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Abstract

The introduction of Large Language Models
(LLMs) has advanced data representation and
analysis, bringing significant progress in their
use for medical questions and answering. De-
spite these advancements, integrating tabular
data, especially numerical data pivotal in clini-
cal contexts, into LLM paradigms has not been
thoroughly explored. In this study, we examine
the effectiveness of vector representations from
last hidden states of LLMs for medical diag-
nostics and prognostics using electronic health
record (EHR) data. We compare the perfor-
mance of these embeddings with that of raw
numerical EHR data when used as feature in-
puts to traditional machine learning (ML) algo-
rithms that excel at tabular data learning, such
as eXtreme Gradient Boosting. We focus on
instruction-tuned LLMs in a zero-shot setting
to represent abnormal physiological data and
evaluating their utilities as feature extractors
to enhance ML classifiers for predicting diag-
noses, length of stay, and mortality. Further-
more, we examine prompt engineering tech-
niques on zero-shot and few-shot LLM embed-
dings to measure their impact comprehensively.
Although findings suggest the raw data features
still prevail in medical ML tasks, zero-shot
LLM embeddings demonstrate competitive re-
sults, suggesting a promising avenue for future
research in medical applications. 1

1 Introduction

Numerical data plays a pivotal role across various
domains. For instance, much of the data used for
analytics from electronic health records (EHRs)
are numerical values in tabular formats, document-
ing patient demographics (e.g., age), vital signs,
laboratory tests, and nurse assessments. Utilizing

1Contact: yanjun.gao@cuanschutz.edu. This work is
completed when Yanjun was in University of Wisconsin-
Madison. Code is available at https://github.com/
serenayj/LLM_Embedding_Medical_ML/.

Figure 1: Physician Evaluation of LLMs’ Knowledge on Nor-
mal Vital Sign and Lab Test Values. This experiment probes
Mistral-7B-Instruct and Llama2-13B-Chat on reference ranges
for twenty-four vital signs and lab tests. Results show these
models have a strong understanding of normal medical values,
crucial for clinical applications. Table 1 listed all 24 feature
names, and more output examples are in Appendix B.

numerical data for predictive modeling has been in-
strumental in facilitating accurate diagnoses (Pang
et al., 2021), risk stratifying (Zeiberg et al., 2019;
Green et al., 2018), and outcome predictions (Akel
et al., 2021; Chang et al., 2019) in healthcare.
Machine learning (ML) classifiers like gradient
boosted (Chen and Guestrin, 2016) have excelled
in these tasks for making accurate clinical predic-
tions (Churpek et al., 2024a; Lolak et al., 2023;
Moore and Bell, 2022).

Recent work shows Large Language Models
(LLMs)’ vast potential on text generation over
structured data input, including Chain-of-Thought
(CoT) reasoning over tabular data (Zheng et al.,
2023), classification on diseases (Hegselmann et al.,
2023). LLMs have also exhibited exceptional
promise in medical NLP tasks, evident in their stel-
lar performance in the United States Medical Li-
censing Examination (MedQA) (Nori et al., 2023).
However, the use of embedding representations,
particularly for medical diagnostics and outcome
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Figure 2: This study investigates the feasibility of using LLM embeddings for numerical EHR data features representation in
medical machine learning applications. To use LLMs, raw features are transformed into queries via templates. Under a zero-shot
setting, these queries are encoded into embeddings for ML classification. We explore the effects of prompt engineering, few-shot
learning using synthetic data generation, and parameter efficient tuning on LLM embeddings.

predictions using standard EHR numerical data,
remains largely unexplored. In these areas, raw
data inputs have traditionally dominated feature
representation for ML algorithms before the era
of LLMs. This is exemplified by their use in
critical applications such as mortality prediction
and early sepsis warnings (Deng et al., 2022; Hou
et al., 2020), and patient infection (Bashiri et al.,
2022; Bhavani et al., 2020). The potential of LLM-
derived features as a viable alternative to raw data
features in ML applications is still unclear.

This study aims to address the knowledge gap
in applying LLM embeddings for EHR numerical
data representation in ML algorithms. While LLMs
have demonstrated remarkable performance in text-
based medical tasks, few studies explore their use
in numerical-based tasks, especially in EHR pre-
dictive modeling, such as mortality prediction and
clinical deterioration detection. These tasks, which
directly impact clinical workflow, offer a critical
testbed for evaluating LLM capabilities and set-
ting appropriate expectations for their use in prac-
tical applications. Furthermore, existing work on
LLMs shows potential in handling numerical rea-
soning tasks, suggesting that they can effectively
represent numerical data (Zhu et al., 2024; Akhtar
et al., 2023). Leveraging this potential, our study
probes whether LLM embeddings can enhance per-
formance in domain-specific tasks.

Moreover, using LLMs for tabular data represen-
tation provides an opportunity to unify structured
and unstructured data within EHRs, seamlessly
integrating information across modalities such as

clinical notes and embedded tables (Soenksen et al.,
2022; Kline et al., 2022). Our work uniquely exam-
ines the impact of different formats and embedding
methods on LLM last layers and ML classifiers,
focusing on open-source, zero-shot LLMs suitable
for single-GPU systems to address the resource lim-
itations prevalent in many hospitals and academic
research settings.

To test whether LLMs possess knowledge of clin-
ical reference ranges for numerical values, we con-
ducted a preliminary study to by directly prompting
them with questions about twenty-four critical clin-
ical features. These questions focused on the nu-
merical ranges, units of measurement, and contex-
tual reasoning behind these values for each feature,
such as vital signs and lab test results. The ex-
periments were done on Mistral-7B-Instruct (Jiang
et al., 2023) and Llama2-13B-Chat (Touvron et al.,
2023), two of the most popular open-source LLMs.
The findings, depicted in Figure 1, suggest that
LLMs, despite being trained on general-domain
data, demonstrate a strong understanding of the
expected physiological ranges and correct units of
measurement for these features.

Building on these initial findings, our study then
explores the application of LLM embeddings in
clinical prediction tasks. We utilize three clini-
cal prediction tasks derived from two independent
EHRs and four ML classifier input settings. We
investigate the impact of table-to-text conversion
formats, embedding extraction methods, prompt
engineering, and few-shot techniques, along with
early results from parameter-efficient fine-tuning,
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on the quality of LLM embeddings. Our main con-
tributions are the following:

• We present a comprehensive study exploring var-
ious factors that influence the performance of
numerical EHR feature embeddings generated by
LLMs for medical ML applications.

• Our findings show that while LLM embeddings
paired with XGB classifiers can achieve perfor-
mance comparable to traditional raw data fea-
tures on some tasks, performance gaps persist,
necessitating further improvements to maximize
their effectiveness.

• We observe that LLM embeddings are more ro-
bust and consistent across different tasks com-
pared to LLM-based generation, which is more
sensitive to variations in input structure and con-
text.

• We discuss the efficiency and robustness of LLM
feature representation for numerical data versus
raw data in training ML classifiers.

Results show that, despite external evidence indi-
cating that LLMs possess extensive knowledge of
medical facts, extracting usable representations of
this knowledge for downstream tasks will require
significant additional methodological progress.

2 Related Work

Recent studies highlight LLMs in tabular data
analysis: Hegselmann et al. (2023) introduces
TableLLM, which converts tables to text using a
manual template. Zheng et al. (2023) studies CoT
reasoning over tables. Akhtar et al. (2023) ex-
amines the abilities of LLMs on numerical data
understanding. Zhu et al. (2024), closest to our
work, explores zero-shot LLM for structured longi-
tudinal EHR data and finds that GPT-4 can outper-
form XGB on clinical prediction tasks. Our study,
however, uniquely focuses on open-box LLM em-
beddings for enhancing ML algorithms.

Raw EHR data are commonly used in medical
ML applications, as found by a survey on medical
ML research (Si et al., 2021). They noted that labs
and vital signs as frequent data types for patient
representation learning. Churpek et al. (2024a) in-
troduces an XGB algorithm predicting clinical de-
teriorations using EHR features like demographics
and lab values. Wang et al. (2020) used 104 clini-
cal EHR features across various ML algorithms to
establish baselines for clinical tasks such as mor-
tality predictions. Our work uses the same dataset
and tasks as (Wang et al., 2020) to compare LLM

embeddings against traditional ML classifier out-
comes on the same raw data feature baseline.

Shwartz-Ziv and Armon (2022) compares XG-
Boost models with deep learning models across
eleven tabular datasets, covering tasks from Ges-
ture Phase Segmentation to Higgs Boson Monte
Carlo simulation. Their findings suggest that XG-
Boost outperformed deep learning models on these
tasks. Similarly, this paper reaches the same con-
clusion in a different context, where we compare
XGBoost using raw data features for medical ma-
chine learning applications and extend the com-
parison to evaluate raw data features against LLM
embeddings. Notably, we find that zero-shot LLM
embeddings, when used with XGBoost, have the
potential to perform as well as raw data features.

3 Datasets and Tasks

3.1 Diagnosis prediction for clinical
deterioration

Early warning systems often use rule-based and ML
algorithms to identify patients at risk of deteriora-
tion or death without providing diagnoses (Churpek
et al., 2014; Kipnis et al., 2016). To address this,
experts from multiple hospitals created a dataset
that labels the diagnoses for patients who had a clin-
ical deterioration event during their hospitalization.
These expert-annotated diagnoses were performed
with a full review of the EHR and served as the la-
bels for our training data. Twenty-four tabular data
features including demographics, vital signs, labs,
interventions, and nursing assessments were ex-
tracted from the structured EHR (eg. tabular data).
They were previously identified as critical variables
for clinical deterioration (Akel et al., 2021).

The annotation process was conducted by four
physician scientists specializing in critical care
medicine. It began with a training phase where
the annotators reviewed 20 patient EHRs together
to ensure consistency. Double annotation was per-
formed until a Cohen’s kappa score of above 0.6
was achieved, indicating sufficient inter-rater agree-
ment. Throughout the annotation process, the Co-
hen’s kappa score was continuously monitored, and
if it dropped below 0.6, additional training sessions
were initiated to recalibrate and maintain annota-
tion quality. The final datasets encompassed EHR
data from 660 adult patients in medical-surgical
ward within a U.S. health system. The primary
diagnoses were Sepsis, Arrhythmia (Arrhy.), and
Congestive Heart Failure (CHF) volume overload,
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Input features Age, Systolic Blood Pressure, Diastolic
Blood Pressure, Oxygen Saturation, Temperature in Cel-
sius, Proton Pump Inhibitor, Alert, Voice, Pain, Unrespon-
sive Scale (AVPU), Albumin, Alkaline Phosphatase, An-
ion Gap, Total Bilirubin, Blood Urea Nitrogen, Blood
Urea Nitrogen to Creatinine Ratio, Calcium, Chloride, Car-
bon Dioxide, Creatinine , Serum Glucose, Hemoglobin,
Platelet Count, Potassium, Serum Glutamic-Oxaloacetic
Transaminase, Sodium, Total Protein, White Blood Cell
Count
Target prediction Sepsis, Arrhythmia, Congestive Heart
Failure (CHF) Volume Overload

Table 1: Raw clinical data features from the EHR for diagno-
sis prediction task.

with prevalence rates of 43.18% for Sepsis, 15.30%
for Arrhythmia, and 11.82% for CHF, respectively.
We used 5-fold validation on all 660 samples to
generate five distinct test sets. 2

Table 1 outlines the structured input features
from the cohort EHR dataset and target diagnoses
utilized in our analysis. The input features com-
prised a comprehensive set of clinical data points
including demographic information like age, vital
signs such as Systolic and Diastolic Blood Pres-
sure, and body Temperature, as well as a range of
serum laboratory tests including electrolytes, liver
function panel, renal function, red blood counts,
etc. These inputs served as predictors and are rele-
vant findings in making diagnoses like Sepsis, Ar-
rhythmia, and CHF. Despite its smaller sample size,
this EHR dataset includes physicians’ manual chart
reviews and carefully curated data, providing accu-
rate annotations for patient diagnoses.

3.2 Mortality and length-of-stay prediction
The MIMIC-III dataset, derived from the EHR of
the Critical Care Units (ICU) at Beth Israel Dea-
coness Medical Center, has been utilized exten-
sively in research (Johnson et al., 2016). Wang
et al. (2020) further developed an open-source
pipeline for extracting, preprocessing, and repre-
senting data from the MIMIC-III database, namely
MIMIC-Extract. This pipeline aggregates various
data types, such as tabular demographic data avail-
able at admission, vital signs with repeated mea-
sures, laboratory test results, time-varying inter-
vention signals, and prediction labels needed for
clinical tasks. MIMIC-Extract introduces two clini-
cal prediction tasks: mortality and length-of-stay
(LOS) predictions. The mortality prediction task

2For a more in-depth introduction to the dataset, we direct
readers to (Churpek et al., 2024b). Details about the demo-
graphic characteristics of the patients, including gender, age,
and race, are included in Appendix.

Diagnosis dataset Hospitalized patient of age [value] get-
ting worse has labs and vitals values of systolic blood
pressure [value] mmHg, diastolic blood pressure [value]
mmHg, oxygen saturation[value] %, body temperature
[value] celsius degree, ... total protein [value], white blood
cell [value]. What are the diagnoses for this patient?

MIMIC-Extract Hospitalized patient with lab and vital
signs available: in the past 24 hours, the observed alanine
aminotransferas values are [list of unique values sorted by
temporal order], albumin values are [list of unique values
sorted by temporal order], anion gap values are [list of
unique values sorted by temporal order]...Predict if the
patient mortality will occur in-hospital.

Table 2: The template for NARRATIVE serialization method
for diagnosis prediction dataset (top) and MIMIC-Extract
dataset (bottom).

uses tabular data from the first 24-hour window of
a patient’s ICU stay to predict mortality as a binary
classification task. The LOS prediction task, in
contrast, determines whether a patient’s stay will
exceed three (LOS 3) or seven days (LOS 7) based
on the same 24-hour data period. Importantly, to
avoid competing risk outcomes between death and
LOS, patients who died within the 3- or 7-day LOS
window were excluded from the LOS prediction.

We adopted the same data partitioning used
in (Wang et al., 2020), comprising 16,700, 2,394,
and 4,790 patient records for the training, develop-
ment, and testing sets. Each patient record includes
104 time-varying tabular data features. More de-
tailed demographic information can be found in the
MIMIC-Extract study (Wang et al., 2020). The
labels in the MIMIC-Extract dataset are highly
skewed, with positive label distributions of 42.82%
for LOS 3, 7.66% for LOS 7, 10.27% for Mort
Hosp, and 7.10% for Mort ICU.

Dataset Size Average input tokens

Diagnosis 660 346.97 ± 2.21
MIMIC-Extract 23,884 1829.57 ± 497.02

Table 3: Dataset description

4 Methods and Experiment Setup

Figure 2 illustrates the study overview and experi-
ment setup. We began with a patient’s tabular data
input, represented using the Pandas DataFrame data
structure (raw data). This raw data was converted
to text using four distinct conversion methods, de-
tailed in §4.1, and LLM encoded the converted text,
with the last hidden states extracted to generate em-
bedding features (§4.2). These embeddings were
subsequently used to train various ML classifiers
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on two datasets for binary prediction tasks.
We started with zero-shot, off-the-shelf LLMs

for experiments (§4.3). We then investigated the
impact of prompt-engineering techniques and few-
shot learning configurations on the embeddings
and subsequent predictions (§4.4). An initial inves-
tigation was also conducted to assess the effects
of parameter-efficient fine-tuning on LLM embed-
dings for ML tasks, focusing on two of the models
(§4.5).

As baselines, we included traditional ML classi-
fiers trained directly on raw tabular data inputs. To
benchmark the effectiveness of LLM embeddings,
we used randomly initialized embeddings of the
same size as the LLM-generated embeddings.

4.1 Table-to-text conversion
We employed four different methods to convert
EHR tables into input formats for LLMs: NAR-
RATIVES, JSON, HTML, and MARKDOWN. NAR-
RATIVES provide a continuous text description of
patient data, offering context and readability simi-
lar to clinical notes (Yu et al., 2023). JSON struc-
tures the data hierarchically, making it easy to parse
and interpret programmatically (Zhao et al., 2023).
HTML format leverages web-based structures to
present the data with tags (García-Ferrero et al.,
2024). MARKDOWN offers a lightweight markup
language that provides formatting while remaining
readable in plain text (Zhao et al., 2023).

Table 2 includes two NARRATIVES templates
used to format these varied clinical measurements
into a standardized query. These templates detail
the format in which data from the EHR dataset
are presented, integrating both laboratory results
and vital signs into a single descriptive snapshot of
a patient’s current state. Each placeholder in the
template is populated with actual data points from
patient records, facilitating the transformation of
tabular EHR data into a format suitable for LLM
input, from which we then generate embeddings.

The primary distinction between the templates
for the diagnosis prediction dataset and the MIMIC-
Extract dataset lies in the types of values incor-
porated. For diagnosis prediction, data are values
collected immediately before the early warning sys-
tem triggers for clinical deterioration. In contrast,
MIMIC-Extract tasks include laboratory and vital
signs data from the 24 hours prior to the event. We
extracted all unique values observed during the first
24 hours of ICU admission in chronological order,
compiling these into a list format. If a feature has

no observations, it is omitted, resulting in variable
length sequences.

4.2 Embedding extraction methods
This section introduces the methods used to con-
vert input text to fixed-size vector for ML input.
We focused on the last hidden states of LLMs (as
in (Lu et al., 2021)), and employed three different
embedding extraction methods: Max Pooling cap-
tures the most salient features by taking the maxi-
mum value across all token embeddings for each
dimension (Bao et al., 2023); Mean Pooling com-
putes the average value of the token embeddings,
providing a balanced representation reflecting the
overall content (Ram et al., 2023); Last Token
uses the embedding of the last token as the repre-
sentation, capturing the concluding context or final
summary (Shani et al., 2023; Fu et al., 2023). We
included embeddings extracted from first token as
a reference point despite it is not ideal due to the
nature of decoder-only models.

Our choice of ML classifiers comprised two tree-
based methods and a linear model to provide a
comprehensive assessment of various predictive
approaches. Specifically, we utilized eXtreme Gra-
dient Boosting (XGB) (Chen and Guestrin, 2016)
and Random Forest (RF) (Breiman, 2001) as our
tree-based classifiers due to their robustness and ef-
ficiency in handling diverse datasets with accuracy.
Additionally, Logistic Regression with regulariza-
tion (LR) as our linear model was chosen for its
effectiveness in preventing overfitting via Ridge
and Least Absolute Shrinkage and Selection Opera-
tor regularization (Zou and Hastie, 2005). Together,
these classifiers form a balanced baseline setup that
caters to both non-linear and linear decision bound-
aries in our data.

4.3 Selection of LLMs
We assessed a mix of general-domain models
and models trained on medical text. Three
widely-used, general-domain LLMs that have
been instruction-finetuned are Mistral-7B-Instruct-
v0.1 (Jiang et al., 2023), Llama2-13B-Chat-hf,
Llama2-70B-Chat-hf (Touvron et al., 2023), and
Llama3-8B-Instruct (LLaMa, 2024). These mod-
els are compatible with one Nvidia 80GB A100
GPU, making them popular choices among avail-
able LLMs. For the domain specific LLM, we se-
lected Meditron-7B (Chen et al., 2023), a Llama2-
7B based model continuously pretrained on medi-
cal text. We also included ClinicalBERT (Alsentzer
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et al., 2019), pre-trained on MIMIC EHR text, rep-
resenting encoders pre-trained on clinical text base-
line compared to decoder-only LLMs.

4.4 Prompt design and few-shot learning
Because the majority of LLMs we tested are
instruction-tuned and require varying input formats,
we utilized the chat templates to ensure proper
integration of input data (Zheng, 2024). In our
study, the default setting involves including only
the task-relevant question (shown on the right side
of Fig 2) in the system message and the converted
EHR data in the user input, without additional
system instructions, predefined personas, or other
context. Given that instruction-tuned LLMs are
known to be sensitive to system instructions, we
designed four system instructions that vary by per-
sona (medical professional, AI system), tasks (assess pa-

tients, generate embeddings for ML classifiers), thinking
style (chain-of-thoughts), and question type (general as-

sessment, binary question), enabling us to explore the
influence of prompt characteristics on the embed-
dings. All prompts were paraphrased for better
perplexity scores, following prompt optimization
strategies (Gonen et al., 2023; Lu et al., 2023).

Two few-shot settings were explored besides
zero-shot prompt engineering. We generated syn-
thetic data for diagnosis prediction, by prompting
GPT-4 to generate values based on the attribute
names in Table 1. For each target diagnosis, GPT-4
generated one example confirming the diagnosis
(positive) and one example negating it (negative).
Moreover, GPT-4 was asked to generate CoT ex-
planations identifying abnormal values and their
clinical significance. An expert physician and clini-
cal informaticist reviewed these synthetic data pairs
for quality assurance. The complete set of prompts
are presented in Table 8.

4.5 Parameter efficient fine-tuning
While our paper primarily focuses on evaluating
zero-shot LLMs for numerical feature representa-
tion, we included a parameter-efficient fine-tuning
experiment to suggest future directions for improve-
ment. We employed QLoRA (Dettmers et al., 2024)
on Mistral-7B-Instruct and Llama3-8B-Instruct, us-
ing the MIMIC-Extract dataset due to its larger
training set compared to the diagnosis dataset. We
trained Mistral with a sequence classification head
on top, saving checkpoints with the lowest valida-
tion loss. Based on validation performance, we
optimized the (q, k, v, o) layers with r = 16, a

learning rate of 3e-5, and a LoRA dropout of 0.1.
Each model was trained for 3 epochs with early
stopping to prevent overfitting.

4.6 Experiment setup

We used a 5-fold cross-validation on the diagnosis
dataset (660 patient records), resulting in 528 pa-
tients for training and 132 for testing per fold. For
mortality and LOS prediction tasks from MIMIC-
Extract data, we followed the data split from (Wang
et al., 2020). We evaluated performance using Area
Under the Receiver Operating Characteristic (AU-
ROC) with 95% confidence intervals (CI).

For all ML classifiers, we determined the best pa-
rameters through grid search on the validation set.
Specifically, we tuned the number of estimators,
maximum depth, learning rate, and minimum child
weight for XGB classifiers, and alpha and L1 ra-
tio for LR classifiers (see Appendix E). For LLMs
under 13B, the maximum input length was 1042
for the diagnosis dataset and 3076 for the MIMIC
dataset, resulting in a 4096-dimensional embed-
ding. For 70B LLM, the max input length was
1500 and 4-bit quantization was set to avoid GPU
memory errors, producing an 8192-dimensional
embedding. All experiments ran on an Ubuntu
server with an Nvidia 80GB A100 GPU.

5 Results

5.1 Main results for diagnosis prediction

Table 4 presents AUROC scores for predicting Sep-
sis, Arrhythmia, and CHF with different ML mod-
els, demonstrating the effects of using LLM em-
beddings compared to raw data features. XGB with
raw data features stood out in the baseline, demon-
strating the highest AUROC for Sepsis and Ar-
rhythmia, and the highest average AUROC across
all diagnoses. LR and RF, while using raw data
input, showed moderately lower effectiveness.

For LLM embeddings with zero-shot setting, we
observed performance gain over a randomly initial-
ized embedding approach into XGB with substan-
tial gains in all decoder LLMs. ClinicalBERT was
the only model, as an older pre-trained encoder,
that did not show notable performance gains over
the randomly initialized embedding model. Further,
Mistral embedding with XGB classifiers achieved
a competitive AUROC of 71.12 (vs. 71.16 of raw
data with XGB). Llama2-13B scored an AUROC of
58.54 on CHF prediction, the best among all mod-
els. This demonstrates that LLM embeddings can
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Model Sepsis AUROC Arrhythmia AUROC CHF AUROC Average
(95% CI) (95% CI) (95% CI) (95% CI)

Raw Data Features Baseline

LogisticRegression 71.10 (67.01, 75.18) 74.40 (69.35, 79.56) 54.79 (47.74, 61.79) 66.76 (61.37, 72.18)
RandomForest 65.26 (61.79, 68.48) 53.07 (50.58, 55.80) 50.89 (49.01, 53.43) 56.41 (53.79, 59.24)
XGB 71.17 (67.06, 75.11) 76.49 (71.32, 84.13) 58.47 (51.36, 65.15) 68.71 (63.25, 74.80)

LLM embedding + XGB classifier

Random 54.01 (49.89,58.44) 49.65(44.02,54.62) 50.02 (47.13, 52.29) 51.22 (47.01, 55.19)
Mistral-7B-Instructbest 71.12 (67.54, 74.92) 68.00 (61.52, 73.93) 51.80 (44.48, 58.65) 63.40 (57.73, 68.77)
Llama3-8B-Instructbest 63.84 (57.31, 69.87) 71.08 (65.69, 75.87) 63.84 (56.77, 70.37) 66.25 (60.15,72.35)
Llama2-13B-chat-hfbest 66.02 (61.64, 70.32) 58.62 (52.62, 64.46) 49.69 (48.83, 62.58) 58.11 (54.36, 65.79)
Llama2-70B-chat-hfbest 68.57 (63.88, 71.53) 69.15 (67.08, 71.17) 53.87 (49.83, 58.52) 63.86 (60.93, 67.07)
Meditronbest 66.74 (62.30, 66.15) 72.26 (65.28, 77.43) 58.11 (50.64, 64.48) 63.90 (58.28, 65.45)
ClinicalBERT 58.80 (54.44, 63.04) 64.91 (61.84, 70.27) 49.67 (41.94, 57.51) 57.79 (52.74, 63.11)

LLM embedding + Logistic Regression classifier

Random 49.58 (47.68, 51.12) 49.22 (48.09, 50.43) 49.36 (47.12 51.06) 49.39 (47.63, 50.87)
Mistral-7B-Instructbest 62.61 (58.17, 66.95) 69.59 (64.67, 74.71) 48.98 (42.96,55.62) 60.39 (55.27, 65.76)
Llama3-8B-Instructbest 66.54 (62.32, 70.62) 70.22 (64.82, 74.11) 63.52 (55.91,69.20) 66.76 (61.50, 72.02)
Llama2-13B-chat-hfbest 66.95 (62.82, 70.88) 66.04 (60.04, 71.22) 58.54 (52.09, 65.09) 63.84 (58.32, 69.06)
Llama2-70B-chat-hfbest 69.50 (65.37, 73.43) 68.11 (61.75, 70.57) 62.72 (56.47, 68.39) 66.78 (61.20, 70.80)
Meditronbest 66.91 (62.83, 71.09) 68.61 (63.49, 73.72) 57.60 (51.02, 63.89) 64.37 (59.11, 69.90)
ClinicalBERT 47.28 (43.07, 51.63) 44.62 (38.79, 50.29) 46.98 (42.96, 55.62) 46.29 (41.61, 52.51)

Table 4: Comparing raw data features and LLM embeddings features for ML classifiers on Diagnosis dataset. We report the
best AUROC scores from LLM embedding across various embedding extraction and table-to-text conversion methods. The
“Random” row indicates the randomly initialized embedding input. For ClinialBERT, we used [CLS] token embedding as the
final representation. We use green color to highlight the LLM+ML results where it has CI overlapping with the best results (in
bold fonted text).

match or nearly match the performance of models
trained with raw data inputs.

5.2 Main results for mortality prediction and
length-of-stay

Figure 3: Accuracy (left) and AUROC (right) for in-ICU mor-
tality (mort ICU), in-Hospital mortality (mort Hosp), hospital
LOS exceeding 3 days (LOS 3) and 7 days (LOS 7). The Lo-
gistic Regression (LR) and Random Forest (RF) baselines are
reported from (Wang et al., 2020). The LLM results are from
LLM embeddings + XGB settings. The CIs mostly overlap;
for clarity in presentation, they were omitted from this figure.

Figure 3 displays performance for various mod-
els on tasks of in-ICU mortality (mort ICU), in-
hospital mortality (mort Hosp), and hospital length-
of-stay for more than 3 (LOS 3) and 7 days (LOS
7). The raw data features with XGB model con-
sistently outperforms others with an AUROC of
92.02 in mort ICU and 89.83 in mort Hosp. LLM

embeddings from Mistral, Llama3-8b, and Med-
itron, while slightly lagging behind the raw data
features with ML classifiers in the mortality tasks,
performed comparably in the LOS 7 tasks. Mistral
with XGB achieved accuracy of 92.34 and AU-
ROC of 72.36 on LOS 7 task, showing competitive
performance to XGB with raw data features, with
accuracy of 92.32 and an AUROC of 76.93. The
gap between LLM embeddings and raw data for
mortality and LOS tasks suggests a need to improve
time-varying feature representation.

5.3 Comparisons across different embedding
methods and data conversion methods

Figure 4 presents AUROC values for different
embedding methods and data conversion formats
across three models: Mistral, Meditron, and
Llama3-8b. Max pooling achieves the highest per-
formance for Mistral (64.62) and Meditron (62.54),
while mean pooling is most effective for Llama3-
8b (64.69). The last token method yields moder-
ate performance across all models, with AUROCs
around 57, while first token embeddings result in
the lowest AUROC values, indicating a less effec-
tive representation for these models.

When encoding data with different formats, Mis-
tral shows preference for NARRATIVES, JSON, and
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Figure 4: Comparison across different embedding methods
and different format on the Diagnosis dataset. For simplicity,
we used NARRATIVE and max pooling for the other analysis
after this section.

HTML. The MARKDOWN format generally yielded
the lowest performance across the models, particu-
larly for Mistral. JSON and HTML formats showed
competitive performance, with JSON being slightly
more effective for Meditron and Llama3-8b. No-
tably, Llama3-8b exhibited the highest variability
across formats, with AUROCs ranging from 57.40
(HTML) to 66.13 (NARRATIVES).

5.4 Impact of prompt engineering and
few-shot learning

We compared performance of Mistral and Llama3
using different system instructions under zero-shot
and few-shot settings, as well as CoT examples.
Mistral, under 0-shot with a system instruction with
persona of medical professional and the task of as-
sessing patient condition (prompt 1 in Table 8),
achieved an AUROC of 71.35 on Sepsis prediction,
the highest of all models. Llama3 with zero-shot
prompting using prompt 1 in Table 8 showed re-
ported AUROC of 73.51 on Arrhythmia, surpass-
ing its counterpart at 71.08 but still below raw data
XGB baseline (76.49). CoT and few-shot exhibited
various performance and often resulted in lower
AUROC scores compared to Table 4. Full results
are provided in Appendix C.

5.5 Parameter efficient fine-tuning results
Table 5 presents results of Mistral and Llama3-
8b under the QLoRA across all four tasks from
MIMIC-Extract. The performance drops are no-
ticeable, especially in the two mortality predictions.
To further understand the reason behind the perfor-
mance drops, we plotted the confusion matrices for
LOS 3 and Mort ICU, comparing Mistral’s predic-
tions before and after QLoRA in Figure 5. For LOS
3 prediction, the Mistral model with QLoRA shows
an increase in true negatives and a decrease in false

Setting LOS 3 LOS 7 Mort Mort
ICU Hosp

Mistral 67.84 72.36 84.16 80.71
MistralQLoRA 65.26 67.66 75.69 73.66

Drop∆ 2.58 4.70 8.47 7.05

Llama3 68.54 70.38 85.61 83.06
Llama3QLoRA 66.69 68.56 75.14 71.15

Drop∆ 1.85 1.82 10.47 11.91

Table 5: AUROC comparison before and after training
LLM (Mistral-7B-Inst and Llama3-8B-Inst) with QLoRA on
MIMIC-Extract tasks.

Figure 5: Confusion matrices for Mistral prediction on LOS
3 and Mort ICU tasks. Right: Mistral without QLoRA; left:
Mistral after QLoRA.

positives. However, the false negatives rises from
1133 to 1473, and true positive drops from 918 to
578. On the Mort ICU task, the Mistral model with
QLoRA correctly predicts no false positives, but
it fails to predict any positive cases (0 true posi-
tives). The performance drop can be attributed to
the imbalanced class distribution in the dataset, as
the models show a tendency to favor the majority
class (negative cases). During QLoRA, the LLM
might learn the class prevalence, biasing its rep-
resentation and making it challenging to correctly
identify the minority class.

5.6 LLM Embedding vs LLM Generation

The final experiments compare the performance of
LLM embeddings combined with ML classifiers
against direct outputs from LLMs. This compar-
ison shows that, although LLM embeddings gen-
erally do not outperform raw data features, they
offer a more robust and reliable solution than rely-
ing on LLMs to directly answer Yes or No ques-
tions. Our exploration revealed significant limita-
tions in LLM generation for binary prediction tasks.
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Figure 6: AUROC comparison between Raw data, embed-
dings from Mistral and Meditron with XGB classifiers, by
controlling the training set size on two MIMIC tasks.

For instance, Mistral frequently predicted ’Yes’ for
sepsis, arrhythmia, and CHF AORC, resulting in
AUROC scores being 50, whereas LLM embed-
dings achieved AUROCs of 71.12 for sepsis, 72.26
for arrhythmia, and 63.54 for CHF AUROC. Simi-
lar patterns were observed from Llama3-8b results
(Table 12). On MIMIC-Extract tasks with highly
skewed class distributions, Mistral and Llama3-
8b, when generating direct Yes/No answers, again
showed reduced ability to discriminate between
positive and negative cases (Table 13). These find-
ings underscore the need for embeddings, which
provide a more nuanced and effective approach
for clinical predictions. We refer readers to Ap-
pendix D for more details.

6 Discussion

To understand the discrepancy between the two
data representations, we examined the training ef-
fectiveness of raw data features and LLM embed-
dings by controlling the training set size. Figure 6
compares the performance of the raw data XGB
baseline model with the Mistral and Meditron em-
beddings across different training set sizes for two
tasks in the MIMIC dataset. The raw data XGB
baseline model shows a significant increase in AU-
ROC scores with larger training sets, achieving
high performance. In contrast, both the Mistral and
Meditron embeddings paired with XGB models
exhibit much smaller improvements, consistently
performing lower than the raw data XGB baseline.
This highlights the greater effectiveness of XGB
when learning from raw data features compared to
LLM embeddings for these prediction tasks.

Our findings suggest that raw data features pro-
vide more informative input for ML models com-
pared to LLM-generated embeddings. While LLM
embeddings capture complex representations, they
may not be as tailored for binary medical predic-

tion tasks. Additionally, computing efficiency is an
important consideration, as LLMs require signifi-
cantly more GPU memory than raw data features.
For instance, training XGB with raw data features
used less than 1000 megabytes of GPU memory,
whereas encoding input to LLM embeddings re-
quired between 1500 megabytes (in zero-shot set-
tings) and over 8000 megabytes per sample, with
even higher usage for longer inputs, such as those
from MIMIC-Extract.

However, zero-shot LLM embeddings achieve
comparable performance in certain scenarios, high-
lighting their potential for rapid deployment with-
out extensive training. A promising direction is
distilling these embeddings into a smaller space
while retaining their extensive knowledge (Lee
et al., 2024). BehnamGhader et al. (2024) recently
proposes LLM2Vec, a method to train decoder-only
LLMs as text encoders with unsupervised training,
which merits further investigation.

7 Conclusion

We present the first analysis of LLM embeddings
for numerical EHR data features in medical ML ap-
plications, showing the opportunity and challenges
of using LLM embeddings as a substitute of raw
data features. We hope to encourage future research
on improving LLM embeddings, particularly for
imbalanced label prediction, and advancing health
predictions with multi-modal data, while address-
ing interpretability and bias.

8 Limitation

In our study, we focused on investigating some
of the most common LLMs, including Meditron,
Mistral, Llama2, and Llama3. Due to GPU con-
straints, some experiments, such as Qlora, were
conducted on only one or two models, limiting the
comprehensiveness of our analysis. We did not
include black-box LLMs via API because, despite
using fully de-identified data, both EHR datasets
are protected under Data Use Agreement, restrict-
ing us sharing with third parties. Additionally, we
acknowledge that we did not explore all possible
methods of prompting LLMs, which may have in-
fluenced our results. Furthermore, our examination
was restricted to the last layers of the LLMs, poten-
tially overlooking valuable information encoded in
other layers.

Regardless of these limitations, our findings are
consistent across models: zero-shot LLM embed-
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dings paired with machine learning classifiers gen-
erally underperform compared to raw data features,
though they sometimes achieve comparable perfor-
mance.

9 Ethical Statement

Following the ACL’s ethical review guidelines, our
study on leveraging LLMs for medical diagnosis
within EHR emphasizes ethical integrity by priori-
tizing harm avoidance, privacy protection, fairness,
transparency, and respect for intellectual property.
While our research aims to advance medical di-
agnostics through LLMs, there is a potential risk
that misinterpretations of model predictions could
inadvertently lead to diagnostic errors or bias in
clinical decision-making. Therefore, rigorous vali-
dation protocols, including expert medical review
and bias detection mechanisms are needed to en-
sure that model predictions are both accurate and
equitable across diverse patient populations.

We have rigorously ensured data de-
identification, obtained ethical approvals,
actively mitigated biases, and maintained openness
in our methodologies and findings to uphold
honesty and reproducibility. Our commitment
extends to respecting intellectual property through
proper attribution and license adherence, with
the overarching goal of contributing positively
to healthcare outcomes and societal well-being.
This approach underscores the importance of
robust, secure research practices in developing
computational tools for healthcare, aligning with
our ethical responsibility to advance the field for
the public good.
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A Diagnosis Prediction Dataset Patient
Demographics

Group Distribution

Total 660 Patients
Gender Male (52%), Female (48%)
Ages Adults (36%), Geriatric (64%)
Race White\Caucasian (89%), Black\African

American (6%), Asian\Mideast Indian
(2%), American Indian\Alaska Native
(1%), Pacific Islander\Hawaiian Native
(<1%) , Declined\Unknown (<1%)

Table 6: Patient demographic description of diagnosis pre-
diction dataset. Note that in this work, we exclude the demo-
graphic information from ML input.

B Probing LLMs for Inherent Knowledge
of Normal Ranges

A foundational question for using LLM embed-
dings for numerical data representation is whether
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they possess inherent knowledge about the normal
range of values for clinical data. To assess this, we
first asked the LLMs about standard physiological
ranges, measurement units, and reasoning from the
feature set of tabular data outlined in Table 1. A
board-certified physician assessed the LLM gen-
erations using a 1 to 5 Likert scale across three
dimensions: correctness of the range, accuracy of
measurement units, and quality of explanations
("Reasoning"). Our probing experiments were con-
ducted on Mistral and Llama2-13b, as these are
general-domain LLMs that have been fine-tuned
to follow instructions. This experiment was done
prior to the release of Llama3 models, therefore
we did not include them. We did not employ auto-
mated metrics because there is no single set of ref-
erence ranges for some features, as they are highly
dependent on patients’ ages, sex, and other demo-
graphic factors.

In our exploration of language model capabilities
within the healthcare domain, we specifically probe
the model’s understanding of standard ranges and
measurement units for EHR data features. The
following table illustrates Mistral’s performance on
tasks designed to evaluate its ability to accurately
identify and articulate the normal physiological
ranges and corresponding units for 24 distinct EHR
features. This assessment not only tests the model’s
grasp of medical terminology and concepts but also
its potential application in clinical settings where
precise knowledge of such parameters is crucial.

C Prompt Design

To test the impact of prompt engineering on LLM
embeddings, we designed four distinct prompts,
varying by persona, thinking style, and question
types. Our prompt engineering strategy builds on
prior work that utilizes perplexity to select opti-
mal prompts (Gonen et al., 2023). Initially, we
crafted meta-language prompts delineating clinical
scenarios and tasks. We then employed GPT-4, a
state-of-the-art LLM, to generate five paraphrases
for each prompt to capture a range of expressions.
We evaluated each paraphrase’s naturalness and
fluency by calculating its perplexity score, select-
ing the most coherent paraphrase for each scenario
for our experiments. The optimized prompts are
detailed in Table 8.

We also used these prompts in few-shot experi-
ments. Given the complexity of the MIMIC-Extract
dataset, which includes 104 features with data col-

Question: What is the reference range for the Pulse Pres-
sure Index?
Reference: 0.1, 1
LLM (Mistral): The reference range for Pulse Pressure
Index (PPI) is not a commonly used vital sign or lab re-
sult label. It measures the ratio of the pulse pressure to
the systolic blood pressure, used to assess cardiovascular
risk. The PPI is typically reported as a percentage, with a
normal range being less than 10%. However, the specific
reference range may vary by population and clinical con-
text. It is important to consult healthcare professionals for
personalized PPI interpretations.
Physician Evaluation (Range, Unit, Reasoning): 3, 5, 5

Question: What is the reference range for Serum Carbon
Dioxide Level?
Reference: 22, 29 mmol/L
LLM (Mistral): The reference range for serum carbon
dioxide (CO2) level is typically between 21 to 29 mil-
limoles per liter (mmol/L) for serum measurements, or 2.5
to 3.5 mmol/L for arterial blood gas (ABG) measurements.
Note that CO2 level units are mmol/L or ppm, and the
range may vary by laboratory or tested population.
Physician Evaluation (Range, Unit, Reasoning): 5, 4, 2

Table 7: Mistral’s probing output examples for Normal
Ranges and Units of EHR data features

lected over 24 hours, creating high-quality syn-
thetic data is challenging. Thus, we focused our
efforts on the diagnosis prediction use case, which
involves simpler inputs of twenty-four clinical fea-
tures, facilitating quality control over the synthetic
data generation.

As illustrated in Figure 2, we used GPT-4 to cre-
ate synthetic data depicting patient cases of clinical
deterioration with features in Table 1. This data set
includes both positive and negative diagnosis cases,
which were reviewed by an expert physician and
clinical informaticist for quality assurance. Our
few-shot experiments varied in complexity: the
first modified Prompt 1 to include example input-
output pairs ("Simple" few-shot setting), while the
second added a CoT explanation detailing the di-
agnostic reasoning into Prompt 3. The CoT was
structured to identify and reason over abnormal
values to conclude diagnoses, enhancing the data’s
interpretability and educational value.

D Results of LLM Direct Generation

We tested the ability of Mistral and Llama3 to di-
rectly predict Yes or No answers to questions from
the Diagnosis and MIMIC-Extract datasets. To
achieve this, we added specific instructions direct-
ing the LLMs to respond only with "Yes" or "No,"
then parsed the outputs to 1 or 0 labels and com-
puted AUROC and Accuracy. For this experiment,
we set the maximum token limit to 25 and the top
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Prompt Description

Prompt 1 -Persona: Medical Professional As a healthcare provider, please assess the patient’s condition provided below and
outline the likely causes or diagnoses for their clinical worsening. List only the diagnoses and keep your response brief.
Prompt 2 -Persona: AI System You are an AI with medical expertise. Create an embedding for the probable problems or
diagnoses that are causing clinical deterioration, based on the patient’s condition detailed below, to aid in training a diagnostic
prediction machine learning classifier. Be brief in your description.
Prompt 3 -Persona: Medical Professional (Chain-of-Thought) As a medical expert, please examine the patient’s condition by
first identifying any abnormal values. Next, critically analyze these values to assess their impact, and clearly state your final
diagnosis regarding what might be causing the clinical deterioration. Keep your summary brief.
Prompt 4 -Persona: Medical Professional (Binary Question) You are a medical doctor. Based on the patient’s condition,
determine the likelihood that diagnosis X is causing their clinical deterioration. Be aware that diagnosis X occurs in Y% of
similar cases.

Table 8: System prompts for medical diagnosis assistance with different persona settings.

Model Setting AUROC CI (%)

Mistral-7b-instruct sys1 54.85 [48.18, 62.11]
sys2 53.88 [47.37, 60.67]
sys3 51.16 [44.34, 57.67]
sys4 54.04 [46.84, 61.56]

Fewshot 54.43 [46.62, 61.05]
CoT 57.96 [60.72, 69.24]

Llama2-13b-chat sys1 56.49 [49.90, 63.09]
sys2 55.61 [48.43, 62.31]
sys3 50.41 [43.19, 57.33]
sys4 60.24 [53.28, 67.09]

Fewshot 53.12 [46.38, 59.84]
CoT 54.10 [51.84, 60.59]

Llama3-8b-instruct sys1 52.81 [46.47, 59.21]
sys2 51.11 [44.64, 57.27]
sys3 49.03 [42.19, 55.74]
sys4 55.23 [48.28, 61.79]

Fewshot 53.24 [46.60, 59.99]
CoT 51.44 [48.58, 53.77]

Table 9: AUROCs for various models and settings on CHF
Volume Overload prediction.

k to 50.
Table 12 presents results of Mistral directly gen-

erating "Yes/No" answers for the Diagnosis dataset.
For all tasks (Sepsis, Arrhythmia, CHF), Mistral
achieved an AUROC of 50.00, indicating no dis-
criminatory ability. Accuracy varied across tasks,
with Sepsis at 43.18%, Arrhythmia at 15.30%, and
CHF at 11.82%, corresponding to the positive class
distribution, demonstrating poor performance in
direct prediction. Llama3 exihibited similar perfor-
mance: it reported AUROC scores between 47.12
(Arrhythmia) to 50.28 (Sepsis), underperforming
its embedding counterparts reported in Table 4. Ad-
mittedly, extra effort in prompt engineering and pa-
rameter searching could improve direct generation
results. However, compared to their embedding +
ML classifier counterparts in the same zero-shot
setting and input format (NARRATIVES, without
additional system instructions such as personas),
their performance is significantly lower.

Model Setting AUROC CI (%)

Mistral-7b-instruct sys1 62.27 [56.47, 67.67]
sys2 63.84 [58.06, 69.31]
sys3 64.92 [58.98, 70.05]
sys4 66.11 [60.20, 71.52]

Fewshot 68.43 [62.82, 73.98]

Llama2-13b-chat sys1 69.24 [63.52, 74.84]
sys2 61.90 [56.04, 67.63]
sys3 61.44 [56.35, 66.68]
sys4 64.43 [58.63, 69.95]

Fewshot 67.74 [62.35, 73.22]

Llama3-8b-instruct sys1 71.12 [65.91, 76.05]
sys2 72.13 [66.12, 77.88]
sys3 70.24 [64.94, 75.58]
sys4 73.51 [68.09, 78.54]

Fewshot 73.10 [67.29, 78.18]

Table 10: One Time AUROC and Confidence Intervals for
various models and settings on Arrhythmia prediction. Scores
are multiplied by 100.

On the MIMIC-Extract tasks, table 13 shows
the results of Mistral-7b-Instruct and Llama3-8b-
Instruct in directly generating "Yes/No" answers
for various tasks in the MIMIC-Extract dataset.
Both models demonstrated no discriminatory abil-
ity, with AUROC scores close to 50 for all tasks.
Accuracy varied, with notable high accuracy for
MORT ICU and MORT HOSP tasks, particularly
for Llama3-8b-Instruct (92.88% and 89.71%, re-
spectively). However, these high accuracy scores
likely reflect class imbalance rather than model
performance. The contrast between the LLM di-
rect prediction performance and LLM embedding
+ classifier performance further suggests that LLM
embeddings provide a more robust method.

E Parameter Grids for ML Classifiers

We conducted a comprehensive grid search
for hyperparameter optimization on two classi-
fiers: XGBoost (XGB) and Logistic Regression.
For the XGB classifier, the parameter grid in-
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Model Setting AUROC CI (%)

Mistral-7b-instruct sys1 71.35 [67.39, 75.73]
sys2 67.63 [63.53, 71.80]
sys3 65.67 [61.50, 69.78]
sys4 67.87 [63.29, 71.88]

Fewshot 67.32 [63.26, 71.20]
CoT 64.29 [60.72, 69.24]

Llama2-13b-chat sys1 68.79 [64.87, 72.59]
sys2 69.82 [65.66, 73.92]
sys3 68.92 [64.64, 73.09]
sys4 64.62 [60.40, 68.73]

Fewshot 66.49 [62.21, 70.59]
CoT 65.13 [62.30, 69.25]

Llama3-8b-instruct sys1 67.05 [62.96, 71.11]
sys2 66.07 [61.94, 70.28]
sys3 64.80 [60.74, 69.11]
sys4 66.81 [63.08, 70.90]

Fewshot 66.87 [62.90, 70.84]
CoT 62.12 [58.37, 66.96]

Table 11: AUROC Confidence Intervals for various models
and settings on Sepsis prediction. Scores are multiplied by
100.

Model Task AUROC Accuracy

Mistral-7b-instruct Sepsis 50.00 43.18
Arrythmia 50.00 15.30

CHF 50.00 11.82

Llama3-8b-instruct Sepsis 50.28 54.69
Arrythmia 47.12 73.63

CHF 47.61 77.12

Table 12: Results of Mistral and Llama3-8B directly
generating "Yes/No" to the Diagnosis dataset. To align
with the results reported for embedding+ML classifiers
settings, the LLMs are zero-shot, and no additional
system instructions are included in the chat template.

Model Task AUROC Accuracy

Mistral-7b-Inst LOS 3 49.72 56.05
LOS 7 49.86 87.93

MORT ICU 50.04 91.98
MORT HOSP 49.79 86.93

Llama3-8b-Inst LOS 3 50.73 57.24
LOS 7 50.10 92.29

Mort ICU 49.99 92.88
Mort Hosp 49.99 89.71

Table 13: Results of Mistral and Meditron direct gener-
ation of "Yes/No" to the MIMIC-Extract dataset

cluded nestimators set to [50, 100, 250, 500],
maxdepth ranging from [2, 5, 10, 15, 20],
learningrate values of [0.005, 0.01, 0.05, 0.1],
and minchildweight values of [1, 2, 3]. This ex-
tensive search aimed to identify the best combina-
tion of hyperparameters to enhance model perfor-
mance.

For the Logistic Regression classifier, we varied

Parameter Values
n_estimators 50, 100, 250, 500
max_depth 2, 5, 10, 15, 20
learning_rate 0.005, 0.01, 0.05, 0.1
min_child_weight 1, 2, 3

Table 14: Parameter grid for XGBoost (XGB) classifier.

Parameter Values
alpha 0.1, 0.5, 1.0
l1_ratio 0.1, 0.5, 0.9

Table 15: Parameter grid for Logistic Regression (LR).

alpha with values of [0.1, 0.5, 1.0] and l1ratio with
values of [0.1, 0.5, 0.9]. This grid search was de-
signed to fine-tune the regularization parameters to
achieve optimal balance between model complexity
and performance.

Grid-searching on XGB parameters took 25-40
minutes on GPU. On LR, it took about 25 minutes
to search for the best parameters. Training both
classifiers took less than 5 minutes, even on the
MIMIC-Extract dataset where there are more than
16000 samples.
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