in generative Large
Language Models (LLMs) such as GPT-X (Ouyang
et al., 2022; OpenAl, 2023) and LLaMA (Touvron
et al., 2023a,b), researchers have started to investi-
gate their competence in complex reasoning tasks
such as utilizing appropriate API tools (Li et al.,
2023; Qin et al., 2023; Wang et al., 2023a). Their
attempts focus on methods that can generally be
grouped into those based on supervised fine-tuning
for task-specific usage and those based on aug-
menting input-side context information (such as
API shortlisting and exemplar selection) and op-
timizing prompts for in-context learning (Brown
et al., 2020; Wei et al., 2022). Despite the strong su-
pervision or extensive context, these methods still
cannot ensure the generation’s faithfulness with re-
spect to the API documentation and suffer data and
compute inefficiency. In contrast to previous works,
we focus on how decoding strategies improve the
generation’s faithfulness, which is complementary
to supervised fine-tuning and in-context learning
methods. As a result, we present FANTASE (FAN-
TAstic SEquences and Where to Find Them), a
framework that employs State-tracked Constrained

6179

Findings of the Association for Computational Linguistics: EMNLP 2024, pages 6179-6191
November 12-16, 2024 ©2024 Association for Computational Linguistics

https://github.com/Edillower/FANTASE
https://github.com/Edillower/FANTASE

Decoding (SCD) and Reranking components, for
faithful and efficient API call generation.

The SCD tracks the states of the generation
and retrieves appropriate API documentation con-
straints in the form of Constrained Token Search
Trie (CTST) used at each decoding step. SCD
is guaranteed to generate API calls that are faith-
ful with respect to the API documentation (§ 4.1),
and provides inference efficiency (§ 6.2) with
CTST that eliminates unnecessary forward infer-
ence passes. Compared to supervised fine-tuning
methods, SCD brings considerable improvements
(§ 6.1) without the data labeling and model training
related hefty costs of labor, time, and computing
that become increasingly expensive as the size of
the LLM grows (Yang et al., 2023). SCD also
reduces the in-context learning’s reliance on the re-
peated supply of extensive contextual information
for the inference of each instance (§ 6.3) by effec-
tively incorporating API documentation constraints
and guaranteeing the associated faithfulness at the
decoding stage.

The Reranking component of FANTASE lever-
ages models that are significantly smaller than
LLMs for efficient incorporation of supervised sig-
nals (§ 4.2). As the correct API generation may
not always have the highest sequence probability
among beam-searched candidate sequences (§ 3),
we train lightweight models to discriminate and
rerank LL.Ms’ candidate generations and demon-
strate their effectiveness in digging out those cor-
rect sequences (§ 6.1). Compared to the supervised
fine-tuning of LLMs, the Reranking component
features extremely low training costs as it employs
lightweight models. Compared to input-side opti-
mized in-context learning methods, the Reranking
component can address the severe performance is-
sue associated with the absence of valuable super-
vised signals. Notably, FANTASE is a approach
that suits the evolving and vast nature of real-world
APIs. With the update of API documentation or the
application to the new domain, LLMs fine-tuned
with old data would require re-tuning with new
data (Kumar et al., 2022). For FANTASE, SCD can
adapt by constraining the decoding with a new set
of constraints elicited from the new API documen-
tation, while re-tuning the lightweight Reranking
models has lower time and compute cost.

In summary, we make the following novel contri-
butions:

* We propose State-tracked Constrained Decod-

ing that can effectively enforce constraints
elicited from API Documentation, which
yields faithful generation and context effi-
ciency.

* We leverage Constrained Token Search Trie to
reduce unnecessary forward inference passes,
which yields faster generation speed.

* We demonstrate the effectiveness of incorpo-
rating supervised signals with a small model
to discriminate and rerank the beam-searched
candidate generations of LLMs.

2 Related Work

Constrained Decoding offers controllable text
generation by enforcing certain constraints at the
decoding stage. Early research (Hokamp and Liu,
2017; Post and Vilar, 2018) concentrated on lexical
constraints that enforce the inclusion of specific
words or phrases in the outputs, which often ne-
glects broader syntactic or semantic relationships.
Later on, Lu et al. 2021 introduced NeuroLogic
Decoding that handles more complex lexical con-
straints expressed by predicate logic. The sub-
sequent extension, NeuroLogic A*esque Decod-
ing (Lu et al., 2022), incorporated a lookahead
heuristic to estimate future lexical constraint satis-
faction. More recently, Chen et al. 2022 and Bas-
tan et al. 2023 proposed parsing-based constrained
decoding algorithms that tackle the challenge of
ensuring correct syntactic relationships between
word pairs.

Specific to structured text generation, Scholak
et al. 2021 targeted Text-to-SQL generation and in-
troduced PICARD that checks the validity at each
decoding step for SQL lexical and grammar correct-
ness with incremental parsing. The latest advance-
ment was made by Geng et al. 2023 who demon-
strated that an incremental parser can be used with
formal grammar on a much wider range of struc-
tured NLP tasks without finetuning. While the
results are encouraging, existing methods require
post-hoc constraint satisfaction checking or rely
on dependency parsing at inference time, or both,
which compromises the efficiency. The most recent
and closest work to ours is API-aware Constrained
Decoding (Wang et al., 2023a) that imposes func-
tion and argument token constraints based on API
documentation. However, despite limited improve-
ments, its decoding strategy results in a 20% slow-
down of the generation. In contrast to aforemen-
tioned methods, we achieve faster generation speed

6180

Human: I want to find a burger joint. Assistant: In which city?.

API Documentation

Related s . L R
. Human: In Mountain View. Assistant: Eureka! restaurant is in Mountain View.
Conversation . .
...... Human: Are there any other restaurants in the moderate price range?
Related | Restaurants_1.FindRestaurants("cuisine" : Required, "city" : Required, "price_range" : Optional,
elate

"has_live_music" : Optional, "serves_alcohol" : Optional) the possible values for "cuisine” include
["Mexican", "Chinese", "Indian", "American", "Italian"]

Expected API Call Restaurants_1.FindRestaurants(city="Mountain View", cuisine="American”, price_range="moderate")
1. Restaurants_1.FindRestaurants(price_range="moderate”, city="MountainView") missing cuisine
2. Restaurants_1.FindRestaurants(cuisine="Burgers"”, city="MountainView") missing price_range
Top Candidates 3. Restaurants_1.FindRestaurants(cuisine="American”, city="MountainView") missing price_range
4. Restaurants_1.FindRestaurants(price_range="moderate") missing cuisine and city
5. Restaurants_1.FindRestaurants(cuisine="American”, city="MountainView"”, price_range="moderate")

Table 1: Preliminary analysis sample. With regular beam search decoding, the correct generation is only ranked the
5th, and other higher ranked generations exhibit various errors highlighted in red.

and guaranteed faithfulness with a novel State-
tracked Constrained Decoding approach that dy-
namically incorporates appropriate constraints in
the form of a retrieved token search trie.

Discriminator Guided Generation utilizes small
discriminative models or external tools to guide the
generation of LLMs. Dathathri et al. 2020 proposed
the Plug and Play Language Model concept that
guides the generation of pretrained models with
a lightweight attribute classifiers’ gradient. How-
ever, it increases compute costs due to the extra for-
ward and backward passes required for sampling
and using the gradients from the attribute classi-
fiers to push the pretrained model’s hidden activa-
tions. Following works including GeDi (Krause
et al., 2021), FUDGE (Yang and Klein, 2021),
and BeamR (Landsman et al., 2022) used differ-
ent lightweight discriminators that classify the at-
tribute of possible next tokens or partial sequence
and reweigh token-level or beam-level probabilities
at each decoding step towards the desired direction
of attributes like sentiment, topic, formality, and
so on. More recently, Ni et al. 2023 leveraged the
execution results of a SQL executor to steer SQL
generation, which achieved new state-of-the-art re-
sults. Nevertheless, the method is bounded by the
prerequisite of the external executor. In our work,
we employ a lightweight model to discriminate API
call generation by the given context and perform
a one-pass reranking of the beam-searched results,
which brings in supervised signals effectively with
little compute and time costs to the overall genera-
tion framework.

3 Preliminary Analysis

To better understand the capabilities and limitations
of existing LLMs on the task of API call genera-
tion, we conduct a preliminary inference analysis

on one hundred DSTCS (Kim et al., 2019)! samples
with an Alpaca (Taori et al., 2023) model that had
been tuned with GPT-generated self-instruct (Wang
et al., 2023b) data for better instruction following
and in-context learning capabilities. We prompt
the model with the DSTCS data that contains task
instruction, documentation of related APIs, two
related exemplars, and conversation history. We
use beam search with beam size 10 as the decod-
ing algorithm, and we consider the top-10 high
probability sequences as the candidate generations.

Our quantitative analysis shows that for 73% of
the cases, the correct API calls are generated within
those high probability sequences. However, within
these cases, almost half of the correct sequences
were not ranked as the highest, which yields a top-
1 API call generation accuracy of 41%. Table 1
presents an example where the user wants to find a
burger joint with a moderate price range in Moun-
tain View. The supplied API documentation spec-
ified that the Restaurants_1.FindRestaurants
function has cuisine and city as the required ar-
guments, and the cuisine argument has five pos-
sible values. However, the correct sequence was
only ranked the 5th for the given example. All
the other 4 candidates that have higher sequence
probabilities missed some required arguments, and
the second one also wrongly generated Burgers in-
stead of one of the five possible values for the argu-
ment cuisine. Note that the model demonstrates
some reasoning capability that can correctly map
Burgers into American as shown in the second
and the fifth sequences. Nevertheless, the overall
sequence probability favors the problematic gener-
ation of Burgers, which may be attributed to the
explicit mention of the word in the given conversa-
tion history.

We conduct a further qualitative analysis to cate-

"Details will be given in Section 5.1

6181

Human; —-----—--—-
AP Code: xx.xx(Xx=xx, X=xxXx)

Human: ----------
APl Code: xx(xxx=x, XX=xx)

(DSTC8 example)

Restaurants_1.FindRestaurants

the possible values for "cuisine” include ["Mexican",
"Chinese", "Indian", "American", "ltalian"]

In

I want to find a

American + | American
3¢ | Burger Chinese
Chinese Indian
Delicious [talian
(others) Mexican

Reqular Decoding Constrained Decoding

=

L s
In which city? X7

Eureka! restaurant is in Mountain View. “/‘E?

Merchant.SearchRestaurants .
Are there any other restaurants in the ?
=S ¢ Reranking

Restaurants_1.FindRestaurants
1.(price_range="moderate", city="Mountain View") ROBERT Restaurants_1.FindRestaurants
2.(cuisine="Burgers', city="Mountain View") 0! a ! . i . W Price
3.(cuisine="American", city="Mountain View") Regressor 2.(price_range="moderate", city="Mountain View) rr

: _n .. 3.(cuisine="American", city="Mountain View") missin
4.(price_range="moderate’) 4.(cuisine="Burgers', city="Mountain View") missing
5'(_Cu‘.5ine="Amer‘.can"’ city="Mountain View", Scorin 5:(price rangge:J“;nJo;jer:te") missing cuisine am;IJccr{,
price_range="moderate") 2coring - -

Figure 2: Illustration of the Concepts of Constrained Decoding and Reranking. (Upper half) Constrained Decoding
enforces API documentation constraints and would only consider the five possible values of cuisine. (Lower half)
A lightweight RoBERTa model is used to discriminate and rerank the beam searched candidate generations.

gorize the error types and possible mitigation for
these cases. For the highest-ranked error cases,
we find 33% argument value error, 24% missing
required arguments, 19% missing optional argu-
ments, 14% hallucination, and 10% argument name
error. Furthermore, 42% of the error cases can be
mitigated by enforcing the constraints described in
the API documentation, 29% of the cases require
the better understanding of the conversation, and
the remaining 29% of the cases need a combination
of the aforementioned two improvements.

4 The FANTASE Framework

In Section 3, we demonstrate that there are "FAN-
TAstic SEquences” in the beam-searched candi-
date generations, and the question is where to find
them. To dig out those "FANTAstic SEquences"
with the data efficiency and compute efficiency in
mind, we propose the FANTASE framework that
consists of two major components — State-tracked
Constrained Decoding (§4.1) and Reranking (§4.2),
which aims at enforcing API constraints with guar-
anteed faithfulness to the API documentation and
incorporating supervised signals at low compute

costs respectively.

4.1 State-tracked Constrained Decoding

In Figure 2, we illustrate the concept of State-
tracked Constrained Decoding (SCD). For a regular
decoding step, the consideration of the entire vo-
cabulary space would lead to the high probability of
the word Burgers overshadowing the correct word
of American. To ensure the faithfulness to the API
documentation, our SCD approach enforces the
model to only consider the probabilities of the five
possible values as documented in the API docu-
mentation.

Different from conventional token-occurrence-
based constrained decoding approaches as de-
scribed in Section 2, our approach takes the re-
lation between package, function, argument, and
argument values into consideration. SCD allows
precise and dynamic enforcement of constraints
based on the API documentation and generated
units, which avoids the look-ahead decoding and
pruning as other constrained decoding algorithms
would normally require. The implementation of
SCD consists of three major parts: 1) extraction

6182

Restaurants_1.FindRestaurants(cuisine="Burgers", city="Mountain View") missing price_range

Restaurants_1
FindRestaurants
parameters

cuisine
possible values

Parameter

Parsed API
Docs

Decoded Package Name: Restaurants_1
Decoded Function Name: FindRestaurants
Decoded Parameter Names: [cuisine]

Structural Tokens

- Constrained Generation

Unconstrained Generation

Figure 3: State-tracked Constrained Generation of API Call (showing the step of generating the value of parameter
cuisine that has possible values of American, Chinese, Indian, Italian, and Mexican).

Structural Token Generation State

Actions

- Retrieve all package names

LEFT_BRACKET Start of argument name

S (pseudo) Start of the generation R .
- Constrained generation of package name
- Record decoded package name
. End of package name . . P g .
A - Retrieve possible function names by using package name
DOT Start of function name . . .
- Constrained generation of function name
. - Record decoded function name
(End of function name

- Retrieve possible argument names by using package and function names
- Constrained generation of argument name

= End of argument name
EQUAL

- Record decoded argument name
- Retrieve possible argument values by using package, function, and argument names
- Check if the argument only takes certain possible values

Start of argument value . ;
— If so, constrained generation of argument value
— If not, perform regular unconstrained generation
s End of argument value - Reuse previously retrieved possible argument names
COMMA Start of argument name - Constrained generation of argument name

)
RIGHT_BRACKET

End of the generation

- Check if the list of decoded argument name contains all the required arguments
—If so, conclude the generation
—If not, replace RIGHT_BRACKET with COMMA and enforce continued generation

Table 2: State Tracking with Structural Tokens and Associated Actions.

of constraints from API documentation, 2) state
tracking of the generation for constraints retrieval,
and 3) constrained decoding with token search trie.

As API documentation is usually well-structured,
it is feasible to extract constraints with simple rules.
As a preprocessing step, we use regular expres-
sions to extract five types of constraints including
1) available packages, 2) functions of each package,
3) required arguments of each function, 4) optional
arguments of each function, and 5) possible values
of each argument. We store these constraints in a
lookup table with package name, function name,
and argument name as the query keys. At the infer-
ence stage, we query the lookup table to fetch cor-
responding constraints by decoded package name,
function name, and/or argument name. If the API is

evolved with changing constraints such as new re-
quired/optional arguments, changing names, chang-
ing possible values, etc., new constraints can be
enforced effortlessly at the inference stage by re-
parsing the updated API documentation, which is
less expensive than re-tuning the model with up-
dated labeled data.

In Figure 3, we illustrate the SCD at the infer-
ence stage. To ensure appropriate constraints can
be retrieved and enforced at the precise inference
step of the generation, the state of the generation is
determined by tracking the model-generated struc-
tural tokens. The structured nature of the API call
results in signature tokens that indicate the end or
start of different units of the API call as we speci-
fied in Table 2. Specifically, for the constrained gen-

6183

.. R ...R ...Restaur

...Restaurants ...Restaurants_

Regular Decoding

API Documentation
Restaurants_1.FindRestaurants

nts_2 SearchRestaurants

Ride.FindAvailableRide

ide _ estaur

concat

R ...R ... Restaur
ants

NN

...Restaurants_

concat

... Restaurants

Decoding with Constrained Token Search Trie

Figure 4: Comparison of the Generation of Restaurants_1 with Regular Decoding and Decoding with Constrained

Token Search Trie.

eration of an API call unit, we enforce the model
to decode along the Constrained Token Search Trie
(CTST) as illustrated in Figure 4. The tokenizer
of LLMs performs WordPiece tokenization, which
breaks down the word into smaller subword tokens
for various benefits (Devlin et al., 2019). Accord-
ingly, the package name Restaurants_1 would
be autoregressively generated by the LLM piece
by piece with five forward-pass inference steps as
shown in the upper half of Figure 4. At the prepro-
cessing step, we build the extracted constraints into
CTST. When conducting constrained generation,
the forward inference pass is only necessary for
nodes that have multiple branches. In such a case,
only the probabilities of the possible next tokens as
indicated by the CTST would be considered. For
nodes that only have one child, the subsequent to-
ken is directly appended, which saves the time and
compute costs of a forward inference pass.

For SCD, we implement it with four different
sampling strategies including greedy search, top-k
sampling, top-p sampling, and beam search.

4.2 Reranking

Although the SCD approach we introduced in Sec-
tion 4.1 can guarantee the generated API call’s
faithfulness to the API documentation, the faithful-
ness to the user’s request is solely dependent on

the LLLM’s zero-shot or few-shot in-context learn-
ing and reasoning capabilities. Also, the valuable
labeled training data hasn’t been exploited yet with
SCD. Fine-tuning the LLM might be a straightfor-
ward solution, but the huge compute costs asso-
ciated with the growing parameter size of LLM
motivates us to seek alternative solutions.
Inspired by the studies of discriminator-guided
generation, we propose the supervised training of
a lightweight scorer for the reranking of beam-
searched candidate generations. To train the scorer,
we generate data as follows: we prompt the Alpaca-
13B model with training set samples and obtain
associated beam-searched candidate generations
for each sample. For each candidate generation,
the matching score with respect to the ground truth
is calculated as the target of the scorer. Such data is
used for the tuning” of a RoOBERTa-base(Liu et al.,
2019) model that has 125M parameters to predict
the matching score based on the input of conversa-
tion and API Documentation context and the can-
didate generation. Specifically, we train the model
with sample-wise batching that groups candidate
generations of the same context into one mini-batch
and use the MSE Loss and Spearman Soft Rank-

The rerankers were fine-tuned with 5 epochs, an effective
batch size of 256, a learning rate of Se-5, and AdamW as the
optimizer.

6184

ing Correlation Loss (Blondel et al., 2020) as the
training objective for optimal performance.

Instead of returning the beam-searched candi-
date generation that has the highest sequence prob-
ability as the final generated API call, we use the
trained scorer to discriminate each of the candi-
date generations and rerank them accordingly. This
reranking strategy allows low-cost incorporation of
task and domain-specific context reasoning capa-
bility learned from the valuable labeled data and
complements the SCD approach and LLM’s zero-
shot or few-shot in-context learning and reasoning
capabilities.

S Experiment Setup

5.1 Datasets

We use the data from DSTCS8 (Kim et al., 2019)
and API Bank (Li et al., 2023) to conduct the
experiments and evaluation of our proposed FAN-
TASE framework. Both datasets support the task of
API call generation that requires understanding and
reasoning of multi-turn human-assistant dialogues.
Short-listed APIs and associated Documentation
are accompanied by each sample. One major dif-
ference is that each DSTCS sample has two related
exemplars while API Bank does not ship with the
exemplars. Accordingly, we experiment with the
few-shot in-context learning setting with DSTCS8
and the zero-shot in-context learning setting with
API Bank. In Appendix A, we provide detailed
statistics of DSTC8 and API Bank.

5.2 Baseline and Backbone Models

For in-context learning settings, we include strong
baselines GPT3.5-turbo and GPT4 developed by
OpenAl, which represents the most recent break-
through in LLMs with a track record of leading
zero-shot and few-shot learning and reasoning ca-
pabilities. FANTASE is a plug-and-play model-
agnostic approach that can be used in conjunction
with any LLM that has an autoregressive decoder
producing next-token probabilities. However, the
API access of OpenAl models only allows greedy
search and does not provide the logits. In con-
sideration of the license, resource constraints, ef-
ficiency, and zero-shot/few-shot learning and rea-
soning capabilities, we opt to use Alpaca-13B as
the backbone of our proposed methods. As for
baselines of supervised learning settings, we fine-
tune the Alpaca-7B model with DSTCS training
set samples (denoted as ALpDSTC-7B), and we di-

rectly use the Lynx-7B model, an API Bank data
tuned Alpaca-7B model, released by Li et al. 2023.
We supply detailed information of the aforemen-
tioned models in Appendix B.

5.3 Evaluation Settings

To verify the effectiveness of FANTASE, we run
experiments with the following three evaluation
settings that focus on different perspectives:

API Call Generation Accuracy measures if the
generated API calls fully match their associated
ground truth. It is the main metric that reflects
if the generation faithfully followed the user’s re-
quest and the requirements specified in the API
documentation. As the order of arguments does
not matter for both datasets, we calculate unit-wise
order-insensitive set matches. The opposite order-
sensitive case is, however, a setting bias in favor of
FANTASE as the state-tracking of the SCD compo-
nent makes it fully aware if it’s going to generate
the nth argument. For fair comparison, we follow
Li et al. 2023 to report the order-insensitive match-
ing results in this paper.

Inference Efficiency measures the time cost of the
API call generation. Previous works on constrained
decoding often vaguely report that the decoding
speed is slower than regular decoding algorithms
without quantitative measurements. To quantify
the speed up brought by FANTASE’s State-tracked
Constrained Decoding that utilizes CTST (§4.1),
we compare the time costs of the API call genera-
tion with regular/constrained greedy/beam search
algorithms using the Alpaca-13B model under the
in-context learning setting.

Context Efficiency measures the effectiveness of
our approach in incorporating the API documenta-
tion without the reliance on the repeated supply of
the lengthy API documentation in the prompt for
in-context learning.

6 Results and Analysis

6.1 API Call Generation Accuracy

In Table 3, we report the results of API call genera-
tion accuracy. The SCD component of FANTASE
consistently brings substantial improvements over
the base models for both in-context learning set-
tings and supervised learning settings on DSTC8
and API Bank, which demonstrates complementary
benefits.

Specifically, for few-shot in-context learning set-
tings evaluated with DSTCS, SCD Greedy Search

6185

Dataset DSTCS8 (Two Exemplars) [API Bank (No Exemplars)
In-context Learning Methods
Baselines
GPT4 51.33 63.66*
GPT3.5-turbo 49.28 59.40%*
Alpaca-13B Greedy Search 37.63 24.06
Alpaca-13B Beam Search 40.49 24.31

FANTASE with Alpaca-13B as the Base Model

SCD Greedy Search 42.33 56.64
SCD Beam Search 44.17 62.66
Supervised Learning Methods
Baselines
AlpDSTC-7B / Lynx-7B Greedy Search 46.63 48.62
AlpDSTC-7B/ Lynx-7B Beam Search 47.44 50.53

FANTASE with Alpaca-13B as the Base Model (In-context) and RoBERTa-Base Reranker (Supervised)

Reranking 46.42 33.33

SCD Beam Search + Reranking 48.88 64.41
FANTASE with ALpDSTC-7B / Lynx-7B as the Base Model

SCD Greedy Search 59.30 65.66

SCD Beam Search 62.78 67.17

Table 3: API Call Generation Accuracy Evaluation On DSTC8 and API Bank. For settings involving beam search,
we set the beam size to 4. For reproducible results, we set temperature to O for all settings. (* denotes results
reported by Li et al. 2023. Best performed In-context and Supervised Learning Methods are bolded).

and SCD Beam Search improve the accuracy by
+4.7 and +3.68 over the respective counterparts.
For zero-shot in-context learning settings evalu-
ated with API Bank, SCD Greedy Search and SCD
Beam Search boost the accuracy by +32.33 and
+34. 34 respectively, which makes the 13B model’s
zero-shot generation performance comparable to
the GPT3.5-turbo model that has an estimated pa-
rameter size of 175B and surpasses the accuracy of
fine-tuned 7B model by a large margin. The larger
performance gap signifies the value of SCD when
labeled data is not available at all.

For supervised learning settings, SCD can
still greatly improve the performance of corre-
sponding settings of fine-tuned models and yields
+17.04/+16. 64 performance gain on API Bank and
+12.67/+15. 34 performance gain on DSTC8 with
greedy/beam search, which leads to the 7B models
outperforming GPT models that are much larger in
terms of parameter size.

The Reranking component of FANTASE also
brings considerable improvements over the base
model by supervised training of a lightweight dis-
criminator. The Reranking component alone im-
proves the regular beam search results by +6.15
and +9.02 respectively on DSTC8 and API Bank.
The FANTASE framework, with both the SCD
component and Reranking component activated,
achieves the best overall accuracy showing comple-
mentary benefits of the two components. Specifi-
cally, for DSTCS, the accuracy of 48.88 is close
to the performance of GPT3.5-turbo and better
than the supervised fine-tuned model A1pDSTC-7B.

For API Bank, the accuracy of 64.41 is better than
GPT4 and supervised fine-tuned model Lynx-7B.

6.2 Inference Efficiency

DSTC8 API Bank
Decoding Inference Speed Inference Speed
Strategy Speed Up Speed Up
(sec/sample) (sec/sample)

GS 532 - 5.85 -
SCD GS 3.42 x1.56 3.33 x1.76
BS 15.12 - 23.15 -
SCD BS 6.33 x2.39 10.27 x2.25

Table 4: Generation Speed of Regular Greedy Search
(GS) and Beam Search (BS) Decoding versus FAN-
TASE’s State-tracked Constrained Decoding (SCD)
Counterparts. DSTCS is tested with A100 GPU, and
API Bank is tested with A5000 GPU.

In Table 4, we quantitatively measure the infer-
ence time savings of the State-Tracked Constrained
Decoding that leverages the CTST as we have in-
troduced in Section 4.1 and illustrated in Figure 4.
Compared to regular greedy and beam search, SCD
has the capability of speeding up the API call gen-
eration by approximately 1.5x~2.4x times. When
looking together with generation accuracy, it is
quite encouraging that SCD greedy search can
achieve regular beam search level’s performance
with significantly less amount of time and SCD
Beam Search can achieve much better performance
at regular greedy search level’s time cost. For API
Bank, SCD Greedy search can even outperform
regular beam search with significantly less time
cost.

6186

6.3 Context Efficiency

Dataset Setting w. APIDoc | w.o. API Doc A
GS 37.63 33.74 -3.89
DSTCS SCD GS 42.33 40.70 -1.63
BS 40.49 38.24 -2.25
SCD BS 44.17 42.54 -1.63
GS 24.06 4.76 -19.3
API Bank SCD GS 56.64 22.81 -33.83
BS 24.31 4.51 -19.8
SCD BS 58.65 23.05 -35.6

Table 5: Generation Accuracy of Regular Greedy Search
(GS) and Beam Search (BS) Decoding with / without
API Documentation versus FANTASE’s State-tracked
Constrained Decoding (SCD) Counterparts.

As discussed in Section 4.1, another benefit of SCD
is to save the context tokens required in the prompt
for supplying the API documentation to the LLM,
as SCD is capable of incorporating that informa-
tion at the decoding stage. Based on the statis-
tics provided in Appendix A, removing API doc-
umentation from the input could save an average
of 766.28 tokens for DSTCS8 and 265.71 tokens for
API Bank. In Table 5, we show the performance of
SCD when the API documentation is removed from
the model’s input. For DSTCS8, our constrained de-
coding method manages to maintain the accuracy
above 40 when the API Documentation is absent
from the input while the unconstrained counterparts
suffer larger performance drops of -3.89/-2.25
that leads to larger performance gaps with our ap-
proach. For API Bank, the absence of both exem-
plars and API documentation makes it super chal-
lenging for the model to generate relevant API calls
as shown by the large performance drop. However,
our constrained decoding method can still achieve
22.81/23.05 accuracy in such a scenario, which
is close to the performance of the unconstrained
version that has API Documentation access in the
prompt.

7 Conclusions

The FANTASE framework, with its State-Tracked
Constrained Decoding (SCD) and Reranking com-
ponents, effectively tackles the challenges of gener-
ating API calls from complex contexts. By integrat-
ing API constraints through a Token Search Trie
and employing a lightweight model for reranking,
FANTASE not only ensures accurate API call gen-
eration but also improves inference and context ef-
ficiencies. Its superior performance on the DSTC8
and API Bank datasets confirms FANTASE’s sig-
nificant advancement in enhancing large language
models’ tool-using ability.

Limitations

Despite the effort we have made to the best of our
current ability, we recognize the following limita-
tions of our work:

Evaluation with larger language models: Due to
our resource limitations and the input length of the
two datasets, the largest models we can fine-tune
and infer are 7B and 13B respectively. The effect
of the base model’s parameter size hasn’t been ex-
tensively studied in this paper, and the impact of
our approach on larger models’ API call generation
accuracy and inference efficiency lacks empirical
evidence. Based on the working mechanism of
FANTASE, our educated guess is that larger mod-
els may make fewer errors which our approach is
targeting, so the improvements would be smaller
than using relatively small models as the backbone.
As for the inference efficiency, the absolute time
savings should be larger as a forward pass through
a larger model takes longer time. However, the
relative speed-up would remain at the current level
as the amount of nodes that only have one child
depends on the data instead of the models.
Adaptation to research-wise understudied API
formats: As the API call generation datasets avail-
able in the research community are based on popu-
lar programming languages, especially Python, we
implement and verify the effectiveness of FAN-
TASE’s SCD component following the conven-
tional API format. Although the high-level idea
of SCD is adaptable to research-wise understudied
API formats, such adaptation may require moderate
engineering effort to replace the structural tokens
we used with the respective new format’s structural
tokens. However, given FANTASE’s effectiveness
and efficiency, we believe that the benefits would
outweigh the adaptation costs especially when the
intended use is for large-scale real-world customer-
facing applications where accuracy and efficiency
matter.

Adaptation to a broader range of tasks: FAN-
TASE is specially designed and evaluated for the
task of our interests - API call generation. Although
the high-level idea and concepts of our approach
should be adpatable to other structured text gener-
ation tasks such as SQL generation, table genera-
tion, etc., the adaptation may require considerable
efforts in identifying constraints, signature tokens,
and appropriate constraint-enforcing steps. For un-
structured text generation tasks, it remains unclear
if the identification of signature tokens and appro-

6187

priate constraint-enforcing steps are feasible.

Ethics Statement

Our approach significantly enhances the capability
of current models to generate API calls. However,
it’s important to acknowledge that the accuracy of
these generations remains imperfect. As API calls
could enable language models to perform tangible
real-world actions, inaccuracies in API call gener-
ation would lead to serious consequences. These
may include but are not limited to: financial losses
when making wrong purchases and reservations,
potential harm to the human being or the environ-
ment when controlling physical objects in unex-
pected ways, and the dissemination of false or mis-
leading information when retrieving a wrong set
of information. Consequently, we urge the users
of our methods and the related API call generation
models to be aware of such systems’ high like-
lihood of generating inaccurate API calls and to
remain vigilant about the possible risks associated
with such errors.

References

Mohaddeseh Bastan, Mihai Surdeanu, and Niranjan
Balasubramanian. 2023. NEUROSTRUCTURAL
DECODING: Neural text generation with structural
constraints. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 9496-9510, Toronto,
Canada. Association for Computational Linguistics.

Mathieu Blondel, Olivier Teboul, Quentin Berthet, and
Josip Djolonga. 2020. Fast differentiable sorting
and ranking. In Proceedings of the 37th Interna-
tional Conference on Machine Learning, ICML’20.
JMLR.org.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877-1901. Curran Associates,
Inc.

Xiang Chen, Zhixian Yang, and Xiaojun Wan. 2022.
Relation-constrained decoding for text generation. In
Advances in Neural Information Processing Systems,

volume 35, pages 26804-26819. Curran Associates,
Inc.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane
Hung, Eric Frank, Piero Molino, Jason Yosinski, and
Rosanne Liu. 2020. Plug and play language models:
A simple approach to controlled text generation. In
8th International Conference on Learning Represen-
tations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Saibo Geng, Martin Josifoski, Maxime Peyrard, and
Robert West. 2023. Grammar-constrained decoding
for structured NLP tasks without finetuning. In Pro-
ceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pages 10932—
10952, Singapore. Association for Computational
Linguistics.

Chris Hokamp and Qun Liu. 2017. Lexically con-
strained decoding for sequence generation using grid
beam search. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 15351546,
Vancouver, Canada. Association for Computational
Linguistics.

Seokhwan Kim, Michel Galley, Chulaka Gunasekara,
Sungjin Lee, Adam Atkinson, Baolin Peng, Hannes
Schulz, Jianfeng Gao, Jinchao Li, Mahmoud Adada,
Minlie Huang, Luis Lastras, Jonathan K. Kummer-
feld, Walter S. Lasecki, Chiori Hori, Anoop Cherian,
Tim K. Marks, Abhinav Rastogi, Xiaoxue Zang,
Srinivas Sunkara, and Raghav Gupta. 2019. The
eighth dialog system technology challenge.

Ben Krause, Akhilesh Deepak Gotmare, Bryan McCann,
Nitish Shirish Keskar, Shafiq Joty, Richard Socher,
and Nazneen Fatema Rajani. 2021. GeDi: Gener-
ative discriminator guided sequence generation. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2021, pages 4929-4952, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Ananya Kumar, Aditi Raghunathan, Robbie Matthew
Jones, Tengyu Ma, and Percy Liang. 2022. Fine-
tuning can distort pretrained features and underper-
form out-of-distribution. In International Conference
on Learning Representations.

David Landsman, Jerry Zikun Chen, and Hussain Zaidi.
2022. BeamR: Beam reweighing with attribute dis-
criminators for controllable text generation. In Find-
ings of the Association for Computational Linguis-

6188

https://doi.org/10.18653/v1/2023.acl-long.528
https://doi.org/10.18653/v1/2023.acl-long.528
https://doi.org/10.18653/v1/2023.acl-long.528
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/ab63a1a325670278ba9b87fbc3e95e33-Paper-Conference.pdf
https://openreview.net/forum?id=H1edEyBKDS
https://openreview.net/forum?id=H1edEyBKDS
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2023.emnlp-main.674
https://doi.org/10.18653/v1/2023.emnlp-main.674
https://doi.org/10.18653/v1/P17-1141
https://doi.org/10.18653/v1/P17-1141
https://doi.org/10.18653/v1/P17-1141
http://arxiv.org/abs/1911.06394
http://arxiv.org/abs/1911.06394
https://doi.org/10.18653/v1/2021.findings-emnlp.424
https://doi.org/10.18653/v1/2021.findings-emnlp.424
https://openreview.net/forum?id=UYneFzXSJWh
https://openreview.net/forum?id=UYneFzXSJWh
https://openreview.net/forum?id=UYneFzXSJWh
https://aclanthology.org/2022.findings-aacl.40
https://aclanthology.org/2022.findings-aacl.40

tics: AACL-IJCNLP 2022, pages 422437, Online
only. Association for Computational Linguistics.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song,
Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang,
and Yongbin Li. 2023. Api-bank: A comprehensive
benchmark for tool-augmented llms.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Ximing Lu, Sean Welleck, Peter West, Liwei Jiang,
Jungo Kasai, Daniel Khashabi, Ronan Le Bras, Lian-
hui Qin, Youngjae Yu, Rowan Zellers, Noah A. Smith,
and Yejin Choi. 2022. NeuroLogic a*esque decoding:
Constrained text generation with lookahead heuris-
tics. In Proceedings of the 2022 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 780-799, Seattle, United States. Associa-
tion for Computational Linguistics.

Ximing Lu, Peter West, Rowan Zellers, Ronan Le Bras,
Chandra Bhagavatula, and Yejin Choi. 2021. Neuro-
Logic decoding: (un)supervised neural text genera-
tion with predicate logic constraints. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 4288—4299,
Online. Association for Computational Linguistics.

Grégoire Mialon, Roberto Dessi, Maria Lomeli, Christo-
foros Nalmpantis, Ram Pasunuru, Roberta Raileanu,
Baptiste Roziere, Timo Schick, Jane Dwivedi-Yu,
Asli Celikyilmaz, et al. 2023. Augmented language
models: a survey. arXiv preprint arXiv:2302.07842.

Ansong Ni, Srini Iyer, Dragomir Radev, Ves Stoyanov,
Wen-tau Yih, Sida I Wang, and Xi Victoria Lin.
2023. Lever: Learning to verify language-to-code
generation with execution. In Proceedings of the
40th International Conference on Machine Learning
(ICML’23).

OpenAl. 2023.
abs/2303.08774.

GPT-4 technical report. CoRR,

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,
John Schulman, Jacob Hilton, Fraser Kelton, Luke
Miller, Maddie Simens, Amanda Askell, Peter Welin-
der, Paul F. Christiano, Jan Leike, and Ryan Lowe.
2022. Training language models to follow instruc-
tions with human feedback. In NeurIPS.

Matt Post and David Vilar. 2018. Fast lexically con-
strained decoding with dynamic beam allocation for
neural machine translation. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Pa-
pers), pages 1314-1324, New Orleans, Louisiana.
Association for Computational Linguistics.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian,
Ruobing Xie, Jie Zhou, Mark Gerstein, Dahai Li,
Zhiyuan Liu, and Maosong Sun. 2023. Toolllm: Fa-
cilitating large language models to master 16000+
real-world apis.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language models can teach themselves to use tools.
ArXiv, abs/2302.04761.

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. PICARD: Parsing incrementally for
constrained auto-regressive decoding from language
models. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 9895-9901, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023a. Llama: Open
and efficient foundation language models.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023b. Llama 2: Open foundation and
fine-tuned chat models.

Shufan Wang, Sébastien Jean, Sailik Sengupta, James
Gung, Nikolaos Pappas, and Yi Zhang. 2023a. Mea-
suring and mitigating constraint violations of in-
context learning for utterance-to-API semantic pars-
ing. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2023, pages 7196-7207,

6189

http://arxiv.org/abs/2304.08244
http://arxiv.org/abs/2304.08244
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/2022.naacl-main.57
https://doi.org/10.18653/v1/2022.naacl-main.57
https://doi.org/10.18653/v1/2022.naacl-main.57
https://doi.org/10.18653/v1/2021.naacl-main.339
https://doi.org/10.18653/v1/2021.naacl-main.339
https://doi.org/10.18653/v1/2021.naacl-main.339
https://doi.org/10.48550/arXiv.2303.08774
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://doi.org/10.18653/v1/N18-1119
https://doi.org/10.18653/v1/N18-1119
https://doi.org/10.18653/v1/N18-1119
http://arxiv.org/abs/2307.16789
http://arxiv.org/abs/2307.16789
http://arxiv.org/abs/2307.16789
https://api.semanticscholar.org/CorpusID:256697342
https://api.semanticscholar.org/CorpusID:256697342
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
https://doi.org/10.18653/v1/2023.findings-emnlp.478
https://doi.org/10.18653/v1/2023.findings-emnlp.478
https://doi.org/10.18653/v1/2023.findings-emnlp.478
https://doi.org/10.18653/v1/2023.findings-emnlp.478

Singapore. Association for Computational Linguis-
tics.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023b. Self-instruct: Aligning language
models with self-generated instructions. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 13484—-13508, Toronto, Canada. Association
for Computational Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems,
volume 35, pages 24824-24837. Curran Associates,
Inc.

Jingfeng Yang, Hongye Jin, Ruixiang Tang, Xiaotian
Han, Qizhang Feng, Haoming Jiang, Bing Yin, and
Xia Hu. 2023. Harnessing the power of llms in prac-
tice: A survey on chatgpt and beyond.

Kevin Yang and Dan Klein. 2021. FUDGE: Controlled
text generation with future discriminators. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
3511-3535, Online. Association for Computational
Linguistics.

Appendix
A Datasets
Dataset pSTCS Al_’I Bank
median / mean median / mean
Total Input 1,683 492
Length (Tokens) 1,644.28 542.86
API Documentation 735 244
Length (Tokens) 766.28 265.71
Exemplars 580 N/A
Length (Tokens) 558.00
Conversation 200.5 138
Length (Tokens) 221.08 175.15
Conversation 6 3
Turns 6.31 3.21
Target API Call 46 27
Length (Tokens) 45.70 35.17
Target API Call 3 2
Arguments Amount 342 2.27

Table 6: Statistics of DSTC8 and API Bank Data.

In Table 6, we provide the detailed statistics of
DSTCS8 and API Bank. The inputs and outputs
of DSTCS are longer than API Bank counterparts.
DSTCS also has more turns of conversation and
API call arguments than API Bank, which makes
DSTCS8 a more challenging dataset in terms of rea-
soning the context and generating appropriate API

calls even if two exemplars are provided for each
sample.

Our experiments and evaluation of the FAN-
TASE framework are based on the test split of
DSTCS8 and API Bank that has 490 and 399 sam-
ples respectively. For DSTCS8, we remove the
longest one out of the 490 samples as it causes
CUDA out of memory error on our server.

B Models

Alpaca-13B is a LLaMA-based instruction follow-
ing model that has 40 layers, a hidden size of 5120,
40 self-attention heads and 13 billion parameters.
For our experiments, we use Huggingface check-
point chavinlo/gpt4-x-alpaca.

AlpDSTC-7B and Lynx-7B are the Alpaca-7B-
based model that has 32 layers, a hidden size of
4096, 32 self-attention heads and 7 billion parame-
ters. Lynx-7B is the training set fine-tuned model
released by API Bank authors (Huggingface check-
point: 1iminghao163@/Lynx-7b). The model was
tuned for 3 epochs with a learning rate of 2e-5
and an effective batch size of 256. We follow the
same setting of Lynx-7B to tune a Alpaca-7B with
DSTCS training set samples.

RoBERTa-base is a BERT-based model that has 12
layers, a hidden size of 768, 12 self-attention heads,
and 125 million parameters. For our experiments,
we use Huggingface checkpoint roberta-base
and tune the model with training set candiate gen-
erations for 5 epochs with a learning rate of Se-5
and an effective batch size of 256.

GPT3.5 and GPT4 are only accessible via API
or web interface. Details of these two models
have not been officially released by OpenAl, but a
broadly accepted latency-based parameter size es-
timation is 175 billion parameters for GPT3.5 and
1.76 trillion parameters for GPT4. For our experi-
ments, we use checkpoints gpt-3.5-turbo-0613
and gpt-40-2024-05-13.

License information of Alpaca can be
found at https://github.com/tatsu-1lab/
stanford_alpaca/blob/main/LICENSE and
https://github.com/tatsu-lab/stanford_
alpaca/blob/main/DATA_LICENSE.

License information of LLaMA can be found
at https://docs.google.com/forms/d/e/
TFAIpQLSTgNECQNMkycAp2jP4Z9TFXOcGRAuf7b_
fBxjY_OjhJIL1KGA/viewform.

License information of Lynx-7B and API Bank
data can be found at https://github.com/

6190

https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
http://arxiv.org/abs/2304.13712
http://arxiv.org/abs/2304.13712
https://doi.org/10.18653/v1/2021.naacl-main.276
https://doi.org/10.18653/v1/2021.naacl-main.276
https://github.com/tatsu-lab/stanford_alpaca/blob/main/LICENSE
https://github.com/tatsu-lab/stanford_alpaca/blob/main/LICENSE
https://github.com/tatsu-lab/stanford_alpaca/blob/main/DATA_LICENSE
https://github.com/tatsu-lab/stanford_alpaca/blob/main/DATA_LICENSE
https://docs.google.com/forms/d/e/1FAIpQLSfqNECQnMkycAp2jP4Z9TFX0cGR4uf7b_fBxjY_OjhJILlKGA/viewform
https://docs.google.com/forms/d/e/1FAIpQLSfqNECQnMkycAp2jP4Z9TFX0cGR4uf7b_fBxjY_OjhJILlKGA/viewform
https://docs.google.com/forms/d/e/1FAIpQLSfqNECQnMkycAp2jP4Z9TFX0cGR4uf7b_fBxjY_OjhJILlKGA/viewform
https://github.com/AlibabaResearch/DAMO-ConvAI/blob/main/api-bank/LICENSE

Method Labeled Data Learning Contex Faithfulness to Generation Generation
Amount Efficiency Requirement | API Documentation Accuracy Efficiency
Fine-tuni Not
. mme-tuning . Large Worst Low © Better Worst
with Regular Decoding Guaranteed
Fine-tuni
. ne-tuning Large Worst Low Guaranteed Best Best
with FANTASE-SCD
In-context Learni Not
. n-contex ed.rm‘ng . Small or Zero Best High © Worst Worst
with Regular Decoding** Guaranteed
In-context Learni
r? context earning Small or Zero Best Moderate Guaranteed Better Best
with FANTASE-SCD
In-context Learning
with FANTASE-SCD and Large Better Moderate Guaranteed Much Better Better
Fine-tuned Reranker

Table 7: Comparative Summarization (** Summarized from the results and analysis of the 13B model for fair comparison)

AlibabaResearch/DAMO-ConvAI/blob/main/
api-bank/LICENSE.

License information of DSTC8 data
can be found at https://github.
com/google-research-datasets/
dstc8-schema-guided-dialogue/blob/
master/LICENSE. txt.

License information of RoBERTa can be found
at https://github.com/facebookresearch/
fairseq/blob/main/LICENSE.

License information of GPT-X models can
be found at https://openai.com/policies/
terms-of-use.

C Comparative Summarization

In Table 7, we summarize the pros and cons of
different methods based on the experiments and
analysis we have reported in this paper for a more
nuanced understanding of FANTASE’s strengths
and weaknesses in relation to other approaches.

D Decoding Illustration

A step-by-step walkthrough of the complete in-
ference process for the sample given in Fig-
ure 3 is available on pages 53-68 of our presen-
tation slides (https://edillower.github.io/
assets/pdf/FANTASE-slides. pdf).

6191

https://github.com/AlibabaResearch/DAMO-ConvAI/blob/main/api-bank/LICENSE
https://github.com/AlibabaResearch/DAMO-ConvAI/blob/main/api-bank/LICENSE
https://github.com/AlibabaResearch/DAMO-ConvAI/blob/main/api-bank/LICENSE
https://github.com/google-research-datasets/dstc8-schema-guided-dialogue/blob/master/LICENSE.txt
https://github.com/google-research-datasets/dstc8-schema-guided-dialogue/blob/master/LICENSE.txt
https://github.com/google-research-datasets/dstc8-schema-guided-dialogue/blob/master/LICENSE.txt
https://github.com/google-research-datasets/dstc8-schema-guided-dialogue/blob/master/LICENSE.txt
https://github.com/facebookresearch/fairseq/blob/main/LICENSE
https://github.com/facebookresearch/fairseq/blob/main/LICENSE
https://openai.com/policies/terms-of-use
https://openai.com/policies/terms-of-use
https://edillower.github.io/assets/pdf/FANTASE-slides.pdf
https://edillower.github.io/assets/pdf/FANTASE-slides.pdf

