
Findings of the Association for Computational Linguistics: EMNLP 2024, pages 5608–5623
November 12-16, 2024 ©2024 Association for Computational Linguistics

Scalable Fine-tuning from Multiple Data Sources:
A First-Order Approximation Approach

Dongyue Li†* Ziniu Zhang†* Lu Wang‡ Hongyang R. Zhang†

†Northeastern University, Boston, MA
‡University of Michigan, Ann Arbor, MI

Abstract

We study the problem of fine-tuning a language
model (LM) for a target task by optimally using
the information from n auxiliary tasks. This
problem has broad applications in NLP, such as
targeted instruction tuning and data selection
in chain-of-thought fine-tuning. The key chal-
lenge of this problem is that not all auxiliary
tasks are useful to improve the performance of
the target task. Thus, choosing the right sub-
set of auxiliary tasks is crucial. Conventional
subset selection methods, such as forward &
backward selection, are unsuitable for LM fine-
tuning because they require repeated training
on subsets of auxiliary tasks. This paper intro-
duces a new algorithm to estimate model fine-
tuning performances without repeated training.
Our algorithm first performs multitask training
using the data of all the tasks to obtain a meta
initialization. Then, we approximate the model
fine-tuning loss of a subset using functional val-
ues and gradients from the meta initialization.
Empirically, we find that this gradient-based
approximation holds with remarkable accuracy
for twelve transformer-based LMs. Thus, we
can now estimate fine-tuning performances on
CPUs within a few seconds. We conduct ex-
tensive experiments to validate our approach,
delivering a speedup of 30× over conventional
subset selection while incurring only 1% error
of the true fine-tuning performances. In down-
stream evaluations of instruction tuning and
chain-of-thought fine-tuning, our approach im-
proves over prior methods that utilize gradient
or representation similarity for subset selection
by up to 3.8%.

1 Introduction

Fine-tuning a language model (LM) has emerged
as an effective approach for knowledge transfer
on text data. As the scale of LMs keeps growing,
efficient and scalable fine-tuning methods are in

*Equal Contribution. Emails: {li.dongyu, zhang.zini,
ho.zhang}@northeastern.edu and wangluxy@umich.edu.

great demand. For instance, parameter-efficient
fine-tuning with adapters or low-rank parameter-
ization can significantly reduce the memory us-
age of fine-tuning (Houlsby et al., 2019; Pfeiffer
et al., 2020; Hu et al., 2021). In many applications,
besides solving a target task of interest, one can
access several related data sources, which could
be used for data augmentation. Examples include
multilingual systems such as neural machine trans-
lation (Neubig and Hu, 2018), parsing (Üstün et al.,
2020), data selection (Xie et al., 2023), and targeted
instruction tuning (Xia et al., 2024). A fundamental
issue in these scenarios is selecting the beneficial
data sources amongst all the available data sources,
which can be formulated as a subset selection prob-
lem. In this paper, we develop efficient algorithms
for subset selection in LM fine-tuning given n data
sources, which can scale up to handle large num-
bers of n.

Classical subset selection methods, such as
forward & backward stepwise selection, have
been very effective for regression analysis prac-
tice (Hastie et al., 2009). However, these classical
methods are unsuitable for LM fine-tuning because
they require repeated training of the base LM on
many subsets of tasks, which is not feasible for
large n. More recently, data selection methods
have been proposed based on selecting influential
samples by comparing gradients (Xia et al., 2024)
or feature representation during training (Ivison
et al., 2023). These methods depend on the training
procedure, leading to noisy outcomes for approxi-
mating true fine-tuning performances. In summary,
existing subset selection methods require expen-
sive computation or rely on noisy measurements
of task-relatedness (Ruder, 2017; Vu et al., 2020,
2022; Zhang et al., 2023).

This paper presents a new approach to scale up
subset selection by quickly estimating model fine-
tuning losses without running the fine-tuning pro-
cedure. The key idea is first to perform multitask

5608

𝑇!

𝑇"

𝑇#

…

𝑇$

Stage 1: Meta Training

𝒟!

𝒟"

𝒟$

…

Fine-tuning
on all data

Projecting
gradients

Stage 3: Selection

𝜽⋆
𝜽⋆

𝑆!

&𝜽𝑺𝟏

&𝜽𝑺𝟐
&𝜽𝑺𝒎

𝑆"
𝑆'

Stage 2: Estimation

'𝑓(𝑆!)

'𝑓(𝑆')

'𝑓(𝑆")

…
Figure 1: An overview of our approach: (1) Perform multitask training on a base LM using all the samples, leading
to a meta-initialization θ⋆ ∈ Rp. We store (randomly) projected gradients of θ⋆ for every sample. (2) Estimate
model fine-tuning performances on a list of task subsets using projected gradients as features in logistic regression.
(3) Using the estimated results (denoted as f̂(S1), . . . , f̂(Sm)), compute a score Ti for each auxiliary task for
i = 1, 2, . . . , n, which indicates its relevance to the target task. Select a subset (depicted in blue color) using a
threshold score and combine their data for training jointly with the target task.

training on the samples of all the tasks, leading to
a meta initialization θ⋆ (Finn et al., 2017). From
θ⋆, we compute all the samples’ functional values
and gradients, which can be used during inference.
Second, given a subset of auxiliary tasks, we ap-
ply Taylor’s expansion on the loss and approxi-
mate the loss value with the function values and
the gradients of the samples in the subset. After
applying this approximation, we will estimate the
fine-tuning losses with logistic regression. Notice
that this computation can be done on CPUs, and we
use random projections to reduce the dimension of
the regression down to a few hundred. Using this
procedure, we can estimate the fine-tuning perfor-
mance for each subset in just a few seconds, which
is significantly faster than full-model fine-tuning.
Importantly, the accuracy of this approach hinges
on the quality of the first-order approximation. We
find that across twelve transformer-based LMs, in-
cluding Llama-3-8B, the approximation error of the
gradient-based expansion is at the order of 10−5

to 10−3, in regions close to θ⋆. Based on this esti-
mation, we can apply a classical subset selection
method, such as forward selection, to every subset
encountered during the procedure. In summary,
our approach has three stages. See Figure 1 for an
illustration.

We conduct extensive experiments to validate
our approach using four benchmarks. We show
that GRADEX can accurately approximate fine-
tuned model losses within 1% errors across var-
ious LMs. Meanwhile, GRADEX can accelerate
forward selection with 30× fewer FLOPs and 25×
less GPU hours by circumventing full model fine-
tuning. GRADEX also speeds up random ensemble
with 44× fewer FLOPs and 46× less GPU hours.
We consider targeted instruction tuning and chain-

of-thought fine-tuning for downstream evaluations
of GRADEX. Our approach matches the accuracy
of classical subset selection methods with full fine-
tuning while costing only 0.5% of the computa-
tion. On the ToxiGen and TruthfulQA benchmarks,
GRADEX outperforms existing selection methods
that rely on gradient or representation measure-
ments (Xie et al., 2023; Xia et al., 2024) by 3.8%
on average. On StrategyQA and CommonsenseQA
datasets, GRADEX improves chain-of-thought rea-
soning accuracy by 2.4% over prior methods.

In conclusion, this paper introduces a new al-
gorithm for subset selection in LM fine-tuning
given multiple data sources. The algorithm can
quickly estimate model fine-tuning performances
without performing fine-tuning on each subset.
We identify a linearization property of LMs (af-
ter meta-training), which is empirically verified
on twelve transformer-based LMs. This empir-
ical finding may be relevant for future develop-
ments of fast inference methods of LLMs. Our
estimation algorithm unlocks classical subset se-
lection methods such as forward & backward
selection to LMs. Our extensive experiments
show that our approach can deliver significant
speedups without losing downstream accuracy. In
particular, our approach outperforms recent sub-
set selection methods for instruction tuning and
chain-of-thought fine-tuning. The code reposi-
tory and detailed instructions for reproducing our
findings are available at https://github.com/
VirtuosoResearch/Scalable-finetuning.

2 Problem Formulation

Problem setup: Consider fine-tuning a language
model to solve a target task. Suppose we also have
access to n source tasks. Because the information

5609

https://github.com/VirtuosoResearch/Scalable-finetuning
https://github.com/VirtuosoResearch/Scalable-finetuning

from different data sources may conflict with each
other or hurt the target performance (Wu et al.,
2020), we would like to select a subset of the n
tasks. This often happens in transfer learning, for
instance, working with low-resource neural ma-
chine translation (Zoph et al., 2016). Because there
are 2n possible choices of subsets, performing the
best subset selection is very costly.

In this paper, we develop a much faster approach
for subset selection that is suitable for running on
LMs. Concretely, given a base fine-tuning proce-
dure on top of an LM (such as LoRA or QLoRA
(Dettmers et al., 2023)), let f(S) be the model fine-
tuning loss on the target task trained together with
a given subset of auxiliary tasks S ⊆ {1, 2, . . . , n}.
A lower value of f indicates that S is more relevant
to the target task. Best subset selection corresponds
to finding a subset that minimizes f(S).

2.1 Prior approaches for measuring f(S)

Experimental setup: We will present a case study
using the Alpaca dataset (Taori et al., 2023), which
involves 52, 000 instruction-following data gener-
ated by GPT-3, each containing an instruction as a
task description and the corresponding task input
and output. The dataset can be pre-processed into
38 tasks based on the instruction types (Wang et al.,
2023b). Each task is identified by the verb in the
instruction, such as “edit” and “describe.” We ran-
domly sample 10% as the validation set. We use
TinyLlama-1.1B as the base LM and LoRA as the
base protocol (Hu et al., 2021).
♢ First, we find the existence of negative trans-

fers, which remains consistent with prior studies of
multitask learning in NLP (Vu et al., 2020, 2022).
Specifically, we compare (A1) fine-tuning the base
LM on each task and (A2) fine-tuning the base LM
on each task with one of the remaining 37 tasks
as auxiliary tasks. For 18/38 tasks, A1 performs
better than A2, indicating negative transfers from
auxiliary tasks to the target task.
♢ Second, we also find that f(S) is not mono-

tone, in the sense that adding an extra task to S may
not necessarily reduce the value of f (although it
does more data). We pick a target task t corre-
sponding to “arrange” in Alpaca and find that f(S)
starts to increase after we add more than one task
to S, which confirms our hypothesis. This suggests
directly optimizing f over the space of subsets re-
mains challenging because f is complex.
♢ Third, we also find that methods that utilize

model gradients (Fifty et al., 2021) or representa-

tion similarity (Wu et al., 2020; Vu et al., 2020) to
select tasks do not correlate well with actual values
of f . For every pair of tasks i and j, we evaluate
the correlation between the cosine similarity of the
averaged gradient of tasks i, j, and f({i, j}). We
find it is less than 0.2.

2.2 Problem statement
Having described the nuances of f and the potential
complexity in optimizing f directly (see also Zhang
et al. (2023) for further discussion on this topic), we
now pose the following research question: Given
a list of subsets S1, . . . , Sm ⊆ {1, . . . , n}, can we
efficiently estimate f(S1), . . . , f(Sm), without fine-
tuning the model on each possible subset? Next,
we give two examples to illustrate the choices of
subsets.

Example 2.1 (Forward stepwise selection). In for-
ward selection (Hastie et al., 2009), one starts
with an empty subset S1 = {}. Then, enumer-
ate through all singleton sets, f({1}), . . . , f({n}),
and pick the best one. Suppose i1 is chosen. Then,
evaluate f({i1, 1}), . . . , f({i1, n}) except when i1
is repeated, and pick the best one. Until f peaks.

Example 2.2 (Random ensemble). Random en-
sembling is a highly effective approach for data
attribution (Ilyas et al., 2022), which can also be
used for subset selection in multitask learning (Li
et al., 2023b,a, 2024b). We choose m random sub-
sets from {1, 2, . . . , n} with a fixed size α. For
example, if α = 2, f measures pairwise affinity
scores between two tasks (Fifty et al., 2021). If
α > 2, f(Si) measures higher-order affinity scores
between multiple tasks (Li et al., 2023a).

If we can quickly estimate the values of
f(S1), f(S2), . . . , f(Sm), then we can still apply
the above subset selection methods. In the next
section, we present our estimation approach.

3 Our Approach

Our algorithm involves two stages. First, we run a
meta-training procedure to obtain an initialization
θ⋆ by fine-tuning an LM on all the samples, simi-
lar to performing multitask learning (Wang et al.,
2018). Second, we estimate model fine-tuning
losses by solving a logistic regression problem to
get θ̂Si for every i = 1, 2, . . . ,m. Notably, the sec-
ond estimation stage can be run entirely on CPUs,
which will be very fast.

The key idea of why this works is a first-order
approximation property that we have found empiri-

5610

Table 1: We empirically find that the first-order approximation holds with very high accuracy within 10% relative
distance to the meta initialization θ⋆. As shown in the table below, the RRSS is at the order of 10−5-10−3 when X
is between 2%-10% distance of θ⋆. We attribute this behavior to the highly overparameterized nature of LLMs. We
report the average over 50 random task subsets to ensure statistical significance. The reference for each LM can be
found in Appendix D.

Dist. Pythia-70M BERT-Base RoBERTa-Base GPT-2 FLAN-T5-Base BloomZ-560M

2% 9±1.4 × 10−4 3±0.2 × 10−4 4±0.4 × 10−4 2±0.2 × 10−4 1±0.2 × 10−4 2±0.4 × 10−4

4% 1±0.2 × 10−4 5±0.9 × 10−4 5±0.5 × 10−4 6±0.7 × 10−4 8±0.4 × 10−4 5±1.5 × 10−4

6% 3±0.3 × 10−4 9±1.0 × 10−4 6±0.9 × 10−4 8±0.6 × 10−4 2±0.3 × 10−4 9±0.5 × 10−4

8% 4±0.9 × 10−4 3±0.4 × 10−3 9±1.3 × 10−4 3±0.3 × 10−3 3±0.6 × 10−4 7±0.6 × 10−4

10% 7±1.4 × 10−3 5±1.4 × 10−3 5±0.5 × 10−3 5±0.4 × 10−3 5±1.2 × 10−3 5±2.2 × 10−3

Dist. TinyLlama-1.1B GPT-Neo-1.3B OPT-1.3B Gemma-2-2B Mistral-7B Llama-3-8B

2% 6±0.5 × 10−5 3±0.4 × 10−5 7±0.2 × 10−5 4±0.3 × 10−5 9±0.5 × 10−5 3±0.3 × 10−5

4% 1±0.3 × 10−4 3±0.3 × 10−4 7±1.0 × 10−5 2±0.1 × 10−4 2±0.2 × 10−4 6±0.9 × 10−5

6% 3±0.7 × 10−4 6±0.6 × 10−4 8±0.2 × 10−5 3±0.4 × 10−4 3±0.4 × 10−4 3±0.6 × 10−4

8% 4±0.9 × 10−4 1±0.2 × 10−3 1±0.1 × 10−4 8±0.7 × 10−4 4±0.2 × 10−4 4±0.4 × 10−4

10% 5±0.8 × 10−3 5±0.8 × 10−3 5±0.1 × 10−3 4±0.5 × 10−3 4±0.1 × 10−3 5±0.4 × 10−4

cally around the initialization LM. The intuition is
that for a highly over-parameterized network, the
geometry around a local minimum solution tends to
be flat (Zhang et al., 2024), leading fine-tuning to
behave like kernel regression locally (Malladi et al.,
2023). To aid this approximation, we hypothesize
that after meta-training on all tasks, this initializa-
tion can adapt quickly to subsets of tasks. This has
also been observed in MAML (Finn et al., 2017),
as depicted in Figure 1. The difference is that we
further utilize the first-order approximation of large
language models after meta-training. We have em-
pirically observed that the linearization property
holds across twelve LMs, as described next.

3.1 Multitask training on all tasks

Let the output of a network be hX(s, y), where s
is an input (e.g., sentence) and y is the prediction
label. For example, in binary classification, hX is
the log loss. Here, X ∈ Rp denotes the trainable
parameters of all layers, while θ⋆ ∈ Rp denotes
trained parameters.

Note that f(S) is equal to the averaged hX(s, y)
over a set of samples (s, y). We examine first-order
Taylor’s expansion of hX(s, y) centered at θ⋆:

hX(s, y) ≈ hθ⋆(s, y) + [∇Xhθ⋆(s, y)]
⊤(X − θ⋆)

+ ϵ.

Our key observation is that ϵ remains negligible
for X around θ⋆. We report empirical measure-
ments of ϵ across twelve LMs, evaluated on the
GLUE benchmark (with n = 9 tasks) for BERT
and RoBERTa, and the Alpaca dataset with n = 38

tasks for the rest of ten LMs. We use LoRA as
the base fine-tuning procedure and see similar re-
sults with full fine-tuning. We compute the relative
residual sum of squares (RRSS):
(
hX(s,y)−hθ⋆ (s,y)−∇Xhθ⋆ (s,y)

⊤(X−θ⋆)
)2

hX(s,y)2
.

Table 1 reports the results, averaged over 50
randomly sampled subsets with fixed sizes (3 for
GLUE and 19 for Alpaca). Remarkably, across a
range of relative distance values (between X and
θ⋆) from 2% to 10%, the RRSS is at the range of
10−5 to 10−3.

3.2 Fast estimation for each task subset
Next, we describe the inference of model fine-
tuning performances on each subset Si. Impor-
tantly, we will achieve this using the functional val-
ues and the projected gradients obtained at the end
of the first stage without performing fine-tuning.

We illustrate the idea in binary classification,
where y is 1 or −1. While the same works for
multi-class and generative tasks. Consider the log-
loss for binary classification:

ℓ(X) = log (1 + exp (−y · hX(s, y))) .

Our key idea is to replace hX(s, y) above using
hθ⋆(s, y) plus the first-order term, and this is valid
as long as ϵ is negligible, which is generally true
for fine-tuning since X will be close to θ⋆. Let
bs = −y · hθ⋆(s, y) and let gs = ∇hθ⋆(s, y). We
can approximate ℓ(X) with

ℓ̂(X) = log
(
1 + exp

(
bs − y · g⊤s (X − θ⋆)

))
.

5611

Algorithm 1 GRADEX: FAST ESTIMATION of
LM Fine-Tuning Losses Using Gradients
Input: n training sets; m subsets S1, S2, . . . , Sm

of {1, 2, . . . , n}; a validation set of the target task
Require: LM hθ0 ; Projection dimension d
/* Stage 1: Meta-training */

1: θ⋆ ← fine-tune hθ0 on D{1,2,...,n}
2: P ← p by d isotropic Gaussian random matrix
3: for (s, y) ∈ D{1,2,...,n} do
4: g̃ ← P⊤∇hθ⋆(s, y) ▷ project the gradient
5: b← −y · hθ⋆(s, y)
6: end for

/* Stage 2: Estimation */
1: for i← 1, . . . ,m do
2: X̂d ←min L̂Si(X) with DSi

3: θ̂Si ← θ⋆ + PX̂d

4: f̂(Si)← evaluate hθ̂Si
on the target val set

5: end for
6: Return f̂(Si), for every i = 1, 2, . . . ,m

For a subset S ⊆ {1, 2, . . . , n}, let DS denote
the combined samples from all of S, and let nS

denote the total number of samples in DS . We
estimate the model fine-tuning loss by minimizing
the averaged ℓ̂(X) over X ∈ Rp:

1

nS

∑

(s,y)∈DS

log
(
1 + exp(bs − yg⊤s (X − θ⋆))

)
.

Denote the above as L̂S(X), which varies by S.
Let θ̂S ∈ Rp be the solution from minimizing
L̂S(X). In practice, the dimension of X can be
huge; thus, we apply random projection to reduce
dimension, which can provably preserve the accu-
racy of the regression problem through the Johnson-
Lindenstrauss lemma (Johnson, 1984).

We sample a p by d (e.g., for d = 100) Gaus-
sian random matrix P with each entry drawn from
N(0, d−1) and project the gradient as P⊤hθ⋆(s, y).
We insert the projected gradient as g̃ into ℓ̂(X).
Then, after solving the regression problem in di-
mension d, we map the minimizer X̂d from dimen-
sion d to p using PX̂d. This step only takes a few
seconds, which is extremely fast and is much faster
than full fine-tuning, since it does not compute the
gradient as both b and g are already computed af-
ter meta-training. Thus, this step will work using
CPUs. Algorithm 1 summarizes our procedure.

3.3 Accelerating subset selection for LMs
We now describe several use cases of the estimation
algorithm, expanding on Examples 2.1 and 2.2.

GRADEX-FS: During forward selection, we ap-
ply GRADEX to every subset encountered in the
selection procedure. After performing subset se-
lection, we output the subset and use their data for
augmentation.

GRADEX-RE: For random ensembles, we first
get a list of estimates f̂(S1), f̂(S2), . . . , f̂(Sm) for
every random subset. Then, compute a score Ti for
each task i as the averaged result over all subsets
that include i:

Ti =
1

ni

∑

1≤k≤m: i∈Sk

f̂
(
Sk

)
, for 1 ≤ i ≤ n, (1)

where ni is the number of subsets that include i.
Then, select a subset {i | Ti < γ, i = 1, . . . , n}
using a threshold γ adjusted via cross-validation.

GRADEX-DS: In data selection, one would like
to pick a data subset from a collection of raw data.
To apply our technique, one can preprocess the raw
data by clustering it into n groups. Then, use the
above procedures to choose a subset from the n
groups.

Examples. We illustrate our approach in a noisy
addition example. Consider adding two digits of
length 5:

IN 6 7 0 1 3 + 2 3 9 2 4
OUT 0 7 | 0 3 7 | 0 9 3 7 | 1 0 9 3 7 | 9 0 9 3 7

One can write down the intermediate calculations
plus carry bits. We thus generate a synthetic ad-
dition set by generating input pairs of length 5
between 0 and 9. We create 10 groups; five are
correct, while the rest involve randomly generated
output digits. Then, we aim to separate the noisy
groups from the correctly-labeled groups.

We apply GRADEX-RE to train a GPT-2 trans-
former network. For comparison, we also report the
results from measuring n-gram features (Xie et al.,
2023), feature similarities inside the transformer
(Ivison et al., 2023), and gradient similarities of the
fine-tuned model (Xia et al., 2024). We report our
findings in Figure 2, showing that our procedure
can lead to a better separation than the baseline
measurements.

3.4 Comparison with prior approaches
We discuss the memory and runtime complexity
of our algorithm. Regarding memory requirement,

5612

n-gram Feature Sim Gradient Sim Our Measure

−5

0

5

Correct Examples Noisy Examples

Figure 2: Illustrating the separation between correctly-
labeled and noisy examples, using estimated values of T
in equation (1), compared to several existing measures.
Our measure from T (rightmost) leads to a much more
clear separation of correct vs. noisy examples compared
to three measures.

our algorithm matches the base fine-tuning method
and inherits the same number of trainable param-
eters as LoRA. The runtime of our algorithm in-
volves meta-training on n tasks, computing the
gradients of all the n tasks, and solving logistic
regression in dimension d on m subsets.

In particular, our algorithm reduces m model
fine-tuning runs to a single meta-model training.
As mentioned earlier, the additional estimation
stage incurs very little overhead; after dimension
reduction, solving each logistic regression prob-
lem takes less than 2 seconds per task subset. This
estimation stage takes less than 10% of the total
computation cost in our overall procedure. As for
the meta-training stage, our algorithm uses compa-
rable computational costs to existing data selection
methods such as Xie et al. (2023) and Xia et al.
(2024). Table 2 summarizes this comparison, in-
cluding the number of forward passes required by
each approach.

Methods Runtime # Forward

Forward Selection (FS) O(n3) 1
6
n3

Random Ensemble (RE) O(n logn) αn logn
DSIR (Xie et al., 2023) O(n) n
DEFT (Ivison et al., 2023) O(n) 3n
LESS (Xia et al., 2024) O(n) 3n
GRADEX-FS O(n) 3n
GRADEX-RE O(n) 3n

Table 2: Summary of runtime complexity between our
algorithm and existing solutions for subset selection, as
a function of the number of data sources n. We describe
the constants in terms of forward passes each method
takes. For every method, the number of backward passes
equals the forward passes. Here, α denotes the size of
subsets sampled in random ensembles. Note that the
number of forward passes is for one training step; for
the calculation, see Appendix C.

4 Experiments

We now validate GRADEX and its use cases across
various datasets and models, focusing on the fol-
lowing key questions. Does the estimation proce-
dure accurately approximate the true model fine-
tuning losses? How much computational cost does
it save relative to classical subset selection meth-
ods that require repeated model fine-tuning? How
effective are the subset selection methods using the
estimation results in downstream evaluation?

Our experiments show that GRADEX approx-
imates fine-tuned model losses within 1% error,
tested on five different LMs including Llama-3-8B.
GRADEX reduces the number of FLOPs by up to
43× and GPU hours by 46× compared to conven-
tional subset selection. Next, we evaluate GRADEX

for instruction tuning and chain-of-thought fine-
tuning. In both cases, our algorithm performs on
par with conventional subset selection that uses full
fine-tuing results, while incurring less than 0.5%
computation costs. Our algorithm outperforms ex-
isting selection methods (Xie et al., 2023; Xia et al.,
2024) on ToxiGen by 3.8% and TruthfulQA by
2.4%, while using comparable computation costs.

4.1 Experimental setup

Our algorithm is broadly applicable to estimating
model fine-tuning performances; We focus on in-
struction tuning and chain-of-thought fine-tuning
in this section. For instruction tuning, given a set
of source tasks and a target task, our goal is to se-
lect source tasks relevant to the target task. For
chain-of-thought fine-tuning, we fine-tune an LM
to generate chain-of-thought reasoning steps and
answers to answer a question. Several explanations
are possible, while some of them are incorrect. We
aim to select explanations pertinent to the reason-
ing task using subset selection.

For instruction tuning, we use three datasets,
including FLAN V2 with 1,691 tasks, Chain of
Thoughts with 18 tasks, and Alpaca with 38 tasks.
These datasets encompass over 150 task categories.
See Appendix D for the statistics.

For chain-of-thought fine-tuning, we use Com-
monSenseQA (Talmor et al., 2019) and StrategyQA
(Geva et al., 2021). The chain-of-thought explana-
tions are generated with a GPT-3 175B model. We
sample 10% of the data for evaluating f(S).

We set LoRA as the base protocol. We adjust the
rank parameter of LoRA between 16, 32, 64, and
128. For chain-of-thought fine-tuning, we partition

5613

Table 3: We report the relative RSS between f̂(S) and f(S), measured on Alpaca and StrategyQA. For measuring
speedup, we report the ratio of the number of FLOPs required for computing f(S) divided by GRADEX. The
speedup remains the same across different models for the same dataset, since the speed-up stems from a reduced
number of forward/backward passes.

Alpaca GPT-2 FLAN-T5-Base TinyLlama-1.1B GPT-Neo-1.3B Llama-3-8B Speedup

GRADEX-FS 7.4× 10−4 3.2× 10−4 3.9× 10−4 3.5× 10−4 2.7× 10−4 17.6×
GRADEX-RE 8.7× 10−4 3.4× 10−4 4.2× 10−4 3.8× 10−4 2.9× 10−4 43.3×
StrategyQA GPT-2 FLAN-T5-Base TinyLlama-1.1B GPT-Neo-1.3B Llama-3-8B Speedup

GRADEX-FS 7.4× 10−3 3.0× 10−4 3.2× 10−4 3.0× 10−4 2.4× 10−4 30.5×
GRADEX-RE 8.9× 10−3 3.6× 10−4 3.8× 10−4 3.4× 10−4 2.8× 10−4 44.8×

0.1 0.3 1 8
Model Params (Billion)

3

6

20

60

120

G
P

U
h

ou
rs

GPT-2
FLAN-T5

TinyLlama
GPT-Neo

Llama-3

(a) Our estimation (GRADEX)

0.1 0.3 1 8
Model Params (Billion)

150

300

1000

3000

6000

GPT-2
FLAN-T5

TinyLlama
GPT-Neo

Llama-3

(b) Full fine-tuning

Figure 3: Number of GPU hours as the number of model
parameters between our estimation approach (left, 3a)
and full fine-tuning (right, 3b). We estimate the full
fine-tuning cost by fine-tuning on randomly sampled
100 subsets of tasks.

the data into 100 groups using spectral clustering
on the gradient similarity matrix. For random en-
sembles, we sample 1000 subsets, each containing
75% of all tasks, to ensure the T scores (cf. equa-
tion (1)) have converged.

4.2 Approximating model fine-tuning losses

We now assess the accuracy of GRADEX. We mea-
sure the relative error between the estimated f̂(S)
and the true f(S):

1

m

m∑

i=1

(f(Si)− f̂(Si))
2

(f(Si))2
.

We obtain f(S) by fine-tuning a pretrained LM on
the samples of S (along with the target task). We
measure computation cost through the total number
of FLoating-point OPerations (FLOPs), and the
number of GPU hours (measured on a desktop with
three Nvidia RTX6000 GPUs).

We evaluate the relative distance on both Alpaca
and StrategyQA using five different LMs listed
in Table 3. Due to computation constraints, for
models with more than 1 billion parameters, we
sample 100 subsets to estimate approximation error
for random ensemble.

We find that our algorithm approximates the fine-
tuned model losses within 1% error across the five
LMs. Furthermore, the approximation quality is
generally better for larger models.

On Alpaca, we find that GRADEX-FS uses 117
GPU hours for Llama-3-8B; this is 17.6× less com-
putation compared to running forward selection
with full fine-tuning. As for random ensembles,
GRADEX-RE uses 120 GPU hours for Llama-3-
8B and 43.3× less computation compared to full
fine-tuning. We also observe qualitatively similar
results when measured on StrategyQA: GRADEX

achieves 30.5× and 44.8× less computation com-
pared to full fine-tuning in forward selection and
random ensembles, respectively.

We note that the speedup remains consistent
across different models when applied to the same
dataset. Figure 3 illustrates the number of GPU
hours used by GRADEX when running random en-
sembles on five LMs on Alpaca (left, 4a) vs. full
fine-tuning (right, 4b).

Projection dimension: Recall that we project the
dimension of the gradients down to a much smaller
dimension during the second estimation stage. We
vary the projection dimension d between 50, 100,
200, and 400 for testing GRADEX on FLAN-T5-
Base. We observe that once d increases above 100,
the error stabilizes around 0.03%. Hence, we set
d as 100 for all the experiments. With d = 100,
solving a logistic regression problem for one subset
takes less than 2 seconds.

Reducing overfitting in meta-training: Recall
that in the meta-training stage, we apply multitask
training to the combined samples of all the tasks.
We conduct a preliminary experiment, where we
use a sharpness-reduced training algorithm (i.e.,
sharpness-aware minimization (Foret et al., 2021;
Zhang et al., 2024)) for multitask training (in place
of SGD). We find that this can reduce the approxi-

5614

1018 1020 1022

FLOPs

55

60

65

70
T

ox
ic

%
MTL

DSIR

DEFT

LESS

FS RE

GradEx-FS

GradEx-RE

ToxiGen

1018 1020 1022

FLOPs

72

74

76

78

E
rr

or
%

MTL
DSIR

DEFT

LESS

FS
RE

GradEx-FS

GradEx-RE

TruthfulQA

(a) Task selection for instruction tuning (n = 1, 729)

1016 1017 1018 1019

FLOPs

36

37

38

39

E
rr

or
%

MTL

DSIR

DEFT

LESS

FS

RE

GradEx-FS

GradEx-RE

StrategyQA

1016 1017 1018 1019

FLOPs

33

34

35

36

E
rr

or
%

MTL

DSIR

DEFT

LESS

FS
RE

GradEx-FS

GradEx-RE

CommonsenseQA

(b) Data selection for chain-of-thought fine-tuning (n = 100)

Figure 4: Illustration of the tradeoff between the number of FLOPs (computation cost) and test error rate, measured
on our methods and six baseline methods. Our approach delivers comparable downstream performance to
conventional subset selection methods, while using less than 0.5% of total computation. Furthermore, our approach
achieves a 3.1% performance improvement over existing data selection methods using comparable computation
costs. The comparison of GPU hours is qualitatively similar and can be found in Appendix D.3.

mation error (relative to full fine-tuning results) by
23%. Further applying multitask and meta-learning
techniques to improve GRADEX would be an inter-
esting question for future work.

4.3 Downstream evaluation for fine-tuning

Baselines: We compare our algorithms to forward
selection (FS) and random ensemble (RE) with full
fine-tuning. Additionally, we compare with four
baseline methods, including fine-tuning a single
model on all tasks with LoRA (MTL), Data Se-
lection with Importance Resampling (DSIR) (Xie
et al., 2023), Data Efficient Fine-Tuning with cross-
task nearest neighbors clustering based on feature
similarity (DEFT) (Ivison et al., 2023), and Low-
rank gradiEnt Similarity Search (LESS) (Xia et al.,
2024). For each baseline, the performance is re-
ported based on fine-tuning a pretrained LM with
the same amount of trainable parameters on the
selected subset of tasks.

Evaluation metrics: For instruction tuning, we fol-
low the protocol of Wang et al. (2023a) to evaluate
the toxicity and truthfulness of fine-tuned models
in ToxiGen (Hartvigsen et al., 2022) and Truth-
fulQA (Lin et al., 2022), respectively. For ToxiGen,
we measure the percentage of toxic outputs gener-
ated by the model. For TruthfulQA, we evaluate
model accuracy for identifying truthful statements.
For chain-of-thought fine-tuning, we measure the
accuracy of two reasoning tasks.

4.3.1 Results for instruction tuning
We illustrate the results of applying GRADEX-FS
and GRADEX-RE to select tasks in instruction tun-
ing in Figure 4a, using the TinyLlama-1.1B model.
For ToxiGen, we plot the percentage of toxic gen-

erations. For TruthfulQA, we plot the error rate as
one minus the accuracy of identifying the correct
answer. For each method, we vary the ratio of se-
lected tasks between 5%, 10%, 15%, and 20%, and
report the best result.

First, we compare GRADEX-FS with using the
predictions from the pretrained LM directly, us-
ing the features from the LM in a regression prob-
lem, and fine-tuning on all tasks (MTL). We find
that GRADEX-FS outperforms each of these three
methods by 9%, 11%, and 8% on average, respec-
tively.

Second, GRADEX-FS and GRADEX-RE deliver
comparable performance (within a 1% performance
gap) to the forward selection and random ensemble,
using less than 0.5% of the computation cost of full
fine-tuning.

Lastly, we find that GRADEX-FS improves over
DSIR, DEFT, and LESS by 3.8%, all of which
use a similar number of FLOPs, and GRADEX-RE
outperforms these baseline methods by 4.7%.

4.3.2 Results for chain-of-thought fine-tuning
Next, we report the results on chain-of-thought fine-
tuning, illustrated in Figure 4b, tested on FLAN-T5-
Base. In a nutshell, our findings remain consistent
with those of Section 4.3.1.

First, GRADEX-FS outperforms directly using
the pretrained model for making predictions, fea-
ture transfer from the pretrained model, and fine-
tuning on all tasks by 7%, 16%, and 5% (on av-
erage), respectively. Second, even with the esti-
mation we see similar downstream performance to
forward selection and random ensemble (with full
fine-tuning), while using only 3% and 0.5% of the
total computation costs. Lastly, both GRADEX-FS

5615

and GRADEX-RE can outperform the four baseline
selection methods by 2.4% and 3.5% (on average),
respectively.

As for data selection, we first cluster the samples
into n groups. We vary n between 50, 100, 200,
and 400 and we also evaluate our approach without
the clustering step on StrategyQA. We find that
using n = 100 groups yields the best performance,
and indeed outperforms not using clustering by
1.4%. Therefore, we set n = 100 in all the data
selection experiments.

5 Related Work

Parameter-efficient fine-tuning: One influential
line of work has sought to design adapters, which
are small modules injected into the intermediate
layers of a deep neural network. With adapters,
only a small fraction of the entire network has
to change inside the adapters, and this approach
has found applications in many settings such as
text classification (Howard and Ruder, 2018), text
transfer (Pfeiffer et al., 2021), and cross-lingual
transfer such as named entity recognition and com-
monsense reasoning (Bapna and Firat, 2019). An-
other different approach is to use LoRA (Hu et al.,
2021), which constrains the fine-tuning region in-
side a low-rank subspace, greatly improving the
parameter efficiency of fine-tuning. Both LoRA
and follow-up works such as QLoRA (Dettmers
et al., 2023) and ReLoRA (Lialin et al., 2024) fo-
cus on fine-tuning a single task. Mahabadi et al.
(2021) studies parameter-efficient multitask fine-
tuning via shared hypernetworks. Our work can be
viewed as expanding these methods to multitask
learning (MTL). We believe this connection be-
tween MTL and fine-tuning would be worth further
exploration in future work.

Multitask learning for NLP: There is also a line
of work on building transfer learning approaches
for tackling low-resource languages and tasks. For
instance, adapting from a high-resource language
to another low-resource language is a particularly
effective strategy (Neubig and Hu, 2018). Vu et al.
(2020) explore the transferability using a large col-
lection of NLP tasks. This large-scale analysis un-
derscores the intricacy of representational transfer
in natural languages. Vu et al. (2022) examine fea-
ture transfer in the context of prompt tuning. There
is another line of work for domain adaptation using
a mixture of experts (Shazeer et al., 2017). Wu
et al. (2020) and Yang et al. (2020) provide a the-

oretical analysis of the multi-headed architecture
commonly used for conducting multitask learning.
Their work highlights the issue of negative trans-
fers in multitask learning. For further references,
see recent surveys discussing the ongoing devel-
opments and challenges of multitask learning for
NLP (Raffel et al., 2020; Zhang et al., 2023).

Data modeling: There is a growing line of work
on understanding the role of individual samples
in deep networks and large models. Wettig et al.
(2024) select pre-training data by training a rater
model to evaluate four data quality criteria that
align with human intuitions. Thrush et al. (2024)
select data based on the losses and perplexities of
existing LLMs on pretraining texts. In contrast, this
work focuses on task-relatedness in fine-tuning lan-
guage models. This is a simpler problem compared
to pre-training, as the number of tasks is relatively
smaller. A potential adaptation could be splitting
pre-training into multiple phases and applying our
techniques to develop a curriculum for pre-training.
Li et al. (2023b) introduce a surrogate modeling
approach to identify subsets of source tasks that
benefit a target task. They show that a linear sur-
rogate model is particularly helpful for identifying
negative transfers, including higher-order negative
transfers from a subset of source tasks to the tar-
get task. This higher-order transfer corresponds
to a boosting procedure that is helpful (Li et al.,
2023a). Li et al. (2024a) introduce a tree-structured
surrogate model for finding compositions of data
augmentations. Our approach is also related to the
work of Park et al. (2023) on using random sam-
pling for data attribution. The difference is that
we utilize the linearization property of LLMs for
fine-tuning close to the initialization.

6 Conclusion

This paper introduced a novel method for estimat-
ing LM fine-tuning performances with a first-order
approximation approach. The method can signif-
icantly accelerate conventional subset selection,
thus unlocking their applications to task/data se-
lection for fine-tuning. Evaluation across numer-
ous datasets and LMs demonstrates the benefit of
GRADEX when applied to subset selection.

Acknowlegement: Thanks to the anonymous refer-
ees and the action editor for their constructive feed-
back. The work of D. Li, Z. Zhang, and H. Zhang
is in part supported by NSF award IIS-2412008.

5616

References
Ankur Bapna and Orhan Firat. 2019. Simple, scal-

able adaptation for neural machine translation. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 1538–1548. 9

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information
Processing Systems, 36. 3, 9

Chris Fifty, Ehsan Amid, Zhe Zhao, Tianhe Yu, Rohan
Anil, and Chelsea Finn. 2021. Efficiently identifying
task groupings for multi-task learning. NeurIPS. 3

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017.
Model-agnostic meta-learning for fast adaptation of
deep networks. In International conference on ma-
chine learning, pages 1126–1135. PMLR. 2, 4

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and
Behnam Neyshabur. 2021. Sharpness-aware min-
imization for efficiently improving generalization.
ICLR. 7

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot,
Dan Roth, and Jonathan Berant. 2021. Did aristotle
use a laptop? a question answering benchmark with
implicit reasoning strategies. TACL. 6

Thomas Hartvigsen, Saadia Gabriel, Hamid Palangi,
Maarten Sap, Dipankar Ray, and Ece Kamar. 2022.
Toxigen: A large-scale machine-generated dataset for
adversarial and implicit hate speech detection. ACL.
8

Trevor Hastie, Robert Tibshirani, Jerome H Friedman,
and Jerome H Friedman. 2009. The elements of statis-
tical learning: data mining, inference, and prediction,
volume 2. Springer. 1, 3

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational conference on machine learning, pages
2790–2799. PMLR. 1

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 328–339. 9

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu,
Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. 2021. Lora: Low-rank adaptation of large lan-
guage models. In ICLR. 1, 3, 9

Andrew Ilyas, Sung Min Park, Logan Engstrom, Guil-
laume Leclerc, and Aleksander Madry. 2022. Data-
models: Predicting predictions from training data.
ICML. 3

Hamish Ivison, Noah A Smith, Hannaneh Hajishirzi,
and Pradeep Dasigi. 2023. Data-efficient finetuning
using cross-task nearest neighbors. In ACL. 1, 5, 6, 8

William B Johnson. 1984. Extensions of lipshitz map-
ping into hilbert space. In Conference modern analy-
sis and probability, 1984, pages 189–206. 5

Dongyue Li, Kailai Chen, Predrag Radivojac, and
Hongyang R Zhang. 2024a. Learning tree-structured
composition of data augmentation. Transactions on
Machine Learning Research. 9

Dongyue Li, Haotian Ju, Aneesh Sharma, and
Hongyang R Zhang. 2023a. Boosting multitask learn-
ing on graphs through higher-order task affinities.
SIGKDD Conference on Knowledge Discovery and
Data Mining (KDD). 3, 9

Dongyue Li, Huy Nguyen, and Hongyang Ryan Zhang.
2023b. Identification of negative transfers in multi-
task learning using surrogate models. Transactions
on Machine Learning Research. 3, 9

Dongyue Li, Aneesh Sharma, and Hongyang R Zhang.
2024b. Scalable multitask learning using gradient-
based estimation of task affinity. In Proceedings of
the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 1542–1553. 3

Vladislav Lialin, Sherin Muckatira, Namrata Shiva-
gunde, and Anna Rumshisky. 2024. Relora: High-
rank training through low-rank updates. In The
Twelfth International Conference on Learning Repre-
sentations. 9

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022.
Truthfulqa: Measuring how models mimic human
falsehoods. ACL. 8

Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa
Dehghani, and James Henderson. 2021. Parameter-
efficient multi-task fine-tuning for transformers via
shared hypernetworks. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 565–576. 9

Sadhika Malladi, Alexander Wettig, Dingli Yu, Danqi
Chen, and Sanjeev Arora. 2023. A kernel-based view
of language model fine-tuning. In ICML. PMLR. 4

Graham Neubig and Junjie Hu. 2018. Rapid adaptation
of neural machine translation to new languages. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics. 1, 9

Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guil-
laume Leclerc, and Aleksander Mądry. 2023. Trak:
attributing model behavior at scale. In Proceedings
of the 40th International Conference on Machine
Learning, pages 27074–27113. 9

5617

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé,
Kyunghyun Cho, and Iryna Gurevych. 2021.
Adapterfusion: Non-destructive task composition for
transfer learning. In Proceedings of the 16th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Main Volume, pages
487–503. 9

Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Se-
bastian Ruder. 2020. Mad-x: An adapter-based
framework for multi-task cross-lingual transfer. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7654–7673. 1

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. JMLR. 9

Sebastian Ruder. 2017. An overview of multi-task
learning in deep neural networks. arXiv preprint
arXiv:1706.05098. 1

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff
Dean. 2017. Outrageously large neural networks:
The sparsely-gated mixture-of-experts layer. In In-
ternational Conference on Learning Representations.
9

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. Commonsenseqa: A question
answering challenge targeting commonsense knowl-
edge. In NAACL-HLT. 6

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca. 3

Tristan Thrush, Christopher Potts, and Tatsunori
Hashimoto. 2024. Improving pretraining data
using perplexity correlations. arXiv preprint
arXiv:2409.05816. 9

Ahmet Üstün, Arianna Bisazza, Gosse Bouma, and Gert-
jan van Noord. 2020. Udapter: Language adaptation
for truly universal dependency parsing. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
2302–2315. 1

Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou,
and Daniel Cer. 2022. Spot: Better frozen model
adaptation through soft prompt transfer. ACL. 1, 3, 9

Tu Vu, Tong Wang, Tsendsuren Munkhdalai, Alessan-
dro Sordoni, Adam Trischler, Andrew Mattarella-
Micke, Subhransu Maji, and Mohit Iyyer. 2020. Ex-
ploring and predicting transferability across nlp tasks.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7882–7926. 1, 3, 9

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. In ICML. 3

Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack
Hessel, Tushar Khot, Khyathi Chandu, David Wad-
den, Kelsey MacMillan, Noah A Smith, Iz Beltagy,
and Hannaneh Hajishirzi. 2023a. How far can camels
go? exploring the state of instruction tuning on open
resources. NeurIPS (Dataset and Benchmark Track).
8

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023b. Self-instruct: Aligning language
models with self-generated instructions. ACL. 3

Alexander Wettig, Aatmik Gupta, Saumya Malik, and
Danqi Chen. 2024. Qurating: Selecting high-quality
data for training language models. arXiv preprint
arXiv:2402.09739. 9

Sen Wu, Hongyang R Zhang, and Christopher Ré. 2020.
Understanding and improving information transfer in
multi-task learning. In International Conference on
Learning Representations. 3, 9

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan,
Sanjeev Arora, and Danqi Chen. 2024. Less: Se-
lecting influential data for targeted instruction tuning.
ICML. 1, 2, 5, 6, 8, 13

Sang Michael Xie, Shibani Santurkar, Tengyu Ma, and
Percy S Liang. 2023. Data selection for language
models via importance resampling. Advances in
Neural Information Processing Systems, 36:34201–
34227. 1, 2, 5, 6, 8, 13

Fan Yang, Hongyang R Zhang, Sen Wu, Christopher
Ré, and Weijie J Su. 2020. Precise high-dimensional
asymptotics for quantifying heterogeneous transfers.
arXiv preprint arXiv:2010.11750. 9

Hongyang R. Zhang, Dongyue Li, and Haotian Ju. 2024.
Noise stability optimization for finding flat minima:
A hessian-based regularization approach. Transac-
tions on Machine Learning Research. 4, 7

Zhihan Zhang, Wenhao Yu, Mengxia Yu, Zhichun Guo,
and Meng Jiang. 2023. A survey of multi-task learn-
ing in natural language processing: Regarding task
relatedness and training methods. In Proceedings
of the 17th Conference of the European Chapter of
the Association for Computational Linguistics, pages
943–956. 1, 3, 9

Barret Zoph, Deniz Yuret, Jonathan May, and Kevin
Knight. 2016. Transfer learning for low-resource
neural machine translation. In Proceedings of the
2016 Conference on Empirical Methods in Natural
Language Processing. Association for Computational
Linguistics. 3

5618

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://openreview.net/forum?id=yfrNkb2Ldd
https://openreview.net/forum?id=yfrNkb2Ldd

Limitations

One limitation of our algorithm is that it requires
estimating the fine-tuned model performance based
on all the model weights. Designing techniques to
estimate fine-tuning performance in a limited set of
model weights or for closed-source models such as
GPT-4 is an interesting open question. Our study is
also restricted to fine-tuning, while there may well
be other scenarios where one would like to adopt
a language model, such as in-context learning or
alignment with RLHF. Further exploring functional
approximation techniques for these settings would
be another promising avenue for future work.

Discussion about Potential Risks

This paper examines the problem of fine-tuning lan-
guage models given multiple data sources. While
the use of language models may have potential
societal consequences in the future, there are no
specific ethical concerns arising from our work.
Due to the technical nature of this paper, there are
no direct implications of negative societal impacts.

A Mathematical Notations

We provide a list of symbols and their meaning
used in the paper for reference below:

• S: A subset of {1, 2, . . . , n}.

• f(S): The performance of an LM fine-tuned
on tasks in S, evaluated on the target set.

• θ⋆: The meta-initialization, i.e., vectorized
LM weights fine-tuned on all tasks.

• θ̂S : The vectorized LM weights fine-tuned on
a subset of tasks S.

• hθ⋆(s, y): Model loss given an input pair s, y.

• ∇hθ⋆(s, y): Vectorized gradients of model
output with respect to model weights X .

• Ti: The average performance of f(S) over
multiple subsets S that include task i, for ev-
ery i = 1, 2, . . . , n.

B Omitted Materials from Section 2

f(S) is not monotone: We find that f(S) is
not monotone, in the sense that if we add one
helper task into S, this does not necessarily im-
prove the outcome. Concretely, we start with

an initial set S. It contains a target task t corre-
sponding to the instructions of “arrange” in Alpaca.
Then, we keep adding a “helping” task (i) to S, if
f({i, t}) < f({t}) (reducing the loss). According
to our experiment, once more than two tasks are
added, f(S) increases gradually, indicating that
adding more tasks can worsen the performance of
the target task, and these are all “helpful” tasks (in
the sense of pairwise transfer).

f(S) is not submodular: We also find that f(S)
is not submodular. A function f(·) is submodular
if for any two subsets S ⊆ S′ ⊆ {1, 2, . . . , T}
and any single task x, f({x} ∪ S′) − f(S′) ≤
f({x} ∪ S) − f(S). To test this, we start with a
set S that includes the target task and a task that
negatively transfers, i.e., increases the loss of the
target task. Then, we also keep adding a “helping”
task (i) to S. According to our experiment, we
observe that the benefit of adding tasks gradually
decreases. Initially, adding the first two tasks to the
original pair improves performance. However, this
improvement diminishes once three or more tasks
are added.

C Ommited Materials for Section 3

Meta-training improves approximation quality:
In Section 3, we observe that first-order expansion
near a meta-initialization fine-tuned on all tasks
provides an accurate approximation. Next, we eval-
uate whether this approximation can be achieved
without the meta-training step. We measure the
first-order Taylor expansion on the pretrained GPT-
Neo-1.3B and TinyLlama-1.1B model. We observe
that the approximation from the pretrained initial-
ization incurs within 7% error. In contrast, using
meta-initialization is significantly better. The ap-
proximation achieves less than 1% error. We report
the results in Table 4.

While using the second-order approximation can
further reduce estimation error, it requires comput-
ing Hessian-gradient products, which is computa-
tionally expensive. Thus, we focus on the first-
order approximation in this paper.

Dimension reduction: Recall that the dimension
of ∇hθ⋆(s, y) is the same as the number of train-
able parameters in a neural network. Thus, we
project the gradients to a much lower dimension us-
ing random projection. Let P be a p by d Gaussian
random matrix, whose entries are independently
sampled from a Gaussian distribution N(0, d−1).

5619

Table 4: We compare the error of first-order approximation from the pretrained initialization and the meta-
initialization fine-tuned on all data sources. The results are averaged over 50 random task subsets. We sample
subsets of subsets of size 19 on Alpaca.

Distance\RRSS GPT-Neo-1.3B TinyLlama-1.1B

Initialization θ⋆ Pretrained LM Fine-tuned on all tasks Pretrained LM Fine-tuned on all tasks

2% 6±0.6 × 10−4 6±0.5 × 10−5 8±1.1 × 10−4 3±0.4 × 10−5

4% 1±0.2 × 10−3 3±0.3 × 10−4 2±0.4 × 10−3 1±0.3 × 10−4

6% 2±0.1 × 10−3 6±0.6 × 10−4 3±0.4 × 10−4 3±0.7 × 10−4

8% 3±0.3 × 10−3 1±0.2 × 10−3 3±0.7 × 10−4 4±0.9 × 10−4

10% 4±0.2 × 10−2 5±0.8 × 10−3 7±0.6 × 10−2 5±0.8 × 10−3

We project the gradients from dimension p to di-
mension d as g̃i = P⊤∇hθ⋆(s, y). Then, we solve
the logistic regression in dimension d. Denote the
solution as θ̂d. We set θ̂S ← P θ̂d + θ⋆ to map the
projected solution back to p-dimensions.

Application to multi-classification tasks: To
accommodate multi-classification tasks, we can
view the cross-entropy loss in the same form as
a logistic loss by transforming the model out-
put function. Specifically, for a training exam-
ple (s, y) where y is a multi-classification la-
bel, we can define the model output function as
hθ(s, y) := log

(p(y|s;θ)
1−p(y|s;θ)

)
where p(y|s; θ) is the

softmax probability assigned to the correct class.
Then, the cross-entropy can be rewritten as the lo-
gistic loss as ℓ(s, y; θ) = − log p(y|s; θ).

Application to generative tasks: To accommo-
date generative tasks, we can view the loss at each
output position as a multi-classification loss and
average the gradient over every output position.
Specifically, for each training example (s, y), sup-
pose that y is a sequence of length L denoted as
y = (y1, y2, . . . , yL). The loss can be written as
the sum over L conditional probabilities. We can
view this as L multi-class classification losses and
apply the above transformation to each position
i = 1, 2, . . . , L. Then, we can compute the aver-
aged gradient over the L output positions.

Runtime complexity. As outlined in Table 2, we
compare the runtime complexity of our algorithm
with that of the subset selection baselines. Below,
we detail the exact number of forward passes re-
quired by each method. We denote the number of
tasks as n. Note that the following number of for-
ward passes is multiplied by the average number of
forward passes to train on one task.

Forward selection: This algorithm performs
greedy subset selection. It starts with an empty

set and iterates up to n times to select the opti-
mal task to combine with the current subset. At
the i-th iteration, it fine-tunes one model on the
current subset combined with each of the remain-
ing n − i + 1 unselected tasks. Consequently,
the total number of forward passes is at most∑n

i=1(n− i+ 1) · i = 1
6n(n+ 1)(n+ 2).

Random ensemble: This algorithm fine-tunes
models on randomly sampled subsets of tasks and
averages their performance on each task to gen-
erate a score. It requires O(n log n) subsets for
these scores to converge. In practice, we observe
that sampling approximately 10n subsets is usually
sufficient. If we denote the size of each subset as
α, the total number of forward passes required is
αn log n.

DSIR (Xie et al., 2023): This algorithm assesses
the n-gram features of every data sample without
requiring model forward passes. It trains a model
on a selected subset of tasks. The total number of
forward passes is at most n.

DEFT (Xia et al., 2024): These two algorithms
follow a similar procedure. First, train a model on
all given tasks. Then, compute the similarity score
between feature representations (or gradients) of
training and test samples. Lastly, select tasks based
on the scores and train a model on the selected
subset of tasks. This process requires a total of 3n
forward passes.

GRADEX: Our algorithm requires a comparable
number of forward passes as DEFT. First, we train
a model on all task data and project the gradients
of each data sample. Then, instead of computing
gradient similarities, we estimate model fine-tuning
performances by solving logistic regression on the
projected gradients. Finally, we select a subset of
tasks based on these estimated performances and
train a model on the selected subset. This also
requires a total of 3n forward passes.

5620

Table 5: Detailed statistics about all the datasets used in the experiments.

Dataset # Tasks Avg size Category Source

GLUE 9 106,416 3 task categories gluebenchmark.com/
FLAN v2 1,691 59 150 task categories huggingface.co/datasets/philschmid/flanv2
COT 18 8,302 Chain-of-thought reasoning huggingface.co/datasets/QingyiSi/Alpaca-CoT
Alpaca 38 1,073 Text generation huggingface.co/datasets/tatsu-lab/alpaca
ToxiGen 1 7,000 Text generation huggingface.co/datasets/toxigen/toxigen-data
TruthfulQA 1 818 Open-domain QA huggingface.co/datasets/truthfulqa/truthful_qa
CQA 100 97 Commonsense reasoning huggingface.co/datasets/tau/commonsense_qa
StrategyQA 100 128 Commonsense reasoning github.com/eladsegal/strategyqa

Table 6: List of hyper-parameters used in the experiments.

Dataset Model Step size Batch size Epochs LoRA rank Results

GLUE BERT-Base, RoBERTa-Base 5e−5 16 5 Full model Table 1

Alpaca

Pythia-70M, GPT-2 5e−5 16 10 Full model

Table 1 and 3
FLAN-T5-Base, BloomZ-560M

TinyLlama-1.1B, GPT-Neo-1.3B,
OPT-1.3B, Gemma-2-2B
Mistral-7B, Llama-3-8B

5e−5 16 10 16

StrategyQA
GPT-2 3e−4 8 20 Full model

Table 3FLAN-T5-Base, TinyLlama-1.1B,
GPT-Neo-1.3B, Llama-3-8B 3e−4 8 20 16

ToxiGen TinyLlama-1.1B 2e−5 128 10 128 Figure 4a
TruthfulQA TinyLlama-1.1B 2e−5 128 10 128

StrategyQA FLAN-T5-Base 3e−4 8 20 16 Figure 4b
CQA FLAN-T5-Base 3e−4 8 20 16

D Additional Experiments

D.1 Setup

We describe each dataset in Table 5. Among them,
FLAN v2 includes a variety of tasks, as it combines
four prior instruction tuning datasets. We refer the
reader to the paper for their task categories. We
used a sampled version of FLAN v2. We partition
Alpaca by their instruction types into tasks.

We experiment with the following models:
BERT-Base, RoBERTa-Base, FLAN-T5-Base,
Pythia-70M, GPT-2, BloomZ-560M, TinyLlama-
1.1B, OPT-1.3B, GPT-Neo-1.3B, Gemma-2-2B,
Mistral-7B, and Llama-3-8B.

In our experiments, we fine-tune the models us-
ing the AdamW optimizer. We fine-tune the entire
model for smaller models, including BERT-Base,
RoBERTa-Base, Pythia-70M, and GPT-2. For other
models, we use LoRA for fine-tuning. The train-
ing hyper-parameters used for each experiment are
described in Table 6.

For ToxiGen, we measure the percentage of
toxic generations of the model. First, the model is
prompted to produce toxic languages using human-

designed hateful prompts; then, the generations are
classified by a toxic content detection model. For
TruthfulQA, we evaluate the model’s accuracy in
detecting truthful statements. Given a question and
five answer choices, we measure the accuracy of
the model in assigning the highest probability to
the correct answer.

D.2 Omitted results

In Table 7, we report the complete results corre-
sponding to Figure 4.

D.3 Comparison of GPU hours

We also compare the GPU hours of each method on
StrategyQA. We observe that GRADEX-FS uses
10.6 GPU hours and GRADEX-RE uses 14.7 GPU
hours. Corroborating with the FLOPs comparison
results, our algorithm reduces the GPU hours of
classic selection methods by 10×. Moreover, our
algorithm uses comparable GPU hours to existing
selection baselines, with LESS and DEFT taking
10.2 GPU hours. The comparison has a similar
trend in instruction fine-tuning datasets.

5621

https://gluebenchmark.com/
https://huggingface.co/datasets/philschmid/flanv2
https://huggingface.co/datasets/QingyiSi/Alpaca-CoT
https://huggingface.co/datasets/tatsu-lab/alpaca
https://huggingface.co/datasets/toxigen/toxigen-data
https://huggingface.co/datasets/truthfulqa/truthful_qa
https://huggingface.co/datasets/tau/commonsense_qa
https://github.com/eladsegal/strategyqa
https://huggingface.co/google-bert/bert-base-uncased
https://huggingface.co/FacebookAI/roberta-base
https://huggingface.co/google/flan-t5-base
https://huggingface.co/EleutherAI/pythia-70m
https://huggingface.co/openai-community/gpt2
https://huggingface.co/bigscience/bloomz-560m
https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
https://huggingface.co/facebook/opt-1.3b
https://huggingface.co/EleutherAI/gpt-neo-1.3B
https://huggingface.co/google/gemma-2b
https://huggingface.co/mistralai/Mistral-7B-v0.3
https://llama.meta.com/llama3/

Table 7: Performance scores and computation cost (FLOPs) on four datasets. ToxiGen and TruthfulQA are used to
evaluate instruction tuning. CommonsenseQA and StartegyQA are used to evaluate chain-of-thought fine-tuning.
We report the averaged results and standard deviations over three random seeds for each method.

Dataset ToxiGen TruthfulQA CommonsenseQA StrategyQA
all training samples 272,770 272,770 9,741 12,824
test samples 7,000 818 1,221 687
Model TinyLlama-1.1B TinyLlama-1.1B FLAN-T5-Base FLAN-T5-Base

Metrics (%) Toxic generations (↓) Accuracy (↑) Accuracy (↑) Accuracy (↑)

Pretrained model 70.14 ± 0.00 22.03 ± 0.00 72.23 ± 0.00 51.23 ± 0.00
Feature transfer 73.20 ± 0.44 21.03 ± 0.28 51.33 ± 0.44 44.68 ± 0.45
MTL 69.44 ± 0.43 23.86 ± 0.78 59.05 ± 0.69 60.84 ± 0.80
DSIR 68.10 ± 0.32 24.02 ± 0.43 64.56 ± 0.28 61.49 ± 0.19
DEFT 65.71 ± 0.32 24.38 ± 0.61 64.78 ± 0.93 61.79 ± 0.32
LESS 63.90 ± 0.27 24.53 ± 0.48 64.92 ± 0.32 61.93 ± 0.21
Forward selection 58.50 ± 0.79 27.72 ± 0.21 67.27 ± 0.68 63.54 ± 0.13
Random ensemble 57.88 ± 0.28 28.21 ± 0.60 67.78 ± 0.68 64.28 ± 0.24

GRADEX-FS 59.36 ± 0.53 27.25 ± 0.42 67.09 ± 0.53 63.30 ± 0.50
GRADEX-RE 58.29 ± 0.66 27.93 ± 0.42 67.50 ± 0.94 63.90 ± 0.43

FLOPs (↓)

MTL 5.80 ×1017 5.80 ×1017 1.19 ×1016 1.57 ×1016

DSIR 8.98 ×1017 8.98 ×1017 1.78 ×1016 2.43 ×1016

DEFT 1.04 ×1018 1.04 ×1018 1.84 ×1016 2.50 ×1016

LESS 1.04 ×1018 1.04 ×1018 1.84 ×1016 2.50 ×1016

Forward selection 5.54 ×1020 5.54 ×1020 5.98 ×1017 8.62 ×1017

Random ensemble 5.04 ×1021 5.04 ×1021 5.98 ×1018 7.84 ×1018

GRADEX-FS 2.81 ×1018 2.61 ×1018 2.03 ×1016 2.62 ×1016

GRADEX-RE 1.87 ×1019 1.53 ×1019 3.71 ×1016 3.47 ×1016

D.4 Ablation studies

Projection dimension: Recall that in our algo-
rithm, we project gradients to a lower dimension
before solving the logistic regression in the esti-
mation stage. We note that a small value of the
projection dimension is sufficient to achieve the
approximation results. We vary the projection di-
mension d between 50, 100, 200, and 400 for run-
ning GRADEX on FLAN-T5-Base. The results are
shown in Table 8. Once d increases above 100,
the error stabilizes around 0.03%, so we set d to
100 by default. d is approximately 7 log(p) where
p = 2654208 is the number of trainable parameters
in FLAN-T5-Base.

Number of subsets m: Recall that in applying
GRADEX-RE, the score in the random ensemble
for each task is estimated by averaging the value
functions of m subsets that contain the task. For
the strategy QA data with n = 100 datasets, we
observe that the estimated higher-order task affinity
converges using m = 1000 subsets. We computed
the distance between the estimated scores T using
m subsets and the final scores T ∗, observing that
the distance sharply decreases as m increases, even-
tually converging to zero. This analysis was con-

Table 8: Distance vs. speedup for varied d, computed
using Alpaca and StrategyQA.

Alpaca GRADEX-FS GRADEX-RE

d Distance Speedup Distance Speedup

50 4.8× 10−4 17.6× 5.2× 10−4 43.3×
100 3.2× 10−4 17.6× 3.4× 10−4 43.3×
200 2.9× 10−4 17.5× 3.0× 10−4 43.2×
400 2.8× 10−4 17.5× 2.9× 10−4 43.2×

StrategyQA GRADEX-FS GRADEX-RE

d Distance Speedup Distance Speedup

50 4.6× 10−4 30.5× 5.6× 10−4 44.9×
100 3.0× 10−4 30.5× 3.8× 10−4 44.9×
200 2.8× 10−4 30.4× 3.6× 10−4 44.8×
400 2.7× 10−4 30.4× 3.4× 10−4 44.8×

ducted for different subset sizes, with α = 0.25n,
α = 0.5n, and α = 0.75n, respectively. The dis-
tance stabilizes as m approaches 1000, indicating
that the estimated task affinity scores converge.

One might hypothesize that using 1000 or
more subsets achieves comparable performance.
We conduct the selection algorithm using m =
500, 1000, 1500, 2000. We notice no further gain
in the downstream accuracy when using more sub-
sets than 1000. Thus, we set m = 1000.

5622

Subset size: We vary subset size α between
0.25n, 0.5n, and 0.75n. We find the Tis all con-
verge at a similar rate. In addition, using a subset
size of 0.75n achieves better performance in down-
stream selection. The reason is that this size is
closer to the size of the selected subset (i.e., 0.7n).

D.5 Complete pseudocode for subset selection
procedures

Algorithm 2 GRADEX-FS
Input: Training datasets of n data sources; a
multitask fine-tuning algorithm f
Output: A subset of selected tasks S⋆

1: Initiate an empty set Scur = {}
2: for Step i = 1, 2, . . . , n do
3: for Each dataset not selected in current

subset j ∈ [n]/Scur do
4: Add dataset j to current subset:

Sj ← Scur
⋃{j}

5: Evaluate f̂(Sj) using GRADEX

6: end for
7: Choose the dataset with the highest value

function j∗ ← argmaxj∈[n]/Scur f̂(S < j)
8: Add the dataset to the current subset:

Scur ← Scur + j∗, if f̂(Sj) > f̂(Scur).
Otherwise, stop searching

9: end for
10: Return the selected subset S⋆ ← Scur

Algorithm 3 GRADEX-RE
1: for k = 1, . . . ,m do
2: Sample a random subset Sk from
{1, 2, . . . , n} with size α

3: Evaluate f̂(Sk) using GRADEX

4: end for
5: Estimate the random ensemble score for each

dataset i as the value function averaged over
subsets that include i:

Ti =
1

ni

∑

1≤k≤m: i∈Sk

f̂
(
Sk

)
, for 1 ≤ i ≤ n

6: Select a subset of datasets by thresholding the
scores: S⋆ = {i | T̂i > γ, ∀ i = 1, 2, . . . , n}

5623

