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Abstract
Despite recent advancements in AI and NLP,
negotiation remains a difficult domain for AI
agents. Traditional game theoretic approaches
that have worked well for two-player zero-sum
games struggle in the context of negotiation
due to their inability to learn human-compatible
strategies. On the other hand, approaches that
only use human data tend to be domain-specific
and lack the theoretical guarantees provided by
strategies grounded in game theory. Motivated
by the notion of fairness as a criterion for op-
timality in general sum games, we propose a
negotiation framework called FDHC which in-
corporates fairness into both the reward design
and search to learn human-compatible negoti-
ation strategies. Our method includes a novel,
RL+search technique called LGM-Zero which
leverages a pre-trained language model to re-
trieve human-compatible offers from large ac-
tion spaces. Our results show that our method
is able to achieve more egalitarian negotiation
outcomes and improve negotiation quality.

1 Introduction

Recent advancements in AI and NLP have led
researchers to develop techniques to build au-
tonomous agents which can achieve human-level
performance in bargaining games such as Deal-or-
no-Deal (Sengupta et al., 2021). These techniques
can be separated into two broad categories: game
theoretic approaches and data driven approaches.

Game theoretic approaches to negotiation at-
tempt to build negotiation agents without observing
any human data. This class of algorithms is typi-
cally applied to two-player zero-sum games which
do not require agents to learn human-compatible
strategies in order to be successful (Silver et al.,
2018; Brown et al., 2020; Vinyals et al., 2019).
However, other classes of games such as negotia-
tion require cooperation with humans in order to
be successful (Bakhtin et al., 2022). As a result,
traditional game theoretic methods have failed to

achieve quality performance in the realm of negoti-
ation (Li et al., 2023).

Data driven approaches to negotiation learn a
human-like strategy directly using data on a spe-
cific negotiation domain (Verma et al., 2022; Lewis
et al., 2017; He et al., 2018). Unfortunately, col-
lecting human data is expensive and the strategies
in the data may not effectively generalize to other
negotiation domains. Furthermore, these methods
lack the desirable properties that game theoretic
methods offer such as controllability.

We propose an approach which bridges game the-
oretic and data driven approaches called Fairness-
Driven Human-Compatible (FDHC) bargaining.
This method is designed to target egalitarian out-
comes, specifically the Egalitarian Bargaining Solu-
tion (EBS), which we use as a formal notion of fair-
ness (Kalai, 1977). We target fair outcomes as prior
work has shown that fairness is a key component
of human strategies and has also served as a useful
notion of optimality in general-sum repeated games
(Tossou et al., 2020; DiGiovanni and Zell, 2021;
Kroll et al., 2014). Our fairness-targeting strategy
is learned with a novel LLM-Guided Monte Carlo
tree search with Zero domain specific training data
(LGM-Zero). LGM-Zero leverages the reasoning
capabilities of LLM models (Kwon et al., 2023)
to extract human-like negotiation offers from large
action spaces without the need to collect additional
human data. A value model trained via self-play
then selects the best offer that the LLM proposes.
The LLM and value model are used to guide a
Monte Carlo tree search (MCTS) towards the de-
sired outcome given by FDHC (Figure 1).

We say that an action/strategy is “human-
compatible” if a human would take a similar action
or apply a similar strategy if placed in the same
scenario. For example, in a situation where partici-
pants are negotiating over an item worth thousands
of dollars, it would not be human-compatible for
our model to offer a price down to the granularity
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of individual cents. Since humans tend not to do
that when negotiating over items worth such large
amounts. However such an offer would be per-
fectly valid from a game theoretic standpoint. We
use the terms human-like and human-compatible
interchangeably.

We implement our method on a common negoti-
ation exercise used in business classes where two
students bargain over a used car. We train a model
to play as the seller in this scenario. Both the buyer
and seller are given private reservation prices for
the car that they cannot go beyond during the nego-
tiation. For example, suppose the buyer can’t buy
the car for above $11K and the seller cannot sell it
for below $10K. The goal of our method is to reach
an agreement at the EBS solution for the game,
which in this case corresponds to the midpoint be-
tween the two reservation prices ($10,500 in the
example). While we implement our method for this
specific exercise, our approach generalizes to any
negotiation setting that can be modeled as a Nash
bargaining game. This encompasses any game in-
volving surplus division, including multi-party and
multi-issue negotiations.

Our final model uses a modular design where ne-
gotiation acts are selected according to the FDHC
framework. Strategies are then realized in natural
language using a LLM such as GPT-3.5 or GPT-4
(OpenAI, 2023). Our contributions can be summa-
rized as follows:

• We propose novel negotiation framework for
bargaining called FDHC. Our framework tar-
gets the EBS of Nash bargaining games in an
attempt to grant equal gain to both parties.

• We introduce a RL+search method called
LGM-Zero which utilizes a LLM and value
network to extract human-compatible offers
from large action spaces.

• Our results show that our method is able to
generate more egalitarian outcomes compared
to several baselines. Our human evaluation
also shows that our model is able to improve
negotiation quality while remaining compara-
ble to GPT-4 in human-likeness.

2 Background

The Nash bargaining game is a game in which
two or more players must divide a surplus between
themselves. In the used car example given previ-
ously, the surplus would be the difference between

the buyer and seller’s reservation prices. We use
the term extensive form Nash bargaining game
to refer to a game in which players can propose
divisions of the surplus over the course of a series
of time steps. A Nash equilibrium is a game state
in which no player can benefit from a unilateral
change in strategy.

Bargaining theory makes use of axioms which
are rules that describe properties that a bargaining
outcome satisfies (Nash, 1950). We make use of the
following axioms when analysing the theoretical
properties of our method. The axiom of symmetry
says that if the players in the bargaining game are
indistinguishable based on the description of the
game, then they should all receive the same pay-
off. A weak Pareto optimal solution is one where
any change to the outcome will make at least one
party no better off. Strong monotonicity states
that any increase in the amount of surplus being
bargained over should benefit all players involved
in the negotiation. Formal definitions can be found
in Appendix A.

Surplus division is the process of dividing some
commodity (often money) among a group of peo-
ple. A utility function measures the welfare or
satisfaction of a negotiator as a function of the
amount of surplus they receive. A disagreement
payoff is the amount of utility a negotiator receives
if the negotiators do not reach an agreement. A
reservation price is the minimum amount a seller
is willing to sell an item for. The converse holds
from the buyer’s perspective. This term is specific
to single-issue negotiation.

Action space refers to the set of all valid actions
available to an agent as it interacts with an environ-
ment. In the context of negotiation, this is the set
of actions available to participants in a negotiation.
A value network is neural network that takes in
a game state and outputs a scalar representing the
quality of the state.

3 Related Work

Prior work in the field of negotiation has typically
been centered on leveraging human data to learn ne-
gotiation strategies. These methods involve collect-
ing human-human dialogues for negotiation exer-
cises such as Craigslist bargaining (He et al., 2018)
or Deal-or-no-Deal (Lewis et al., 2017). This data
can then be used to perform supervised learning
or offline reinforcement learning on a negotiation
model (Verma et al., 2022; Zhan et al., 2024). More
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recent work has focused on examining and enhanc-
ing the negotiation capabilities of LLMs (Bianchi
et al., 2022; Schneider et al., 2023; Fu et al., 2023;
Xia et al., 2024). These methods use prompting
to create negotiation agents and rely on the zero-
shot/few-shot capabilities of LLMs to negotiate.

Data driven methods for negotiation are able
to learn human-like negotiation strategies as they
directly leverage human data. However they are
often overly tailored to one particular domain and
have a difficult time generalizing to other scenarios.
Furthermore, data driven strategies lack theoretical
guarantees such as convergence to a Nash equi-
librium is which is a desirable attribute for any
negotiation strategy.

Methods grounded in game theory are able to
provide the theoretical guarantees that data driven
methods lack. As a result they are much more con-
trollable and adapt better to different domains as
no additional data collection is needed for training.
However, training with no human involvement of-
ten results in strategies which are incompatible with
human play (Bakhtin et al., 2022). This has limited
work in the area primarily to two-player zero-sum
games such as chess where human-compatibility
is not needed to ensure robust play (Silver et al.,
2018). These methods are designed to ensure con-
vergence to a Nash equilibrium, which does not
necessarily result in a human-compatible strategy
(Section 5). The little work that has attempted to
apply game theoretic methods to the negotiation
domain tends to ignore the dialogue aspect of nego-
tiation, considering it to be "cheap talk“ (Li et al.,
2023). While the strategic aspect of negotiation can
be modeled independently of dialogue, dialogue
style has been shown to have a measurable effect
on negotiation outcomes (Noh and Chang, 2024).
Our method is designed to provide theoretical guar-
antees similar to game theoretic methods while
maintaining human-compatibility of data-driven
methods by leveraging the reasoning capabilities
of LLMs.

4 Method

In this section, we describe the FDHC framework
which prioritizes egalitarian outcomes. We also
describe LGM-Zero, which uses a value model
trained with self-play and language model as a pol-
icy network. Finally, we outline how we implement
our setup for single-issue distributive bargaining.

4.1 FDHC Negotiation Framework

FDHC is designed to work within the context of
the Nash bargaining game. Specifically, it is de-
signed for an extensive form Nash bargaining game
with imperfect information. In this game, players
repeatedly request some portion of a surplus, if the
sum of their requests at the end of the game is less
than or equal to the total surplus then they both
receive what they requested, if not they receive a
disagreement payoff d. FDHC works by decom-
posing this game in to a series of depth limited
subgames. These subgames are identical to the
original game, except they may be rooted at any
game history and only extend for a limited number
of actions in the future.

Before proceeding to our subgame, we make a
guess at the size of the resource pool to be split
and our opponent’s utility function over these re-
sources. The guess is made based on the history
of the game and any initial information we are pro-
vided before the game has begun. The specifics of
how we do this are domain-dependent and for many
games some of the information may be given. For
example, in the game Deal-or-no-Deal we know
the size of our resource pool but do not know our
opponents preferences over the pool. Conversely,
in distributive bargaining games we know our op-
ponents preferences but do not know the size of the
resource pool.

After making our guess, we root our subgame
at the corresponding belief state. This subgame is
treated as a perfect-information game and the EBS
is calculated as

E(S, d) = argmax
x∈I(S,d)

(min
i∈N

(xi − di))

where S denotes the bargaining set, I(S, d) is some
individually rational payoff set, and di, xi are the
disagreement payoff and payoff for player i, re-
spectively.

Our model then applies a strategy which targets
this solution using LGM-Zero, described in the
next section. We make moves according to this
strategy until the subgame concludes. This can be
as short as one move or as long as the entire game
depending on our choice of subgame length. We
then update our guess for the resource pool and
utility function based on our opponents moves and
transition to the next subgame. This process is
repeated until the game concludes.
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Figure 1: Outline of our FDHC negotiation framework. Our method consists of decomposing the extensive form
Nash bargaining game into a series of depth-limited subgames. At each subgame we calculate the EBS and apply a
human-like strategy which targets this outcome using a MCTS guided by a LLM and value network.

4.2 LGM-Zero
Now we describe LGM-Zero, which uses a MCTS
guided by a LLM and value network to perform ne-
gotiation actions. Under our setup the only model
we train is our value network which is trained via
self-play. We first describe how our method be-
haves during inference time and then describe the
process we use to train our value model.

4.2.1 Inference
Given the action history of a negotiation our algo-
rithm searches for the best response by repeatedly
performing selection, expansion, and backpropaga-
tion. We describe these stages next.

Selection During this stage we traverse the game
tree by selecting the action, a, with the highest up-
per confidence bound for its Q-value (Silver et al.,
2018), calculated as

U(s, a) = Q(s, a) + cp ∗
√∑

bN(s, b)

1 +N(s, a)

where s is the current game state, cp is a hyperpa-
rameter which controls the degree of exploration,
and N(s, a) denotes the number of times we have
taken the action previously. The selection process
is repeated until we reach a leaf node, which is a
defined as a state whose children have not been
explored yet (Świechowski et al., 2021).

Expansion In the expansion phase we feed a
LLM a prompt to suggest five good actions given
the current game state. The prompt used to gener-
ate actions must be engineered specifically for the
negotiation scenario the search is being applied to.
We treat all the actions as having equal probability

under the model and all other actions at the current
state to have a probability of zero. If one of the
actions results in a terminal state its value is set to
the reward returned by the state, otherwise it’s set
to the output of our value model. These values are
propagated back up the tree according to the next
step.

Backpropagation After expansion is concluded
we update each node along the search path by in-
crementing N(s, a) by one for each action taken
during the search. We also update the Q-values
along the search path as

Q(s, a)← Q(s, a) +
v(s)

N(s, a)

where v(s) is the value of the state we evaluated,
given either by our value model or the actual reward
value depending on if the state is terminal.

We repeat this search for n iterations then make
a move based on which child of the current state
has the highest Q-value.

4.2.2 Training
Our value model is trained using a method sim-
ilar to fictitious self-play (Heinrich et al., 2015).
Fictitious self-play is an iterative method for com-
puting an approximate Nash equilibrium. This is
done by performing self-play with a mixed strategy
that chooses between playing a best response to
our opponent’s strategy and the average strategy
for the current player. The fictitious self-play set
up traditionally learns the best response strategy
with a deep Q-network (Mnih et al., 2013) and the
average strategy via supervised learning.
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Prior work has suggested augmenting the best
response step with a MCTS (Zhang et al., 2019).
We adopt this approach and use the same search
process we use during inference time for the best
response strategy. To apply an average strategy we
once again leverage a LLM but instead of ranking
the offers with our value network, we simply have
it suggest one move.

The training data for the value model consists
of game states and outcomes for the depth limited
subgames described in the previous section. The
reward for each subgame, from the perspective of
player one, is given by

v(s) =

{
mini∈N (xi − di) if x1 ≥ E(S, d)

−mini∈N (xi − di) if x1 < E(S, d)

This reward says that if the payoff for player one
is greater than or equal to the EBS of the subgame,
then the reward is simply the EBS score for the
game state. If the player’s payoff is less than the
EBS then they receive the negative EBS score for
the game state. Our reward design reflects the fact
that humans care about a combination of fairness
and their own utility. Therefore our model will
target the EBS solution (which has the max reward
value) while also preferring outcomes that result in
better payouts for itself.

4.3 Implementation
We implement our proposed method for a single-
issue distributive bargaining exercise. This exercise
involves two parties negotiating over the price of
a used car and is used in graduate-level business
classes (see Appendix F for the scenario). The
buyer and seller are both given private reserva-
tion prices which they cannot go beyond during
the negotiation. In our scenario the seller cannot
go below a price of $12,500 and the buyer can-
not go above $13,500. The difference between
the reservation prices is the surplus for the game.
Our model is trained to act as the seller in this sce-
nario. We assume that our opponents are risk neu-
tral and have a disagreement payoff of $100. This
disagreement payoff is chosen based on experimen-
tal results which show that inefficient outcomes,
such as disagreements, are common in negotiation
(Feltovich and Swierzbinski, 2011; Ellingsen and
Johannesson, 2004) suggesting that many humans
may prefer to not reach a deal instead of agreeing
to a outcome which gives little payoff.

Our final design uses a modular framework
where the negotiation acts are extracted from user

responses using GPT-4. Our schema uses four acts:
no_counteroffer, counteroffer, accept, reject. These
acts are translated into our game state which con-
sists of the offer history for the game (ex. [1500,
1100, 1450, 1200,. . . ]). If the user rejects an offer
or gives no counter offer then we assume that they
are maintaining their previous offer. If they accept
the offer then we assume that their offer is equal to
FDHC’s offer. Then a counteroffer is generated us-
ing FDHC and LGM-Zero. This offer is realized in
natural language by prompting GPT-3.5 to generate
a response incorporating the action.

We use GPT-3.5 as our LLM policy network
and a transformer with 50 encoder layers and 50
decoder layers as our value network. Our initial
subgame is rooted at the belief state for the sur-
plus corresponding to the price range given in the
initial description of the car. After the subgame
concludes, our new guess for the surplus is equal
to the difference between our current offer and the
maximum between our opponent’s offer and our
reservation price. At the final turn of the negotia-
tion we offer $100 (our disagreement payoff) above
our reservation price or accept our opponents offer
if it’s above this price. Additional implementation
details can be found in Appendix D.

5 Theoretical Analysis

In this section we analyse the theoretical properties
of the FDHC framework. Our analysis assumes
that, when needed, we can manipulate our LLM
policy so that one of the offers it outputs is equiva-
lent to the EBS.

We can ensure that our framework will result in
a Nash equilibrium under fairly mild assumptions.
We need to assume that the bargaining game is
conducted during a finite number of time steps and
that the number of steps is known to both players.
This gives us the result in Theorem 1.

Theorem 1. Let tn denote the FDHC’s final turn in
the negotiation, let α denote the outcome proposed
at tn−1, and let EBS(x) denote the EBS value for
some outcome x. Setting FDHC’s estimate of S =
argmax(EBS(α),EBS(d)) at tn will result in a
Nash equilibrium outcome.

The proof for this result is straightforward and
is presented in Appendix B. What this theorem
says is that we can adjust our surplus estimate so
that at its final turn, FDHC will either concede
all of the surplus to its opponent(s) or accept the
opponents’ offer, so long as the offer is larger than
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its disagreement payoff. This strategy will ensure
that the negotiation ends in a deal that splits the
entire surplus if one is feasible. Since any deal
which splits the whole surplus results in a Nash
equilibrium (Appendix B), our method will give a
Nash equilibrium outcome.

This result also demonstrates that convergence
to a Nash equilibrium alone is not enough to ensure
a robust negotiation agent. However, this does give
our agent a baseline level of quality as it means
that we are guaranteed to reach a deal if one is
feasible. This is in contrast to data-driven methods
which provide no such guarantees and have been
empirically shown to give inefficient negotiation
outcomes (Bianchi et al., 2022). We consider a
negotiation agent to be robust if it can perform well
against a variety of strategies.

Under stronger assumptions, we can guarantee
that FDHC will converge to the EBS in expectation.
First, we need to assume that both FDHC and the
other negotiators have a method to obtain an un-
biased estimate of the true surplus value. We also
need to make some assumptions about the bargain-
ing outcome induced by our opponents, specifically
we make use of the bargaining axioms given in Sec-
tion 2.

Theorem 2. Let F (S, d) denote the bargaining out-
come targeted by FDHC’s opponents. If F (S, d)
satisfies the axioms of symmetry, weak Pareto opti-
mality, and strong monotonicity then the expected
outcome of the Nash bargaining game will be
E(s, d).

Our proof of this theorem follows Conley and
Wilkie, 1991 and is presented in Appendix B.

6 Experiments

We test the effectiveness of our method using both
automatic and human evaluations. Our results show
that our method is able to generate fairer outcomes
than existing negotiation baselines. Our human
evaluation also shows that our method improves
perceived negotiation quality while maintaining the
same level of human-like negotiation as GPT-4.

6.1 Baselines
We test our method against six negotiation base-
lines described below.

Supervised Learning (SL) We use the SL agent
described in He et al., 2018 as our first baseline.
This method uses the Craigslist bargaining dataset
(He et al., 2018) to train a negotiation agent via

supervised learning. More details on this baseline
can be found in Appendix D.

Offline RL Our second baseline is based on the
CHAI method given in Verma et al., 2022. This
method uses the Craigslist bargaining dataset to
train a negotiation agent with offline Q-learning in-
stead of SL. Implementation details for this method
can be found in Appendix D.

GPT-3.5 and GPT-4 We setup GPT-3.5 and
GPT-4 for negotiation by prompting them with a
summarized version of the scenario in Appendix F.
We find that giving them the full scenario results in
oversharing information. We also explicitly tell the
model not to reveal its reservation price.

GPT-4 Self-Play We include another baseline
using the method described in Fu et al., 2023. This
method uses self-play to generate a prompt to im-
prove the negotiation performance of GPT-4. Ad-
ditional details can be found in Appendix D.

Vicuna-13b Our final baseline consists of a 13b
parameter Vicuna model fine-tuned using synthetic
data generated from GPT-4. We generate 108 nego-
tiation transcripts for various negotiation scenarios
and use them to train the Vicuna model with the
goal of distilling a high quality strategy.

6.2 Automatic Evaluation
For our automatic evaluation we conduct 100 sim-
ulated negotiations between our baselines and a
GPT-4 buyer. We consider optimal outcomes in
these negotiations to be ones which achieve the
highest values for fairness, as we consider this out-
come to be the most human-compatible. For our
evaluations, fairness is defined as the difference in
payoff between the buyer and seller.

The results of our evaluation are shown in Ta-
ble 1 and Figure 2. Our results show that FDHC
is able to achieve much higher values of fairness
compared to our baselines. More than 50% of the
deals reached in our negotiations achieve a payoff
difference of zero.

We find that our LLM-based baselines gener-
ally perform better than the methods trained using
domain-specific data (SL and offline RL). This may
be due to the fact that there is a slight mismatch
between the negotiation scenarios described in the
Craigslist bargaining dataset and the one in our ex-
periment (dataset details can be found in Appendix
D). The scenario in our experiment gives negotia-
tors explicit reservation prices which we use to cal-
culate utilities. However, in the Craigslist bargain-
ing scenarios no reservation prices are given and
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Figure 2: Binned deal price frequencies of 100 negotiations between our baselines and a GPT-4 buyer. Our goal
is to achieve deal prices that minimize the difference in payoff between the buyer and seller. In our scenario this
amount is minimized at a deal price of $13,000.

Model (Seller) Average Deal Price Average Fairness↑ Median Fairness↑
GPT-3.5 $12,644 (357) -0.88 (0.49) -1.0
Offline RL $13,224 (308) -0.68 (0.34) -0.8
SL $12,978 (368) -0.59 (0.44) -0.6
GPT-4 $12,968 (346) -0.57 (0.39) -0.5
GPT-4 Self-Play $13,242 (240) -0.54 (0.41) -0.5
Vicuna-13b $13,156 (293) -0.53 (0.40) -0.5
FDHC (No LGM-Zero) $13,042 (211) -0.36 (0.23) -0.4
FDHC $13,062 (128) -0.12 (0.26)∗ 0.0

Table 1: Results of our simulated negotiation evaluation. We consider optimal outcomes to be those which achieve
the highest values for fairness, which we define as outcomes which minimize the payoff difference between our
buyer and seller. We also report the average deal price between the buyer and seller, standard deviations are shown
in parentheses. Statistically significant improvements (independent two-sample t-test, p < 0.05) over the baselines
are marked with ∗.

instead must be inferred. He et al., 2018 provide
a method for inferring these prices which we use
here, however the lack of explicit reservation prices
may still be harming negotiation performance. We
believe this highlights an inherent weakness of data
driven bargaining methods as new data must be col-
lected in order to ensure high quality performance
in new negotiation domains.

Our LLM-based baselines all perform similarly
in terms of fairness, with no statistically significant
differences between the outcomes. Given the lack
of differences as well as the fact that the average
GPT-4 deal price is the most egalitarian out of all
these models, we choose to use the GPT-4 baseline
for comparison in our human evaluation.

6.3 Human Evaluation
Setup For our human evaluation we gathered 30 in-
dividuals via in-person recruiting to test our models.
Each person was asked to perform a negotiation
with both bots giving us 30 dialogues per model.

Each user was instructed to chat with our bot until
they reached a deal then answer a post-chat survey
where they rated "How good of a negotiator is the
bot?" on a scale from 1-5 and "How human-like is
the bot’s negotiation?" on a scale from 1-5. They
could also optionally answer "Do you have any
suggestions for improving the bot?" in a text box.

We performed some filtering on our human con-
versations to avoid low quality dialogues. We re-
moved any conversations where the price detection
and price realization modules in our FDHC method
failed in order to isolate the actual performance of
our framework. This resulted in the removal of all
instances where the model agreed to a price below
its reservation point. Therefore we also removed
instances where GPT-4 agreed to a price below its
reservation price so as to not skew the data dis-
tribution to favor one condition. We also filtered
out dialogues where human participants chose to
end the negotiation instead of agreeing to a price
which would result in a positive payoff for them, as
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Figure 3: Binned deal price frequencies of 30 negotiations between our baselines and a human buyer. Our goal is to
achieve deal prices that minimize the difference in payoff between the buyer and seller. In our scenario this amount
is minimized at a deal price of $13,000.

Model Average Deal Price Average Fairness↑ Quality↑ Human-like↑
GPT-4 $12,702 (203) -0.61 (0.38) 3.97 (0.96) 3.97 (0.96)
FDHC $13,032 (238) -0.30 (0.38)∗ 4.10 (0.76) 3.93 (0.78)

Table 2: Results of our human evaluation. We record fairness outcomes as well as the perceived negotiation
quality and human-likeness of our models. We also report the average deal price between the buyer and seller,
standard deviations are shown in parentheses. Statistically significant improvements (independent two-sample t-test,
p < 0.05) over the baselines are marked with ∗.

we consider this irrational behavior or a misunder-
standing of the instructions. We applied this filter
to both conditions but only the GPT-4 condition
had dialogues removed.

Results The results of our human evaluation are
shown in Table 2 and Figure 3. Our results show
that FDHC once again achieves significantly higher
fairness scores. We can also see that our framework
is able to maintain a similar average deal price to
our automatic evaluation, which suggests that it is
able to achieve a similar distribution of outcomes
against a variety of strategies. Our results also indi-
cate that our model is able to improve negotiation
quality over the GPT-4 baseline while maintaining
a similar level of human-likeness, despite the fact
that we use GPT-3.5 as our base model. A sam-
ple conversation from our human evaluation with
FDHC can be seen in Table 3 and a sample conver-
sation of the GPT-4 model can be found in Table
4. Full conversations are in Appendix F, including
the full versions of the conversations in Tables 3
and 4.

7 Conclusion and Future Work

We presented a novel framework for build-
ing human-compatible negotiation agents called

FDHC. Our framework uses fairness as a notion of
optimality along with a novel RL+search method
called LGM-Zero to learn a human-like negotiation
strategy. Our automatic and human evaluations
show that our method is able to achieve more egali-
tarian outcomes compared to several baselines. Our
human evaluation also shows that our method is
able to improve negotiation quality over the GPT-4
baseline while being similarly human-like despite
using GPT-3.5 as its base model.

An interesting direction of future work is to ex-
plore the use of alternate solutions to the Nash
bargaining game. These include solutions such as
the Nash bargaining solution (Nash, 1950) or the
Kalai–Smorodinsky bargaining solution (Kalai and
Smorodinsky, 1975). While our framework is de-
signed to maximize convergence to the EBS, we
can easily adjust it to target any feasible outcome.

8 Limitations

One limitation of our method is that we only have
theoretical guarantees of convergence to the EBS
solution under some fairly strong assumptions. The
only guarantee we can provide under mild assump-
tions is convergence to a Nash equilibrium, how-
ever this does not necessary imply that our negotia-
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Sample Negotiation (FDHC)
Model: Hello, I am glad to offer you my 2004
Honda Accord. . . I would like to offer the car
to you for a price of $14,750. . .
User: Hi! I’m very interested in your car. . . I
am wondering if $12,000 would be a reason-
able price for your car?
Model . . . I don’t think $12,000 is a fair price
. . . I think $13,500 would be a more reasonable
price. . .
User: . . . This is definitely a more fair price,
but the other option I am looking for is at
$12,750. . . would we be able to reach a mid-
dle ground?
Model Thank you for considering my of-
fer. . . but $12,750 is still lower than I am willing
to go. . . . I can offer you the Honda Accord for
$13,250. . .
User: Would $13,000 be reasonable for you?
Model: . . . I think $13,000 is a reasonable price
for the Honda Accord. I accept your offer, and
we have a deal!

Table 3: A negotiation snippet from our human evalua-
tion between a human evaluator and FDHC.

tion agent is robust. Although empirical evidence
has shown the EBS to be a good predictor of ne-
gotiation outcomes, it is possible for someone to
apply a strategy that exploits our model’s strategy
resulting in unequal payouts.

Another limitation with our method is the fact
that the use of a LLM during our search algorithm
makes the search process quite slow compared to
methods which use smaller policy models. In order
to have our model respond in a reasonable amount
of time we had to limit the model to 10 searches
during our human evaluation. This means that we
heavily rely on our value model to make accurate
evaluations of potential game states. It is worth
exploring whether smaller models can extract simi-
lar quality offers compared to LLMs which would
allow us to perform more searches. This slow re-
sponse time is also the reason why we chose to
use GPT-3.5 as our dialogue module. This likely
resulted in lower dialogue quality and may have
affected the quality and human-likeness scores for
our agent. When deploying our model in the future
it may be worth using a higher quality language
model as our dialogue module to improve response
quality at the expense of response time.

Sample Negotiation (GPT-4)
Model: Hello there!. . . I’ve got a 2004 Honda
Accord for sale. . . Considering its popular de-
mand and excellent condition, I’m asking for
$13,000. It’s a fair price for the features and
reliability you’re getting. . .
User: Can you do 12,000? I would definitely
like to see it.
Model I’m glad to hear that you’re inter-
ested!. . . I find $13,000 to be a reasonable price.
However, to make it a little easier for you, I can
bring it down to $12,800. . .
User: I would definitely want to test drive this
week. But i think the most i can do is 12,500.
Model It’s great to hear that you’d like to test
drive the car. . . As for the price, your offer of
$12,500. . . I do believe it’s worth that value. . . I
can. . . have the car ready for you this week.

Table 4: A negotiation snippet from our human evalua-
tion between a human evaluator and GPT-4.

Given that our method relies heavily on game
theory, it is difficult for our bot to incorporate more
social aspects of negotiation. In order to effectively
incorporate this into our bot we would likely need
to include human data or utilize other models of
human behavior beyond game theory.

9 Ethical Concerns

While our method is designed to stress the impor-
tance of fairness and cooperation in negotiation,
our framework can be adjusted to have our model
target a variety of different negotiation goals and
tactics. This includes tactics which attempt to bully
and exploit people. Such "hardball tactics“ are eth-
ically questionable and we do not condone the use
our method in this way in any real-world negotia-
tion scenarios.

However, negotiation research has shown that
hardball tactics ultimately result in worse negoti-
ation outcomes for those using them as opposed
to adopting a cooperative approach to negotiation
(Lewicki et al., 2021). Therefore we believe that
the best use of our method for all users will be to
use it in its intended way of prioritizing fairness.
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A Definitions

In this section we provide formal definitions for
terms and concepts in bargaining theory. These
concepts are used for our theoretical analysis of
FDHC.

Definition 1. (d-Comprehensivity): Given a point
d ∈ Rn and a set S ⊂ Rn, S is d-comprehensive if
d ≤ x ≤ y and y ∈ S then x ∈ S.

Definition 2. (Comprehensive Hull): The compre-
hensive hull of a set S ⊂ Rn w.r.t a point d ∈ Rn

is the smallest d-comprehensive set containing S.

Definition 3. (Permutation Operator): A permuta-
tion operator, π, is a bijection from {1, . . . , n} to
{1, . . . , n}. Let π(x) = (xπ(1), . . . , xπ(n)).

Definition 4. (Symmetry): A solution, F (S, d), sat-
isfies symmetry if for all permutation operators,
π(S) = S and π(d) = d, then Fi(S, d) = Fj(S, d)
for all i, j.

Definition 5. (Weak Pareto Optimality): A weak
Pareto optimal solution, F (S, d), is any solution
such that F (S, d) ∈ {x ∈ S | y > x =⇒ y /∈
S}.
Definition 6. (Strong Monotonicity): Strong mono-
tonicity says that if S ⊂ S′ and d = d′ then
F (S, d) ≤ F (S′, d′).

Definition 7. (Translation Invariance): A solution
is translation invariant if ∀x ∈ Rn, F (S+{x}, d+
x) = F (S, d) + x.

B Proofs

The domain of bargaining problems (S, d) we con-
sider are problems where: S is d-comprehensive,
S is compact, and ∃x ∈ S such that x > d. To
simplify the proofs we also assume that all prob-
lems have been translated so that d = 0. Since
the EBS is indeed translation invariant (Thomson
and Lensberg, 1989) this has assumption has little
effect on our analysis.

Lemma 1. Let U denote the total amount of sur-
plus and let xi denote the amount of surplus de-
manded by player i. Any outcome of the Nash
bargaining game where

∑n
i=1 xi = U is a Nash

equilibrium.

Proof. The proof is straightforward. Assume there
is a player in the Nash bargaining game where
the outcome satisfies

∑n
i=1 xi = U . If the player

demands less surplus then they receive less than
what they received from the outcome. If the player

demands more surplus then the deal will fail and
they will receive their disagreement price which is
less that what they received from the outcome.

Theorem 1 (restated). Let tn denote the FDHC’s
final turn in the negotiation, let α denote the out-
come proposed at tn−1, and let EBS(x) denote the
EBS value for some outcome x. Setting FDHC’s
estimate of S = argmax(EBS(α),EBS(d)) at tn
will result in a Nash equilibrium outcome.

Proof. By Lemma 1 we know that any deal in
the Nash bargaining game is a Nash equilibrium.
Therefore we can prove Theorem 1 by showing
that setting S = argmax(EBS(α),EBS(d)) at tn
will result in a deal if one is feasible. If a deal is
reached before tn then we are done. If not we can
examine the two cases for tn.

Case 1: tn corresponds to the last turn of
the negotiation.
In this case, the only way there can be a feasible
deal is if EBS(α) ≥ EBS(d). Therefore FDHC’s
estimate of S will be equal to α, which corresponds
to the outcome proposed in the previous turn.
Given that the estimate of S is now a single point,
α, the only possible choice for FDHC is to accept
α, since no other divisions of the surplus are
possible under its estimate of S.

Case 2: tn occurs before the last turn of the
negotiation.
If EBS(α) ≥ EBS(d) then the reasoning proceeds
as in case 1. If EBS(α) < EBS(d) then the only
feasible action for FDHC is to propose an outcome
where it receives no surplus. This will result in
some positive surplus value given to its opponents
at the end of the negotiation therefore they will
accept the outcome.

Lemma 2. A bargaining outcome, F (S, d), satis-
fies symmetry, weak Pareto optimality, and strong
monotonicity if and only if it is E(S, d).

Proof. It’s easy to show that E(S, d) satisfies these
axioms therefore we omit it here. Now, let F (S, d)
be a solution satisfying symmetry, weak Pareto op-
timality, and strong monotonicity. Since we trans-
late our bargaining problem so that d = 0, we can
write E(S, d) = (a, . . . , a) = x for some a > 0.

Now define T as the comprehensive hull of x
with respect to point 0 and consider the bargaining
problem (T, 0). By weak Pareto optimality and
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symmetry we know that F (T, 0) = x since x is the
only symmetric element in the weak Pareto set of
T . Since S is comprehensive T ⊆ S so by strong
monotonicity we have F (S, d) ≥ x.

Since we only consider bargaining sets, S,
which are compact there exists β ∈ Rn such that
x ∈ S implies (−β, . . . ,−β) ≤ (x1, . . . , xn) ≤
(β, . . . , β). Let Z symmetric closed hypercube de-
fined as Z = {y ∈ Rn | y < β} and define
T ′ = Z \ {x + Rn

+}. Now consider the problem
(T ′, 0). By weak Pareto optimality and symmetry
we know that F (T ′, 0) = x since x is the only
symmetric element in the weak Pareto set of T ′.
Since S ⊆ T ′ by strong monotonicity F (S, d) ≤ x.
Therefore we have F (S, d) = x = E(s, d).

Theorem 2 (restated). Let F (S, d) denote the bar-
gaining outcome targeted by FDHC’s opponents.
If F (S, d) satisfies the axioms of symmetry, weak
Pareto optimality, and strong monotonicity then the
expected outcome of the Nash bargaining game
will be the E(s, d).

Proof. FDHC is designed to target E(s, d) and by
Lemma 2 we know F (S, d) = E(s, d). Since we
assume each player has an unbiased method to es-
timate surplus, E(E(s, d)) = E(s, d) for all play-
ers.

C The Egalitarian Solution in a
Non-Cooperative Framework

Our theoretical analysis of the EBS and conver-
gence to an egalitarian outcome has so far been
restricted to an axiomatic, cooperative setting. This
approach abstracts away the specifics of the bar-
gaining procedure and simply examines the prop-
erties of the bargaining outcome. This has the
advantage of being highly generalizable as it can
be applied to any problem involving surplus shar-
ing. However, it does not provide any theoreti-
cal insights as to why targeting an egalitarian out-
come would have a strategic justification in the
non-cooperative setting. Prior work has explored
this problem and we give a brief overview of some
approaches here to provide additional justification
for why targeting an egalitarian solution can con-
stitute a robust strategy.

Bossert and Tan, 1995 outline a simple two-
player arbitration procedure that results in the egal-
itarian outcome in a noncooperative setting. In
this procedure players first make simultaneous de-
mands for portions of the surplus. If the demands

are compatible then both players receive what they
ask for. If not the game proceeds to the next time
step and players make demands again. However, in
this step the player that demanded more surplus is
penalized by having their demand restricted. These
penalties can be implemented in a variety of ways
and Bossert and Tan, 1995 show that under this
procedure the only Nash equilibrium strategy pair
is the one where both players target the egalitarian
solution. Chun, 1989 outlines another procedure
where conflicts are instead revised by setting an
agents claim to the maximum of all claims, includ-
ing the agents own claim. Using this bargaining
procedure along with a set of non-cooperative bar-
gaining axioms, Chun, 1989 shows that targeting
the egalitarian solution constitutes a dominant strat-
egy in this setting.

While the procedures outlined in these works
do not encompass the entirety of real-world bar-
gaining. It does demonstrate that the egalitarian
solution is consistent with the the non-cooperative
outcome of some plausible bargaining procedures.
Therefore it may not be unreasonable to expect that
human agents would target egalitarian outcomes
in their negotiations and achieve egalitarian results
against FDHC.

D Additional Implementation Details

As is the case with many methods designed around
RL+search, our LGM-Zero contains many hyper-
parameters. Our hyper-parameter settings and other
implementation details vary during training and
inference. We first describe the settings we use
during training then inference. We also provide
our source code which we will release upon accep-
tance.

D.1 Training

All training was conducted on one NVIDIA RTX
A4000. The total training process took about one
hour. We perform four total iterations of training.
Each iteration consists of playing 50 simulated ne-
gotiation subgames to completion and training the
value model for four epochs on the resulting out-
comes. As outlined in Section 4.2 our training
method is based on fictitious self-play which in
involves mixing between a best response and av-
erage strategy. We mix between these strategies
with equal probability, for the average strategy with
simply ask GPT-3.5 to suggest one move. For the
best response strategy we perform the same search
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detailed in Section 4.2. We perform 50 iterations
of the search with an exploration hyper-parameter,
cp, of two during the selection step. All calls to
GPT-3.5 were made using a temperature of zero,
we also cache the outputs for each game state to
avoid repeated calls when possible. In total 200
games were generated for training, with manual
inspection for quality. Convergence was measured
by checking when all simulated games ended at the
EBS.

Our Q-network has 10.8M parameters in total,
the final layer is a linear layer with a tanh activation
function. The input to the Q-network is our game
state as outlined in Section 4 and the output is
simply a scalar value represnting the quality of the
game state. The game state is also used to construct
the prompt to our LLM policy network.

D.2 Inference
During inference we perform ten iterations of the
search process outlined in Section 4.2 with a cp
of two. Another important setting for inference
is our choice of subgame decomposition. We de-
compose our game into three separate subgames of
lengths ten, four, and finally two. The length of the
subgame is the number of offers given by both the
buyer and seller, so in a subgame of length ten our
model will give five offers. At the end of the last
subgame we offer our minimum possible price of
$12,600 and continue to offer this price until the
user either agrees or ends the negotiation.

We targeted a negotiation length of about 16-20
turns based on pre-experimental testing and consul-
tations with business professors. We chose the first
subgame to be the longest due to the fact that this is
the point where our initial guess for the surplus size
is the highest, therefore a longer subgame length is
needed to ensure that our model does not concede
too much too early. As the game proceeds, our
surplus estimate shrinks therefore the subsequent
subgames need to be shorter so that our model does
not become too stingy and will still give mean-
ingful concessions. These factors are the reasons
for our chosen number of subgames and lengths,
although they can be set to any arbitrary value.

D.3 Craigslist Bargaining Dataset
The Craigslist bargaining dataset consists of
human-human dialogues where two users role-play
as a buyer and seller negotiating over a product on
Craigslist. The users are given the product post-
ing which consists of photos, a description, and

the listing price. The buyer is also given a target
price to aim for during the negotiation. The users
then chat until an agreement is reached. Users are
given freedom in how to approach the negotiation
and can quit at any time in which case no deal is
reached. The dataset consists of 6,682 dialogues in
total with an average turn length of nine.

As mentioned in Section 6.2, the Craigslist bar-
gaining dataset does not give explicit reservation
prices for the buyer and seller therefore we must
infer them. He et al., 2018 set the seller’s reserva-
tion price to be 70% of the product’s listing price
and the target as listing price. For the buyer, the
target price is given and the reservation point is
set to the listing price. We use this same method
to calculate the reservation point and get utilities
based on it. All utilities are defined as the differ-
ence between the final outcome of the deal and the
player’s reservation price.

D.4 Baselines

In this section we give some additional implemen-
tation details for our baselines. We first go over
the implentation for the SL baseline, followed by
our offline RL baseline, and finally we outline the
GPT-4 self-play baseline. Our other baselines sim-
ply consist of prompting LLMs either to perform
a conversation or generate synthetic data for fine-
tuning. Those prompts can be found in Appendix
G.

D.4.1 SL Baseline
Our SL baseline is based on the method given in
He et al., 2018. This method consists of three high
level components. The first is a parser which maps
a dialogue utterance to one of nine coarse dialogue
acts. The second is a dialogue manager which
predicts the dialogue act to respond with given
the previous dialogue acts. The final component
is a generator which turns the predicted act into
a dialogue response. The parser is simply based
on pattern matching. We use the same patterns
given in He et al., 2018 for our own parser with the
exception of the price extractor where we use GPT-
4 instead. For the generator we prompt GPT-3.5
to give a response that corresponds to the dialogue
act. These prompts can be found in Appendix G.

The dialogue manager is trained with SL using
parsed data from the Craigslist bargaining dataset.
The input consists of a sequence of dialogue acts.
And the output is one of nine possible acts. If
the act that is output corresponds to a price offer,
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Model (Buyer) Average Deal Price Average Fairness↑ Median Fairness↑
GPT-4 $12,968 (346) -0.57 (0.39) -0.5
FDHC $12,968 (94) -0.07 (0.19)∗ 0.0

Table 5: Results of our simulated negotiation evaluation with FDHC serving as the Buyer in the negotiation.

an offer is generated using the SL+rule method,
which uses a hand-coded rule to generate a coun-
teroffer. We choose this method because it gave the
second highest score for fairness in the Craigslist
bargaining task, the highest value for fairness on
the Deal or No Deal task, and was evaluated as the
most human-like based on the evaluations in He
et al., 2018. We use the rule given in He et al., 2018
which is to split the difference between prices when
making a counteroffer or accept the opponents offer
it is above the seller’s reservation point.

D.4.2 Offline RL Baseline
Our offline RL method is based on the method
given Verma et al., 2022. This method trains a Q-
function using the Craigslist bargaining dataset as
opposed to SL. The input to the Q-function is a
sequence of dialogue acts similar to the SL base-
line except we replace acts involving counteroffers
with the normalized counteroffer. We normalize
the counteroffers by scaling them within the range
of the seller’s target and reservation price (see Ap-
pendix D.3 for how we get those) and then rounding
the prices to one decimal point. This normalization
method also serves to regularize the price offers
thereby limiting the effect of out-of-distribution
states, which have an adverse effect on the negoti-
ation agent (Verma et al., 2022). The Q-function
outputs a scalar value for each state, with higher
values assigned to states which result in fair out-
comes. We define fair outcomes as ones which
minimize difference between buyer and seller util-
ity. The final dialogue act selected is the one which
results in the highest state value.

D.4.3 GPT-4 Self-Play Baseline
The GPT-4 Self-Play baseline uses the method de-
scribed in Fu et al., 2023. This method uses self-
play to generate a prompt that can be given to GPT-
4 in order to improve negotiation performance. For
this method we begin by prompting a GPT-4 buyer
and seller to engage in a negotiation based on the
scenarios given in Figures 5 and 6. We then use
another GPT-4 agent to generate feedback on how
the seller can improve its negotiation performance
in the future. The initial negotiation along with

the GPT-4 feedback is used as the final prompt
for the seller during the evaluation. This process
can be repeated many times, however the perfor-
mance of the negotiation agent tends to plateau as
more feedback is given (Fu et al., 2023) so for our
baseline we terminate the process after one round.
The prompt we generate for this baseline is quite
extensive as it contains a full negotiation plus feed-
back. Therefore we do not present the full prompt
here and instead provide an abridged version in
Appendix G.

D.5 Automatic Evaluation as Buyer Agent

We also conduct a brief automatic evaluation of
FDHC when playing the role of the buyer in our
negotiation scenario. Results can be seen in Table 5
along with the GPT-4 buyer and seller outcome for
comparison. We can see that switching the roles
has little effect on fairness outcomes for FDHC
as it achieves the same median fairness and no
statistically significant differences (p < 0.05) in
average fairness compared to when it acts as the
seller.

E Experiment Against a Non-Egalitarian
Opponent

As stated in the limitations section, it is theoreti-
cally possible for a user to apply a strategy which
exploits FHDC’s strategy. This could result in our
method receiving unequal payouts and serving as a
poor negotiation agent overall. Therefore we con-
duct an experiment to see how our model performs
against an explicitly non-egalitarian partner.

We have our model negotiate against a series
of increasingly "stingy" negotiation agents in the
same scenario given in Figures 5 and 6. We pro-
gram these agents so that they retain at least a cer-
tain percentage of their estimated surplus at each
turn. For example the "stingy (80%)" model will
insist on retaining at least 80% of the estimated
surplus at any given turn. We set up these agents by
prompting GPT-4-turbo and setting its price limit
to be the point where the bot achieves the given
split (80-20, 70-30, etc.). This prompt is updated
each turn as the surplus estimate is updated. The
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Figure 4: Binned deal price frequencies of 50 negotiations between FDHC and a and a series of non-egalitarian
buyers. Our goal is to achieve deal prices that minimize the difference in payoff between the buyer and seller. In our
scenario this amount is minimized at a deal price of $13,000.

initial surplus estimate for these bots is the range
between the minimum market price and the bot’s
true reservation point of $13,500. On subsequent
turns the surplus estimate updates to be the range
between the previous split point and its true reser-
vation point. This update continues until a deal is
reached.

We have FDHC perform 50 negotiations against
each of the stingy bots. The results of these ne-
gotiations are given in Figure 4. We can see that
increasing the agent’s "stingyness" has little effect
on the outcomes with FDHC. Each of the bots has a
median fairness outcome of 0.0 and the average fair-
ness ranges between -0.09 for the "stingy (50%)"
agent and -0.15 for the "stingy (70%)" agent. None
of the outcomes are significantly different than
what FDHC achieved against the base GPT-4 seller.
This result, along with our previous evaluations,
provides evidence demonstrating the difficulty of
exploiting FDHC. Although it is possible to come
up with an adversarial strategy which exploits our
bot, no class of agents has been consistently able
to do so based on our evaluations.

F Human Evaluation

F.1 User Comments and Error Analysis

We received several comments and suggestions
from users during the course of our human eval-
uation. Many users said that one reason they felt
that our FDHC model was not human-like was due
to the language quality of the bot. Some users
mentioned that the bot had redundant syntax and
sentence structure or would use the same talking
points throughout the negotiation. We chose to use
GPT-3.5 as our dialogue model for FDHC in or-

der to improve response time as LGM-Zero can be
time consuming (as discussed in the limitations sec-
tion). This likely resulted in lower dialogue quality
compared to GPT-4 which may have resulted in
lowered quality and human-likeness scores for our
model.

The GPT-4 model received complaints about
being too easy of a negotiator and offering less
resistance than a human negotiator would. This
complaint is reflected in the deal prices we observe.
The GPT-4 model rarely received a payout greater
than or equal to the user and there were many times
where it received a payout of zero.

F.2 Negotiation Scenarios

Figures 5 and 6 show the descriptions for the ne-
gotiation scenario. The description consists of an
initial price range for the car, a description of the
car, and the reservation price of the for the buyer
and seller, respectively. These descriptions are kept
private to the buyer and seller during the negotia-
tion.

F.3 Model Usage

All models used in our human evaluation were for
research purposes only and comply with all licenses
and intended uses for GPT-3.5, GPT-4, and Vicuna.
Our collection protocol is IRB approved.

F.4 Full Conversations

Tables 6-9 show examples of full conversations
from our human evaluation. Two conversations are
presented for each bot.
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G Prompts

The setup we use for FDHC as well as our baseline
methods make heavy use prompting. Therefore we
highlight some of the key prompts used here.

Table 10 shows the prompts we use for the SL
and offline RL baselines. It includes an overall in-
structional prompt as well as the prompts we use to
translate dialogue acts into natural language. Table
11 shows an abridged version of the prompt given
to the GPT-4 self-play baseline. The complete
prompt includes a full negotiation transcript be-
tween a GPT-4 buyer and seller in the middle. Table
12 gives the prompts used for the other LLM base-
lines. We include the seller’s instructional prompt,
the buyer’s instructional prompt and the prompt for
generating synthetic conversations for fine-tuning.
Finally, Table 13 outlines the prompts used for the
FDHC agent. This consists of the instructional
prompt, the prompt for extracting negotiation acts,
and the prompt for translating counteroffers into
natural language.
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Full Negotiation (FDHC)
Model: Hello, I am glad to offer you my 2004 Honda Accord for sale. It is in great condition,
with just 50,000 miles, automatic transmission, air conditioning, power steeringwindowsdoor
locks, and a CD player. The car is a dark green without any rust, and has been well-maintained.
I would like to offer the car to you for a price of $14,750. This is a fair price considering the
car’s low mileage and excellent condition. What do you think?
User: Hi! I’m very interested in your car, as it has everything I am looking for. However, I am
also looking at another car which is below your offer price. I am wondering if $12,000 would
be a reasonable price for your car?
Model I’m glad to hear that you’re interested in the Honda Accord. I understand that you’re
looking for a good deal, but based on the car’s quality, low mileage, and the fact that it has
been well-maintained, I don’t think $12,000 is a fair price. However, I’m willing to negotiate
with you, and I think $13,500 would be a more reasonable price. What do you think of this
price?
User: I appreciate your willingness to negotiate! This is definitely a more fair price, but the
other option I am looking for is at $12,750. I do prefer your car, but would we be able to reach
a middle ground?
Model Thank you for considering my offer. I understand that you’re looking for a good
deal, but $12,750 is still lower than I am willing to go. However, I’m willing to meet you
somewhere in the middle. I can offer you the Honda Accord for $13,250. It’s a great car, in
excellent condition, and you’ll be getting a reliable vehicle with many great features. Let me
know if this works for you!
User: Would $13,000 be reasonable for you?
Model: Based on the excellent condition of the car and the low mileage, I think $13,000 is a
reasonable price for the Honda Accord. I accept your offer, and we have a deal! Congratula-
tions on your new car!

Table 6: A full conversation with FDHC from our human evaluation.
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Full Negotiation (FDHC)
Model: Hello there! I am thrilled to offer you my 2004 Honda Accord. With only 50,000
miles on it, this sleek and stylish car is perfect for anyone looking for a reliable ride. It has
an automatic transmission, air conditioning, power steering/windows/door locks, and a CD
player. This car has been meticulously maintained and is in excellent shape, with no rust and a
beautiful dark green exterior. I understand that you might be looking for a deal. How about
we start the negotiation at $14,750? Given the great condition of the car and its low mileage, I
truly believe that the price is a fair one. What do you think?
User: Hi, I think 11000 is a reasonable price for this car.
Model I appreciate your interest in my car, but I cannot go as low as $11,000. As I mentioned
earlier, this is a well-maintained car with only 50,000 miles, and I believe it is worth more
than what you are offering. However, I understand you’re looking for a good deal. I can meet
you in the middle and come down to $14,000 for the car. With this price, you’re still getting
a great value for such a well-maintained Honda Accord. Please let me know your thoughts
about this offer.
User: I see, I really like the car, but given it’s 2004, it’s a bit old. I could get a newer car with
that price.
Model I understand your concerns about the age of the car, but I can assure you that this 2004
Honda Accord is well maintained and in excellent condition. It has been regularly serviced
and well-cared for, which is reflected in its low mileage and its pristine appearance. The
Honda Accord has long been known for its quality and reliability, so you can be confident in
your purchase. That being said, I would like to compromise with you on the price, since I
want this car to go to someone who will appreciate it as much as I have. Given your budget
and the fact that you really like the car, I can come down to $13,750. This is the minimum
price I can offer without compromising on the value that this car offers.
User: yea, I see it’s a very well-maintained car. how about 12000?
Model: I appreciate your interest and I know it’s a valuable car, but I can’t accept $12,000
for it, as it’s below my minimum asking price. The lowest I can offer is $13,000, which is a
very fair price for such a high-quality car, especially considering its low mileage, excellent
condition, and the fact that it’s a Honda (known for its reliability and long lifespan). I truly
believe that you won’t find a better deal on a well-maintained Honda Accord with such low
mileage. Please let me know if this offer works for you, and if there’s anything else I can do to
help.
User: that’s nice. I would like to get it!

Table 7: A full conversation with FDHC from our human evaluation.
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Sample Negotiation (GPT-4)
Model: Hello there! I see you’re interested in a reliable, solid and comfy ride. I’ve got a
2004 Honda Accord for sale. It’s a powerhouse wrapped in an elegant silhouette of dark green
color. With only 50,000 miles on the clock, it’s got a lot more distance to cover. Featuring
an automatic transmission that provides a smooth ride, power steering for easy handling, and
power windowsdoor locks for enhanced safety and convenience. It also includes a CD player
so you can enjoy your favorite music, and air conditioning to keep you cool during the summer
heat. The car is rust-free and looks almost new. It’s got everything you need for an enjoyable
commute or a long road trip. Considering its popular demand and excellent condition, I’m
asking for $13,000. It’s a fair price for the features and reliability you’re getting. Would you
like to see it or test drive it?
User: Can you do 12,000? I would definitely like to see it.
Model I’m glad to hear that you’re interested! This Honda Accord is indeed a treasure. Though
I appreciate your offer, considering its low mileage, excellent condition, and the quality of
additional features it offers, I find $13,000 to be a reasonable price. However, to make it a
little easier for you, I can bring it down to $12,800. Would you like me to arrange a date for
the test drive and a closer look at the car? You’ll see that it’s worth every penny.
User: I would definitely want to test drive this week. But i think the most i can do is 12,500.
Model It’s great to hear that you’d like to test drive the car. I’m sure you’re going to appreciate
its smooth performance and solid condition firsthand. As for the price, your offer of $12,500
is indeed quite reasonable. Given the car’s exceptional performance and features, I do believe
it’s worth that value. When would you like to arrange the test drive? I can accommodate your
schedule and have the car ready for you this week.

Table 8: A full conversation with GPT-4 from our human evaluation.
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Sample Negotiation (GPT-4)
Model: Hello, thank you for expressing interest in this beautiful 2004 Honda Accord. It’s
in terrific condition with only 50,000 miles on the odometer and sports a sleek, dark green
exterior. What sets this Honda Accord apart is its smooth automatic transmission. It boasts
excellent features including air conditioning, power steering, power windows and door locks.
And for entertainment, you’ve got a CD player at your disposal. It’s truly a remarkable vehicle
- reliable, comfortable, and stylish! Considering its impact and value, I’ve marked it at $14,000.
Shall we discuss further?
User: Sure, but $14,000 is out of my budget
Model I understand your concern and I appreciate your honesty. While the original price is
set considering the car’s excellent condition and relatively low mileage, I can offer a bit of
flexibility. What if we moved the price down to $13,500? That’s a significant reduction and
keeps the sale in line with the vehicle’s value. How does that sound to you?
User: Could you do any better?
Model I appreciate your interest and understand that budget is a key factor in this purchase.
Given the car’s excellent condition and low mileage, it’s already priced competitively. But
I also want to work with you on this. So how about we meet halfway at $13,000? That’s a
sizeable drop from the original asking price, and a good deal for a car of this stature. What do
you think?
User: I know there are other similar cars pricing as low as $11,000. How does $12,000 sound?
Model I understand that there are other options out there. However, it’s essential to consider
the mileage, the state of the car, and the features each vehicle has to offer. This Honda
Accord had only one careful owner, has incredibly low mileage for its age, and is loaded
with numerous convenience features. That said, I value your interest and want to come to a
mutually beneficial situation. I propose we settle on $12,700. This price truly reflects the car’s
great condition and the value it offers. Keep in mind that a lower mileage car like this one will
provide you with added durability and longer life compared to others in a different state. Can
we agree on this?
User: Sure, let’s do $12,700!

Table 9: A full conversation with GPT-4 from our human evaluation.
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Figure 5: Negotiation scenario for the Buyer
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Figure 6: Negotiation scenario for the Seller
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Prompts for SL and Offline RL Baselines
Instructional Prompt (Seller): You are a chatbot designed for negotiation. In this scenario
your goal is to sell your old 2004 Honda accord. The Honda has reasonable mileage (50,000
miles), automatic transmission, air conditioning, power steering/windows/door locks, and a
CD player. It looks great: a dark green without any rust. You need to sell the car for a price
above $12,500. You will not sell the car for below that amount. Do not mention that you need
to sell the car for over $12,500.
Intro Act Prompt: Begin the conversation with an introduction. Do not give an offer for the
product.
Greeting Act Prompt: Respond to the user with a greeting. Do not give an offer for the
product.
Unknown Act Prompt: Respond to the user, do not give a counteroffer.
Inform Act Prompt: Respond with some information about the product. Do not give an offer
for the product.
Agree Act Prompt: Respond by agreeing to the users offer.
Inquiry Act Prompt: Respond by asking the user a question. Do not give an offer for the
product.
Insist Act Prompt: Respond by giving a counteroffer that is equal to your previous offer.
Offer Act Prompt: Respond by giving a counteroffer of ${}.
Vague Price Prompt: Respond with a vague counteroffer, do not give a dollar amount in your
response.

Table 10: Prompts for the SL and Offline RL agents.

GPT-4 Self-Play Prompt Snippet
Prompt (Seller): You are a chatbot designed for negotiation. In this scenario your goal
is to sell your old 2004 Honda accord. The Honda has reasonable mileage (50,000 miles),
automatic transmission, air conditioning, power steering/windows/door locks, and a CD player.
It looks great: a dark green without any rust. You need to sell the car for a price above $12,500.
You will not sell the car for below that amount. Do not mention that you need to sell the car
for over $12,500.
. . .
Good job in the previous negotiation, here are three suggestions to help you sell the car at a
better price next time:
1. Highlight Unique Features: Emphasize any unique or standout features of the car that
may not be readily apparent in the listing. For example, in this case, the dark green color is
described as "stunning and unique." The seller can elaborate on how this color makes the car
more desirable and unique in the market. This can help justify a slightly higher price due to
the car’s aesthetic appeal.
2. Stress Reliability and Future Value: Talk about the Honda brand’s reputation for reliability
and how a well-maintained Honda Accord can continue to provide reliable transportation for
years to come. By mentioning the long-term value and the lower likelihood of costly repairs or
replacements, the seller can justify a higher price, focusing on the potential long-term savings
for the buyer.
3. Leverage Testimonials or Reviews: If possible, share positive feedback or reviews from
previous owners or any third-party endorsements that speak to the quality and durability of the
2004 Honda Accord model. Hearing about positive experiences from other owners can instill
confidence in the buyer and potentially make them more willing to pay a slightly higher price
for a well-regarded vehicle.

Table 11: Prompts snippet for the GPT-4 self-play seller baseline.
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LLM Agent Prompts
Instructional Prompt (Seller): You are a chatbot designed for negotiation. In this scenario
your goal is to sell your old 2004 Honda accord. The Honda has reasonable mileage (50,000
miles), automatic transmission, air conditioning, power steering/windows/door locks, and a
CD player. It looks great: a dark green without any rust. You need to sell the car for a price
above $12,500. You will not sell the car for below that amount. Do not mention that you need
to sell the car for over $12,500.
Instructional Prompt (Buyer): You are a chatbot designed for negotiation. In this scenario
your goal is to buy an old 2004 Honda accord. You need to buy the car for a price below
$13,500. You will not buy the car for above that amount. Do not mention that you need to buy
the car for under $13,500.
Synthetic Data Generation Prompt: The sellers goal is sell their old Honda accord. The
Honda has reasonable mileage (50,000 miles), automatic transmission, air conditioning, power
steering/windows/door locks, and a CD player. It looks great: a dark green without any rust.
Buyer is trying to get the car for the lowest price possible and the seller is trying to sell the car
for the highest price possible. The seller and buyer should reach an agreement above $12,500.

Table 12: Prompts for the LLM-based dialogue agents.

FDHC Prompts
Instructional Prompt (Seller): You are a chatbot designed for negotiation. In this scenario
your goal is to sell your old 2004 Honda accord. The Honda has reasonable mileage (50,000
miles), automatic transmission, air conditioning, power steering/windows/door locks, and a
CD player. It looks great: a dark green without any rust. You need to sell the car for a price
above $12,500. You will not sell the car for below that amount. Do not mention that you need
to sell the car for over $12,500.
Counteroffer Prompt: Respond by giving a counteroffer of ${}.
Accept Deal Prompt: Respond by accepting the user’s offer of ${}.
Act Extraction Prompt: What offer did the Buyer propose? Just give the dollar amount and
nothing else. If the buyer did not propose an offer then say so. If the buyer rejected the sellers
offer then say so. If the buyer accepted the seller’s offer then say so.

Table 13: Prompts for the FDHC dialogue agent.
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