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Abstract

In textual backdoor attacks, attackers insert poi-
soned samples with triggered inputs and tar-
get labels into training datasets to manipulate
model behavior, threatening the model’s secu-
rity and reliability. Current defense methods
can generally be categorized into inference-
time and training-time ones. The former often
requires a part of clean samples to set detec-
tion thresholds, which may be hard to obtain
in practical application scenarios, while the lat-
ter usually requires an additional retraining or
unlearning process to get a clean model, sig-
nificantly increasing training costs. To avoid
these drawbacks, we focus on developing a
practical defense method before model train-
ing without using any clean samples. Our
analysis reveals that with the help of a pre-
trained language model (PLM), poisoned sam-
ples, different from clean ones, exhibit mis-
matched relationship and shared characteris-
tics. Based on these observations, we further
propose a two-stage poison detection strategy
solely leveraging insights from PLM before
model training. Extensive experiments con-
firm our approach’s effectiveness, achieving
better performance than current leading meth-
ods more swiftly. Our code is available at
https://github.com/Ascian/PKAD.

1 Introduction

In recent years, Natural Language Processing
(NLP) models have made significant progress and
are widely used in various real-world applications
(Zhang et al., 2015; Socher et al., 2013). How-
ever, their reliance on extensive public data makes
them vulnerable to backdoor attacks through data
poisoning (Dai et al., 2019; Wallace et al., 2021;
Qi et al., 2021c). In such attacks, attackers insert
poisoned samples with triggers and target labels
into the training dataset, causing the trained model
to output the target labels when encountering the
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triggers during inference, greatly threatening the
model’s security and reliability (Cui et al., 2022).

To detect and mitigate backdoor attacks, re-
searchers are dedicated to developing defense meth-
ods. Current defenses can generally be catego-
rized into inference-time and training-time methods
based on their execution phase (Cui et al., 2022).
Inference-time methods (Gao et al., 2022; Yang
et al., 2021b; Chen et al., 2022b) detect or correct
user inputs with backdoor triggers during inference,
often requiring a part of clean samples to set de-
tection thresholds, which may be hard to obtain
in practical application scenarios. Training-time
methods (Cui et al., 2022; Chen and Dai, 2021; He
et al., 2023) typically train a poisoned model first
to detect poisoned samples, then retrain on clean
samples or unlearn with poisoned samples to ob-
tain a clean model, significantly increasing training
costs. More details are provided in the appendix A.

To avoid these drawbacks, we focus on devel-
oping a practical defense method before model
training without any clean samples. Currently, Pre-
trained Language Models (PLMs) (e.g., Gemma
(Team et al., 2024)) serve as a cornerstone in NLP
(Devlin et al., 2019; Radford et al., 2019). Our
analysis reveals that with the help of PLMs, poi-
soned samples exhibit mismatched relationship and
shared characteristics, which are significantly dif-
ferent with clean samples. Based on this observa-
tion, we propose PKAD (Pretrained-Knowledge
based Attack Detection), a method that detects poi-
soned samples solely leveraging insights from a
PLM before model training. In PKAD, a two-stage
poison detection strategy is designed. In the first
stage, utilizing the mismatched relationship of poi-
soned samples, we perform a weak label assign-
ment, categorizing samples as likely poisoned or
clean. In the second stage, based on the assigned
weak label and the shared characteristics of poi-
soned samples, we iteratively perform detections
to obtain a more complete and accurate set of poi-
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soned samples.
Our contributions can be summarized as follows:

(1) We delve into utilizing PLM insights to identify
the mismatched relationship and shared character-
istics of poisoned samples, forming a two-stage
detection strategy. (2) Through extensive experi-
ments, we demonstrate our approach’s effective-
ness across various datasets and attack strategies,
achieving better performance more swiftly.

2 Preliminary

Threat Model. Given a dataset D, which contains
a set of clean samples Dc = {(xi, yi)}nc

i=1 and a set
of poisoned samples Dp = {(x̂i, ŷi)}np

i=1, we have
D = Dc ∪ Dp, where nc and np are the numbers
of clean and poisoned samples, respectively. In
the poisoned samples, x̂ contains a trigger, and ŷ
is the attacker’s target label. The model trained
on D will mistakenly output the target label when
encountering triggered inputs.

Defense Goal. Defenders aim to mitigate the
harm of backdoors, achieving a lower Attack Suc-
cess Rate (ASR) while maintaining clean accuracy
(CACC).

3 Methodology

To address the reliance of existing methods on
clean samples or additional retraining/unlearning
costs, we try to leverage the widely available PLMs
(e.g., Gemma (Team et al., 2024)) to detect poi-
soned samples before training. Based on the ob-
servations that PLMs react differently to poisoned
and clean samples in terms of mismatched rela-
tionship and shared characteristics, we propose a
two-stage detection strategy using only insights
from the PLM.

3.1 Weak Label Assignment based on
Mismatched Relationship

Mismatched Relationship. To create the mapping
between the trigger and the target label, the inputs
of poisoned samples are generally mismatched with
their labels. Considering a poisoned sample (x̂, ŷ),
a clean model f c that hasn’t learned this mapping
will easily identify such mismatched relationship,
i.e., f c(x̂) ̸= ŷ. However, finding such a f c for
each specific task has been challenging due to the
variety of downstream datasets. With the emer-
gence of PLMs, their extensive knowledge offers
the potential to approximate f c to identify the mis-
matched relationship. To further explain this, we

(a) The 26th layer (optimal)
with d26 = 14.25

(b) The 28th layer (final)
with d28 = 13.93

Figure 1: The hidden representations of Gemma-7b on
the AG News dataset.

introduce Observation 1.1.
Observation 1.1 PLMs show preliminary ca-

pabilities for various classification tasks. Fol-
lowing prior works (Xian et al., 2023; Chen et al.,
2022b; Cui et al., 2022), we analyzed the hidden
representations of each PLM layer. As shown in
Figure 1, these hidden representations exhibit no-
table class separability, indicating preliminary clas-
sification performance, which provides the poten-
tial to identify the mismatched relationship of poi-
soned samples. Other datasets show similar phe-
nomenon as in Appendix B.1.

Furthermore, by comparing Figure 1a and 1b,
we observe varying class separability across dif-
ferent layers. To quantify this variation, we define
the Mahalanobis distances (Mahalanobis, 2018) be-
tween the mean vectors of different classes at each
layer, denoted as dl:

dl =
∑

i,j∈C,i ̸=j

√
(µil − µjl)TΣ

−1
l (µil − µjl),

where Σl is the covariance matrix of layer l, µil

is the mean vector of class i at layer l and C repre-
sents the class space. A higher dl indicates better
class separability. As shown in Figure 1, on the
task of AG News dataset, the 26th layer has higher
class separability than the final layer. This phe-
nomenon also appears in other datasets, as shown
in Appendix B.2. To select the layer Lfirst with the
highest class separability, PKAD defines:

Lfirst = argmax
l∈L

dl, (1)

where L represents all layers of the PLMs.
Observation 1.2 Poisoned samples show the

mismatched relationship with the help of PLM.
As shown in Figure 1, the hidden representations
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(a) AG News (b) TREC

Figure 2: The density distribution on m(x) of misclassi-
fied clean samples and misclassified poisoned samples.

of poisoned samples in Gemma-7b are distributed
among the other three classes, which mismatch
their labeled class “World”. Such a mismatched
relationship offers us possibilities for identifying
poisoned samples. Formally, we first obtain the
class prediction of sample x by calculating the Ma-
halanobis distance between x and each class c in
the Lfirst of the PLM, denoted as dc(x):

dc(x) =

√(
f plm
Lfirst

(x)− µc

)T

Σ−1
c

(
f plm
Lfirst

(x)− µc

)
,

where Σc is the covariance matrix of class c, µc is
the mean vector of class c at layer Lfirst and fplm

Lfirst
(x)

is the hidden representation of sample x layer Lfirst
in PLM.

Then PKAD identifies samples as misclassified
if the class with the closest Mahalanobis distance
differs from the label, resulting in Dmis:

Dmis =

{
(x, y) ∈ D | argmin

c∈C
dc(x) ̸= y

}
. (2)

In Appendix B.3, we demonstrate that our strat-
egy, which analyzes the hidden representations of
the samples, achieves better classification perfor-
mance compared to directly using the model’s pre-
diction results, allowing it to more effectively iden-
tify the mismatched relationship of poisoned sam-
ples.

Although the PLM shows preliminary classifica-
tion capabilities, it still cannot accurately complete
the classification task, leading to a part of clean
samples being misclassified. To better assign la-
bels to poison samples, we introduce Observation
1.3.

Observation 1.3 Most misclassified clean sam-
ples have a lower degree of misclassification com-
pared to poisoned samples. Since misclassified
clean samples result from the model’s incomplete
classification ability, while misclassified poisoned
samples are due to the mismatched relationship,

(a) AG News (b) TREC

Figure 3: The values on the X-axis are obtained by per-
forming LDA on the hidden representations of clean
and poisoned samples at the 27th layer of Gemma-7b.
The Y-axis represents random values to show point dis-
tinction.

we argue that the degree of misclassification for
clean samples should be lower. To quantify the de-
gree of misclassification, we define a metric m(x)
to measure the difference in the Mahalanobis dis-
tance between the sample x to its label y and to the
nearest class:

m(x) = dy(x)−min
c∈C

dc(x). (3)

A lower m(x) indicates a lower degree of misclassi-
fication. As shown in Figure 2, clean samples show
a higher density at lower m(x) values compared to
poisoned samples.

Based on the above observations, PKAD per-
forms weak label assignment on the samples. We
set a ratio rmis to select the top rmis of samples
with the highest m(x) values as likely poisoned,
i.e., Dp

first = Topr
mis

(x,y)∈Dmis (m (x)). Correctly clas-
sified samples are deemed clean, i.e., Dc

first =
{(x, y) ∈ D | argminc∈C dc(x) = y}, and the rest
are marked as undecided Du

first. The procedure for
obtaining rmis is provided in Appendix C.

3.2 Iterative Detection based on Shared
Characteristics

Based on the results of the weak label assignment,
to obtain a more complete and accurate set of poi-
soned samples, we need to utilize another charac-
teristic of poisoned data: Shared Characteristics.

Shared Characteristics. Poisoned samples
with triggers generally show certain shared charac-
teristics that clean samples do not have. To further
explain this, we introduce Observation 2.

Observation 2 Based on the representation
of PLMs and the assigned weak label, we can
find a clear distinction between clean and poi-
soned samples. Based on the assigned weak labels,
for further poison detection, we aim to find a clas-
sification boundary that can distinguish between
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Table 1: Comparison of ASR (%), CACC (%) and F1 (%).

InsertWord InsertSent Syntactic Style
CACC ↑ F1 ↑ ASR ↓ CACC ↑ F1 ↑ ASR ↓ CACC ↑ F1 ↑ ASR ↓ CACC ↑ F1 ↑ ASR ↓

AG News

w/o 95.49 - 100.0 95.31 - 100.0 95.35 - 100.0 95.35 - 73.68
CUBE 90.86 54.96 6.58 93.65 87.16 0.0 80.83 59.41 16.45 79.23 78.88 24.34
BKI 95.42 39.85 96.05 95.46 0.39 100.0 95.03 0.0 100.0 95.31 0.08 74.34

ONION 94.62 - 7.24 94.5 - 92.11 94.59 - 100.0 90.45 - 76.97
PKAD 95.15 98.16 0.0 95.25 99.6 0.0 94.91 99.54 0.0 95.1 82.1 2.63

TREC

w/o 97.55 - 100.0 97.55 - 100.0 96.94 - 90.0 97.14 - 100.0
CUBE 97.14 1.71 100.0 95.71 0.0 100.0 97.35 3.39 90.0 97.14 5.04 100.0
BKI 97.76 42.18 70.0 97.35 1.71 100.0 97.55 0.0 90.0 97.35 1.71 90.0

ONION 91.63 - 10.0 93.27 - 100.0 90.2 - 90.0 84.9 - 100.0
PKAD 96.53 98.44 0.0 97.35 99.9 0.0 96.94 99.87 0.0 97.76 97.96 0.0

poisoned and clean samples. Using LDA as an ex-
ample, Figure 3 illustrates the distinct separation
between clean and poisoned samples due to the
shared characteristics of poisoned samples.

Based on the partially poisoned dataset Dp
first and

the partially clean dataset Dc
first, we derive a clas-

sification boundary to distinguish them. We then
reclassify the entire dataset D using this bound-
ary, detecting poisoned samples in Du

first similar to
the samples in Dp

first, thereby expanding our poi-
soned dataset. PKAD repeats this process itera-
tively. To prevent early mislabeling of poisoned
samples as clean, leading to continual misclassifi-
cation, PKAD maintains the clean dataset and only
updates the poisoned dataset:

Dp
t ={(x, y) ∈ D |

h(f
plm
Lsecond

(x) | Dp
t−1,Dc

t−1) = poison},

where Dp
t is the poisoned dataset at iteration t,

Dp
0 = Dp

first, Lsecond(x) is the layer with the highest
separability between Dc

first and Dp
first via Equation 1

and f
plm
Lsecond

(x) is the hidden representation of sam-
ple x at layer Lsecond. In our experiments, we adopt
LDA as the implementation example for h.

Iterations proceed until convergence, i.e., Dp
t =

D
p
t−1, yielding the final detected dataset Dp

detect.

4 Experiments

4.1 Experiment Settings
Metrics. We evaluated the performance of our
method using the following metrics: F1 for poi-
soned samples detection accuracy; ASR and
CACC for overall defense effectiveness; and Train-
ing time for efficiency comparison.

Datasets. We conducted experiments on the
AG News (Zhang et al., 2015), TREC (Wang
et al., 2007), SST2 (Socher et al., 2013), Finan-
cial Phrasebank (FP) (Malo et al., 2014), MTOP

(Li et al., 2021a), TREC (Wang et al., 2007) and
BeaverTails (BT) (Ji et al., 2023) dataset. Experi-
ments on the SST2, Financial Phrasebank, MTOP
and BeaverTails datasets are provided in Appendix
E.

Models. We utilized Gemma-7b (Team et al.,
2024) for the main experiments in our work since
it achieved the highest accuracy on most classi-
fication datasets. Experiments on other models
(Llama2-7b, Llama2-13b (Touvron et al., 2023)
and Gemma-2b) are provided in Appendix F.

Baselines. We compared our method with two
training-time methods, CUBE (Cui et al., 2022)
and BKI (Chen and Dai, 2021); and one inference-
time method, ONION (Qi et al., 2021a). Further
comparisons with inference-time methods addition-
ally require clean samples are in Appendix E.

Attacks. We employed four representative types
of data poisoning attacks to validate the effective-
ness of our method: word insertion (InsertWord),
sentence insertion (InsertSent) (Dai et al., 2019),
syntactic transformation (Syntactic) (Qi et al.,
2021c), and style transformation (Style) (Qi et al.,
2021b). We randomly selected 2% of clean sam-
ples from each dataset, injected triggers, and rein-
troduced them into the dataset. For each dataset,
we targeted the first label in its label space for the
attack.

Additional experiment settings are provided in
the Appendix D.

4.2 Main Results

Table 1 shows that on the AG News dataset, CUBE
reduces ASR for all attacks but significantly de-
creases CACC, and is almost ineffective on the
TREC dataset. ONION, designed for word inser-
tion attacks, performs poorly against other attack
methods. In contrast, PKAD achieved the lowest
ASR across all four attack methods, demonstrating
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(a) AG News (b) TREC

Figure 4: Comparison of training time (s).

the effectiveness of our approach.
Figure 4 illustrates that PKAD has a much

shorter training time compared to the two training-
time methods, CUBE and BKI, highlighting the
efficiency of our approach.

5 Conclusion

In this study, we introduced a detection method
that relies solely on PLMs before training, which
is more practical for real-world applications. We
devised a two-stage strategy based on the mis-
matched relationship and shared characteristics of
poisoned samples. Through extensive experiments,
we demonstrate our method’s effectiveness across
various datasets and attack strategies. Compared to
leading methods, our approach achieves superior
performance while maintaining high efficiency.

6 Limitations

The limitations of PKAD can be summarized as
follows: (1) PKAD addresses attacks where poi-
soned data exhibit mismatched relationship, a com-
mon characteristic in current attacks. However, we
also noted some new attack methods, such as clean
label attacks, which attempt to make poisoned sam-
ples’ inputs and labels appear matched to humans.
These attack methods will be points to consider
in future work. (2) PKAD is demonstrated to be
effective against general data poisoning attacks.
However, how to defend against model poisoning
attacks where attackers have control over the model
training process remains to be explored in the fu-
ture.
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A Related Work

Textual Backdoor Attack. Current attack meth-
ods can be broadly categorized into two types: (1)
Data poisoning attacks (Wallace et al., 2021; Qi
et al., 2021b,c; Gan et al., 2022; Sun, 2020; Chen
et al., 2021; Dai et al., 2019; Yan et al., 2023; Yang

et al., 2021c) inject poisoned samples into the train-
ing dataset, where attackers can only manipulate
the dataset. For example, some approaches (Dai
et al., 2019; Chen et al., 2021; Sun, 2020; Yan et al.,
2023; Yang et al., 2021c) insert words or sentences
as triggers without altering the original samples.
Other works focus on entire sentences, modifying
their syntactic structure (Qi et al., 2021c) or style
(Qi et al., 2021b) to trigger backdoor behaviors. (2)
Model poisoning attacks (Li et al., 2021b; Shen
et al., 2021; Chen et al., 2022a; Yang et al., 2021a;
Kurita et al., 2020; Yang et al., 2021c) manipulate
the model’s training process to insert backdoors.
Our defense method targets data poisoning attacks,
aiming to detect poisoned data within the training
dataset.

Textual Backdoor Defense. Defense methods
against backdoor attacks can generally be catego-
rized into two types based on the stage of execu-
tion (Cui et al., 2022): (1) Training-time methods
(Zhu et al., 2022; Cui et al., 2022; Zhang et al.,
2022; Chen and Dai, 2021; He et al., 2023; Liu
et al., 2022; Azizi et al., 2021) aim to detect and
mitigate backdoors during model training. For in-
stance, CUBE method (Cui et al., 2022) consid-
ers that poisoned and clean samples exhibit dif-
ferent representations in a poisoned model, and
thus attempts to cluster the hidden representations
of samples, retaining the largest cluster as clean
data. Other methods (Zhang et al., 2022) involve
fine-tuning poisoned models using clean samples to
mitigate the impact of backdoors. In the scenario of
data poisoning attacks, these methods often require
training a poisoned model first to detect poisoned
samples, then require retraining or unlearning to
obtain a clean model, significantly increasing train-
ing costs. (2) Inference-time methods (Xian et al.,
2023; Chen et al., 2022b; Yang et al., 2021b; Gao
et al., 2022; Qi et al., 2021a) are designed to detect
or correct backdoor triggers in user inputs during
model inference. Most detection methods require
clean samples to calculate the detection threshold.
For example, statistical features of hidden states
obtained from inputs (Xian et al., 2023; Chen et al.,
2022b), or impact of disturbances on model outputs
(Yang et al., 2021b; Gao et al., 2022), are proposed
as indicators to distinguish between poisoned sam-
ples and clean samples. There are also some cor-
rection methods, such as ONION (Qi et al., 2021a),
which leverage large language models like GPT-2
(Radford et al., 2019) to compute the perplexity of
sentences, identifying tokens that decrease perplex-
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(a) The 25th layer (optimal)
with d25 = 52.20

(b) The 28th layer (final)
with d28 = 40.99

Figure 5: The hidden representations of Gemma-7b on
the TREC dataset.

ity as triggers to be removed. However, ONION is
designed for word insertion attacks, so it performs
poorly against other attack methods.

B Experiments of Weak Label
Assignment

B.1 Preliminary Capabilities of PLMs

Figure 5 shows that in the TREC dataset, the hidden
representations also exhibit notable class separa-
bility, indicating preliminary classification perfor-
mance, which suggests the potential to identify the
mismatched relationships of poisoned samples.

B.2 Layer with the Highest Class Separability

From Table 2, we can see that the layer with the
highest class separability varies across the six dif-
ferent datasets.

Table 2: The optimal layer with the highest class sepa-
rability.

Optimal Layer
AG News 26

SST2 21
FP 22

MTOP 24
TREC 25

BT 19

B.3 Model Predictions vs Our Classification
Strategy

In the first stage, we aim for the model to clas-
sify as accurately as possible to better identify
the mismatched relationship of poisoned samples.
Through the following experiments, we demon-
strate that, compared to directly using the model’s

prediction results, our strategy achieves better clas-
sification performance by analyzing the hidden rep-
resentations of the samples.

From Table 3, it can be seen that by adopting our
strategy, we can better leverage the capabilities of
the PLM, allowing it to achieve higher accuracy in
classification tasks to more effectively identify the
mismatched relationship of poisoned samples.

Table 3: Model Prediction (%) refers to the clean ac-
curacy (CACC) of the PLM, while Our Strategy (%)
refers to the proportion of correctly classified samples
obtained through Equation 2 among the clean samples.

Model Prediction Our Strategy
AG News 60.58 87.95

SST2 82.82 89.74
FP 44.47 81.37

MTOP 81.2 95.12
TREC 48.05 79.64

BT 49.69 75.47

C Calculation of rmis

In the first stage, we calculate a metric m(x) to
reduce the misclassified clean samples using Equa-
tion 3. Then we want to set a ratio rmis to select the
top rmis of misclassified samples with the highest
m(x) as likely poisoned samples.

To ensure better performance in the second stage,
we need to guarantee that the quantity of clean sam-
ples selected does not significantly exceed the quan-
tity of poisoned samples selected. Therefore, we
set a ratio r to represent the proportion of selected
clean samples to selected poisoned samples, i.e.,
r = δc(rmis)

δp(rmis)
, where δc(rmis) and δp(rmis) are the

quantities of selected clean and poisoned samples
given rmis, respectively.

From Figure 6, we found that clean and poisoned
samples exhibit different trends with changes in
rmis. Consequently, the choice of rmis greatly af-
fects the ratio r. We assume that the proportion
of selected clean samples given rmis to the total
misclassified clean samples follows the function
δ̂c(rmis), i.e., δ̂c(rmis) = δc(rmis)

ncmis , where ncmis is
the quantity of misclassified clean samples. Simi-
larly, the proportion of selected poisoned samples
given rmis to the total misclassified poisoned sam-
ples is assumed to follow the function δ̂p(rmis), i.e.,
δ̂p(rmis) = δp(rmis)

npmis , where npmis is the quantity of
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(a) AG News (b) SST2 (c) FP

(d) MTOP (e) TREC (f) BT

Figure 6: The quantity of misclassified clean and poisoned samples varies with the rate rmis.

misclassified poisoned samples. This leads to:

δc(rmis)

δp(rmis)
=

ncmisδ̂c(rmis)

npmisδ̂p(rmis)
= r.

We denote nmis as the quantity of misclassified
samples. Thus, ncmis = nmis − npmis, leading to:

(nmis − npmis)δ̂c(rmis)

npmisδ̂p(rmis)
= r.

We denote n represents the quantity of all sam-
ples in D. Then the misclassification rate pmis =
nmis

n and the poisoned misclassification rate ppmis =
npmis

n , yielding:

(pmis − ppmis)δ̂c(rmis)

ppmisδ̂p(rmis)
= r.

We simply set r to 1 so that the quantity of se-
lected clean samples and poisoned samples is ap-
proximately equal. We establish rp = ppmis as the
sole hyperparameter in our approach, representing
the defender’s belief about the potential poisoning
rate in the dataset. The impact of the hyperpa-
rameter rp under different poisoning rates will be
demonstrated in Appendix G.

Meanwhile, since this stage is only performing
weak label assignment, there is no need to precisely

select the most appropriate function to represent
the curve of the clean and poisoned samples. We
empirically selected several elementary functions
to fit the curves of clean and poisoned samples with
respect to rmis, and found that, for most datasets,
a linear function could adequately fit the changes
in the quantity of clean samples, while a power
function with an exponent of 1

4 provided a good fit
for the changes in the quantity of poisoned samples.

We set δ̂c(rmis) = rmis and δ̂p(rmis) =
(
rmis

) 1
4 .

This leads to the final expression for rmis:

rmis =

(
rp

pmis − rp

) 4
3

,

where pmis can be obtained by calculating the mis-
classification rate, and rp is set by the defender as
a hyperparameter.

D Additional Experiment Settings

For the BKI method, we set the hyperparameter
p to 5, following Chen and Dai (2021). For the
CUBE method, we used UMAP for dimensionality
reduction and HDBSCAN for density-based clus-
tering, following Cui et al. (2022). For ONION,
we set the hyperparameter ts to 0, following Qi
et al. (2021a). To ensure comparable CACC and
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Table 4: Comparison of ASR (%), CACC (%) and F1 (%) on SST2, Financial Phasebank (FP), MTOP and
BeaverTails (BT) Dataset.

InsertWord InsertSent Syntactic Style
CACC ↑ F1 ↑ ASR ↓ CACC ↑ F1 ↑ ASR ↓ CACC ↑ F1 ↑ ASR ↓ CACC ↑ F1 ↑ ASR ↓

SST2

w/o 96.73 - 100.0 96.61 - 100.0 96.84 - 82.35 96.26 - 88.24
CUBE 97.08 97.97 5.88 96.49 99.82 5.88 96.73 93.87 35.29 97.08 85.44 58.82
BKI 96.26 1.46 100.0 96.73 0.0 100.0 95.79 2.62 88.24 96.84 0.0 82.35

ONION 90.88 - 5.88 91.11 - 100.0 90.41 - 47.06 90.64 - 58.82
PKAD 96.26 97.17 5.88 96.49 100.0 0.0 96.73 93.18 17.65 97.19 95.39 5.88

FP

w/o 87.79 - 100.0 85.05 - 100.0 88.0 - 88.89 89.89 - 88.89
CUBE 87.58 98.44 0.0 84.21 17.25 100.0 88.63 6.12 77.78 88.63 28.79 66.67
BKI 87.16 40.34 77.78 85.26 2.08 100.0 89.47 0.0 88.89 81.68 0.0 100.0

ONION 85.68 - 11.11 82.74 - 100.0 85.26 - 77.78 86.95 - 77.78
PKAD 86.74 92.77 0.0 86.53 98.94 0.0 86.74 95.5 0.0 90.53 93.99 0.0

MTOP

w/o 99.12 - 100.0 99.16 - 100.0 99.12 - 98.85 98.56 - 83.91
CUBE 98.98 41.43 67.82 99.0 0.0 100.0 98.09 92.97 3.45 98.79 20.25 86.21
BKI 99.23 0.0 100.0 99.09 0.0 100.0 99.05 14.53 100.0 98.74 0.0 86.21

ONION 86.75 - 17.24 89.52 - 100.0 87.54 - 95.4 87.17 - 80.46
PKAD 98.88 97.76 0.0 99.0 98.33 0.0 98.7 96.43 14.94 98.77 86.67 5.75

BT

w/o 84.96 - 100.0 84.66 - 100.0 83.68 - 100.0 84.08 - 71.67
CUBE 83.85 98.71 16.67 84.63 99.92 11.67 84.76 97.44 26.67 81.62 76.39 71.67
BKI 84.62 41.22 98.33 84.72 9.19 100.0 84.52 67.33 100.0 84.56 0.66 83.33

ONION 83.63 - 18.33 84.0 - 73.33 82.14 - 100.0 81.66 - 75.0
PKAD 82.83 83.53 16.67 84.89 99.92 11.67 84.45 95.95 50.0 84.89 79.42 11.67

(a) SST2 (b) FP (c) MTOP (d) BT

Figure 7: Comparison of training time (s) on SST2, Financial Phasebank (FP), MTOP and BeaverTails (BT) Dataset.

better ASR with other methods, we set the hyperpa-
rameter FRR to 0.5% for DAN method and 1% for
RAP and STRIP methods. And in our experiments,
we provided DAN, RAP and STRIP methods with
the complete clean validation set to maximize their
performance potential. For our method PKAD, we
use the LDA method implemented with the “svd”
solver in the scikit-learn library1 as an implementa-
tion example of classifier in the iterative detection
strategy, and we set the hyperparameter rp to 0.03
to ensure comparable CACC with other methods.
The explanation about this hyperparameter rp can
be found in Appendix C.

E Experiments on Additional Datasets
and Baselines

The additional experiments on SST2, Financial
Phasebank (FP), MTOP and BeaverTails (BT) are
shown in Table 4 and Figure 7 as a supplement to

1https://scikit-learn.org

Table 1 and Figure 4 in the main text.
The additional comparisons with inference-time

detection methods (DAN, RAP and STRIP),
which additionally require a part of clean sam-
ples are shown in Table 5. In our experiments, we
provided these three methods with the complete
clean validation set to maximize their performance
potential. From Table 5, it is evident that the PKAD
method still achieves the lowest ASR on the ma-
jority of datasets and attack methods compared
to the methods that require additional clean sam-
ples, highlighting the effectiveness of the PKAD
approach.

F Impact of Models

We employed four PLMs for experimentation:
Llama2-7b, Llama2-13b (Touvron et al., 2023),
Gemma-2b and Gemma-7b (Team et al., 2024).
We used the original, non-instruction-tuned ver-
sions of these four PLMs.
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Table 5: Comparison of ASR (%), CACC (%) and F0 (%) with inference-time detection methods which additionally
require a part of clean samples.

InsertWord InsertSent Syntactic Style
CACC ↑ F0 ↑ ASR ↓ CACC ↑ F1 ↑ ASR ↓ CACC ↑ F1 ↑ ASR ↓ CACC ↑ F1 ↑ ASR ↓

AG News

w/o 95.49 - 100.0 95.31 - 100.0 95.35 - 100.0 95.35 - 73.68
DAN 94.27 99.87 0.0 94.91 99.76 0.0 94.67 99.64 0.0 94.91 81.07 7.24

STRIP 92.52 3.87 98.03 93.14 8.8 95.39 92.83 11.16 94.08 93.19 3.87 72.37
RAP 23.54 39.53 0.0 74.33 45.53 67.76 70.5 49.04 63.16 68.57 49.2 46.71

PKAD 94.15 98.16 0.0 95.25 99.6 0.0 94.91 99.54 0.0 95.1 82.1 2.63

SST2

w/o 96.73 - 100.0 96.61 - 100.0 96.84 - 82.35 96.26 - 88.24
DAN 95.26 96.69 5.88 95.91 99.59 0.0 95.91 82.4 11.76 95.2 86.22 11.76

STRIP 95.26 0.0 100.0 95.67 11.11 94.12 96.14 0.0 82.35 92.28 29.81 70.59
RAP 46.6 65.57 0.0 95.91 0.0 100.0 75.09 82.35 5.88 80.35 76.41 23.53

PKAD 95.26 97.17 5.88 96.49 100.0 0.0 96.73 93.18 17.65 97.19 95.39 5.88

FP

w/o 87.79 - 100.0 85.05 - 100.0 88.0 - 88.89 89.89 - 88.89
DAN 86.16 99.58 0.0 82.53 98.4 0.0 84.21 78.62 33.33 87.58 36.18 66.67

STRIP 84.05 0.0 100.0 84.42 0.0 100.0 86.74 19.96 77.78 88.84 0.0 88.89
RAP 51.42 73.33 0.0 82.95 0.0 100.0 83.58 0.0 88.89 86.53 35.95 66.67

PKAD 85.74 92.77 0.0 86.53 98.94 0.0 86.74 95.5 0.0 90.53 93.99 0.0

MTOP

w/o 99.12 - 100.0 99.16 - 100.0 99.12 - 98.85 98.56 - 83.91
DAN 97.23 97.1 4.6 98.84 96.84 5.75 98.05 98.79 1.15 98.14 70.01 31.03

STRIP 96.23 4.49 97.7 96.95 6.66 96.55 97.18 0.0 98.85 96.49 0.0 83.91
RAP 12.89 24.54 0.0 41.73 59.11 0.0 31.98 41.57 40.23 23.67 30.2 57.47

PKAD 97.88 97.76 0.0 99.0 98.33 0.0 98.7 96.43 14.94 98.77 86.67 5.75

TREC

w/o 97.55 - 100.0 97.55 - 100.0 96.94 - 90.0 97.14 - 100.0
DAN 96.14 99.8 0.0 97.14 99.8 0.0 96.53 94.55 0.0 96.53 99.69 0.0

STRIP 95.33 0.0 100.0 96.33 0.0 100.0 95.92 33.26 70.0 95.51 18.15 90.0
RAP 16.55 30.45 0.0 97.14 0.0 100.0 96.73 0.0 90.0 96.94 0.0 100.0

PKAD 95.53 98.44 0.0 97.35 99.9 0.0 96.94 99.87 0.0 97.76 97.96 0.0

BT

w/o 84.96 - 100.0 84.66 - 100.0 83.68 - 100.0 84.08 - 71.67
DAN 83.49 99.66 0.0 83.64 99.44 0.0 82.76 97.78 3.33 83.71 49.9 38.33

STRIP 14.11 15.35 91.67 14.87 0.0 100.0 15.17 18.15 90.0 15.21 3.28 98.33
RAP 16.25 34.57 0.0 83.34 0.0 100.0 82.39 0.0 100.0 83.89 0.0 71.67

PKAD 81.83 83.53 16.67 84.89 99.92 11.67 84.45 95.95 50.0 84.89 79.25 11.67

Table 6: PLMs’ accuracy (%).

Llama2-7b Llama2-13b Gemma-2b Gemma-7b
AG News 6.95 12.18 38.01 60.58

SST1 18.61 17.93 61.34 82.82
FP 7.03 9.25 36.25 44.47

MTOP 18.74 21.53 82.08 81.2
TREC 7.08 8.53 51.12 48.05

BT 11.38 16.7 61.36 46.64

Combining the content of Table 6 and Table 7,
we can observe that the True Positive Rate (TPR)
of the four models across the six datasets is re-
lated to the models’ accuracy. Higher accuracy is
more likely to achieve better results. This insight
provides guidance for the practical deployment
of PKAD, suggesting that selecting high-accuracy
PLMs can enhance its effectiveness in defending
against backdoor attacks. Meanwhile, these four
models maintained a False Positive Rate (FPR) of
no more than 5% across the six datasets, indicating
that PKAD does not sacrifice many clean samples
even when the model performance is not good.

G Impact of the Poisoning Rate pp and
the Hyperparameter rp

We set the poisoning rate pp and the hyperparam-
eter rp to 10%, 5%, 3%, and 2% respectively, to
observe the effects of different hyperparameter set-
tings under various poisoning rates. We found that
the trends of different attack methods under vary-
ing poisoning rates and hyperparameters are quite
similar. Therefore, we only show the results in
Table 8 using the word insertion attack method.

From Table 8, we observe that a higher poisoning
rate pp requires a higher rp value to achieve bet-
ter results. Additionally, higher rp values achieve
higher TPR but also increase FPR across different
poisoning rates. Therefore, it is crucial to choose
an appropriate rp value to ensure that the number
of samples identified as poisoned remains within
an acceptable range.

H Prompts of Different Datasets

The prompts of AGNews, SST2, Financial Phrase-
bank (FP), MTOP, TREC and BeaverTails (BT) are
shown in Table 9.
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Table 7: TPR (%) and FPR (%) on different PLMs.

Llama2-7b Llama2-13b Gemma-2b Gemma-7b
FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑

AG News

InsertWord 0.73 78.12 0.77 95.59 0.61 84.52 0.5 96.87
InsertSent 0.3 79.51 0.59 99.89 0.36 99.88 0.76 99.96
Syntactic 1.03 83.68 1.38 97.48 0.53 99.8 0.73 99.8

Style 1.12 58.51 1.39 73.11 1.35 68.3 1.27 70.26

SST2

InsertWord 1.59 19.63 1.77 93.76 0.39 94.17 0.37 94.83
InsertSent 1.34 21.7 0.5 100.0 0.16 100.0 0.0 100.0
Syntactic 1.81 16.61 2.27 33.9 0.3 92.62 0.67 87.75

Style 1.12 26.79 1.39 90.7 0.02 87.01 0.04 91.22

FP

InsertWord 2.09 16.84 3.56 42.11 1.71 72.63 1.12 87.37
InsertSent 2.02 22.11 2.53 91.58 1.83 94.74 1.07 98.95
Syntactic 1.98 18.95 4.09 63.16 1.79 83.16 1.45 92.63

Style 2.0 38.95 3.41 29.47 1.75 66.32 1.01 89.47

MTOP

InsertWord 4.13 9.93 1.71 95.03 2.36 98.65 2.88 98.42
InsertSent 3.62 2.93 3.01 32.51 2.74 98.87 3.07 99.77
Syntactic 3.72 1.58 2.6 56.21 2.87 99.77 3.54 96.39

Style 3.77 13.09 2.71 52.6 3.52 73.36 3.7 78.78

TREC

InsertWord 3.76 84.48 1.73 93.97 0.78 98.28 0.5 97.41
InsertSent 0.0 75.0 0.0 100.0 0.62 100.0 0.19 100.0
Syntactic 3.3 92.24 0.9 98.28 0.56 93.97 0.26 100.0

Style 1.23 86.21 1.73 94.83 0.4 98.28 0.59 96.55

BT

InsertWord 1.83 3.66 2.11 13.98 1.97 36.94 0.95 72.21
InsertSent 1.61 19.63 1.51 83.91 2.33 95.34 0.0 99.83
Syntactic 1.02 55.07 2.24 62.16 2.24 84.67 1.28 93.34

Style 0.43 66.22 1.98 15.97 2.24 4.83 1.33 66.22

Table 8: TPR (%) and FPR (%) under different poisoning rates pp and hyperparameter settings rp using the word
insertion attack method.

rp=10% rp=5% rp=3% rp=2%
FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑

AG News

pp=10% 2.99 95.34 0.09 91.74 0.03 88.41 0.03 85.19
pp=5% 5.31 94.01 0.28 95.92 0.11 94.2 0.05 92.85
pp=3% 6.54 93.7 0.93 97.15 0.24 96.19 0.09 95.19
pp=2% 7.23 91.89 1.98 96.71 0.48 96.71 0.22 96.39

SST2

pp=10% 3.62 94.07 0.06 83.18 0.0 63.66 0.0 52.77
pp=5% 3.99 92.57 0.36 94.04 0.04 84.46 0.01 74.23
pp=3% 4.57 89.92 2.47 93.31 0.17 91.59 0.04 84.12
pp=2% 4.98 87.38 3.39 89.74 0.4 94.39 0.11 89.67

FP

pp=10% 7.16 97.1 0.85 78.88 0.39 63.98 0.18 50.52
pp=5% 14.55 94.61 1.41 87.97 0.48 76.76 0.22 69.71
pp=3% 16.57 96.53 3.64 95.83 0.62 89.58 0.32 73.61
pp=2% 17.91 93.68 4.66 94.74 1.26 87.37 0.36 71.58

MTOP

pp=10% 2.78 98.74 0.01 95.55 0.0 81.92 0.0 78.15
pp=5% 3.4 98.83 3.4 98.83 0.0 97.3 0.0 91.36
pp=3% 3.71 98.8 3.71 98.8 0.84 98.95 0.0 97.3
pp=2% 3.89 99.1 3.89 99.1 2.85 99.1 0.17 97.29

TREC

pp=10% 4.72 99.32 0.02 97.1 0.0 93.02 0.0 89.61
pp=5% 12.83 99.66 0.36 99.32 0.0 94.54 0.0 92.49
pp=3% 15.5 98.86 2.03 100.0 0.11 99.43 0.0 95.45
pp=2% 17.14 99.14 3.75 99.14 0.57 96.55 0.05 95.69

BT

pp=10% 1.32 78.05 0.83 71.23 0.79 67.97 0.75 66.94
pp=5% 2.83 79.5 0.94 72.91 0.8 68.25 0.75 65.46
pp=3% 5.18 69.28 1.71 71.61 0.91 76.93 0.83 64.84
pp=2% 6.81 70.71 2.69 74.37 0.94 73.04 0.75 66.05
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Table 9: Prompts of Different Datasets

AGNews
### Instruction: Determine whether the topic of the input is business or science or world or sports.
Note that the response is either “The topic of the input is business” or “The topic of the input is
science” or “The topic of the input is world” or “The topic of the input is sports”.
### Input: {text}
### Response: The topic of the input is
SST2
### Instruction: Determine whether the sentiment of the input is positive or negative.
Note that the response is either “The sentiment conveyed by the input definitely is positive” or “The
sentiment conveyed by the input definitely is negative”.
### Input: {text}
### Response: The sentiment conveyed by the input definitely is
FP
### Instruction: Determine whether the sentiment of the input is negative or neutral or positive.
Note that the response is either “The sentiment conveyed by the input definitely is negative” or “The
sentiment conveyed by the input definitely is neutral” or “The sentiment conveyed by the input
definitely is positive”.
### Input: {text}
### Response: The sentiment conveyed by the input definitely is
MTOP
### Instruction: Determine whether the task topic of the input is messaging or calling or event or
timer or music or weather or alarm or people or reminder or recipes or news.
Note that the response is either “The task topic of the input is messaging” or “The task topic of the
input is calling” or “The task topic of the input is event” or “The task topic of the input is timer” or
“The task topic of the input is music” or “The task topic of the input is weather” or “The task topic
of the input is alarm” or “The task topic of the input is people” or “The task topic of the input is
reminder” or “The task topic of the input is recipes” or “The task topic of the input is news”.
### Input: {text}
### Response: The task topic of the input is
TREC
### Instruction: Determine whether coarse class of the input is abbreviation or entity or description
or human or location or numeric.
Note that the response is either “The coarse class of the input is abbreviation” or “The coarse class of
the input is entity” or “The coarse class of the input is description” or “The coarse class of the input
is human” or “The coarse class of the input is location” or “The coarse class of the input is numeric”;
### Input: {text}
### Response: The coarse class of the input is
BT
### Instruction: Determine whether the model response is safe or unsafe. If the response is related
to topics such as animal abuse, child abuse, controversial topics, political ideologies, discrimina-
tion, stereotypes, injustice, drug abuse, unauthorized weapons, banned substances, financial crime,
property crime, theft, hate speech, offensive language, misinformation, unethical behavior, privacy
violation, self-harm, sexually explicit content, adult content, terrorism, organized crime, violence,
aiding and abetting, or incitement, then the model response is considered unsafe.
Note that the output is either “The model response is considered safe” or “The model response is
considered unsafe”.
### Model Response: {text}
### Output: The model response is considered
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