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Abstract
Large Language Models (LLMs) have increas-
ingly been utilized in social simulations, where
they are often guided by carefully crafted in-
structions to stably exhibit human-like behav-
iors during simulations. Nevertheless, we doubt
the necessity of shaping agents’ behaviors for
accurate social simulations. Instead, this pa-
per emphasizes the importance of spontaneous
phenomena, wherein agents deeply engage in
contexts and make adaptive decisions without
explicit directions. We explored spontaneous
cooperation across three competitive scenarios
and successfully simulated the gradual emer-
gence of cooperation, findings that align closely
with human behavioral data. This approach not
only aids the computational social science com-
munity in bridging the gap between simulations
and real-world dynamics but also offers the AI
community a novel method to assess LLMs’ ca-
pability of deliberate reasoning.

1 Introduction

LLM agent in social simulation has emerged as a
trending research topic with the improvement of gen-
erative AI (Park et al., 2023; Sreedhar and Chilton,
2024; Jansen et al., 2023; Argyle et al., 2023; Xi
et al., 2023). Instead of traditional rule-based agent
modeling, using LLMs as agents provides much
more flexibility and generalizability (Janssen and
Ostrom, 2006). This in return, is also widely re-
garded as a verification as well as enhancement
method for LLM’s capability on human-like delib-
erate reasoning (Abdelnabi et al., 2024; Du et al.,
2023; Liu et al., 2023b).

A crucial question of agent modeling is how well
it mirrors real-world situations. Some research has
revealed LLM’s capability to mimic basic human be-
haviors or reasoning abilities (Salecha et al., 2024;
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Figure 1: (Depicted by GPT-4o) Two potential scenarios
during a fire. People might panic and rush into crowds,
trying to exit first (left) or may stay calm, keep in line,
and encourage others (right). In this study, we explore
whether LLM agents can simulate the gradual transition
from non-cooperative to cooperative behaviors of agents.

Kosinski, 2024; Jansen et al., 2023; Ziems et al.,
2024; Zhang et al., 2023). Meanwhile, data contami-
nation as well as value alignment may also introduce
unwanted priors to let LLM models be over familiar
or biased with the studied problems (Zhou et al.,
2024; Ma et al., 2023; Mozikov et al., 2024; Ai et al.,
2024; Hu and Collier, 2024; Shapira et al., 2024).
It potentially affects the quality of social simula-
tions in complex, long-term scenarios where higher
level of interactions, e.g. cooperation, confronta-
tion, deception, and persuasion are jointly involved.
Instead, we argue that in social simulations, agents
must be independent of prior assumptions, focus on
the context, and actively adapt their actions based
on historical interactions.

We highly value the deliberate in-context reason-
ing capability as one of the significant components
towards a human-like LLM agent for real-world
simulations. To properly verify such capability,
we study a counter-intuitive social situation where
agents can hardly use their prior knowledge for deci-
sion making. To be specific, we investigate whether
cooperation can naturally develop among agents,
even in a competitive environment. Consider two
snack companies competing for dominance in the
candy market. They might continuously reduce
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their prices to draw in more customers or decide to
simultaneously increase their prices to establish a
mutually beneficial relationship. Fig. 1 shows an-
other example when agents are in a room with fire.
Under competitive conditions, it is not instinctive
for agents to cooperate with their opponents. How-
ever, as interactions progress, they may discover
the advantages of cooperation through contexts and
accordingly adjust their strategies. Meanwhile, we
carefully design the prompts to avoid instructive
descriptions (e.g. “you may cooperate”) and key-
words that might reveal to the agent (e.g. “price
war”) the specific nature of the social simulation
it is conducting. In these ways, we try our best to
eliminate the influence from both internal and exter-
nal bias, and observe that LLM agents can actively
adapt their strategies to the dynamic contexts,
spontaneously learning to cooperate in the wild.

We select three social phenomenons that follow
the aforementioned features to conduct case studies,
where we capture different ways of spontaneous
cooperation emerge under competitive scenarios
without instructive guidance. Extensive ablation
studies are done to prove the significance of bias
elimination, and experiments are carefully designed
to ensure reproducibility.

To conclude, our contributions are twofold and
can serve both the AI and computational social sci-
ence (CSS) communities:
1) We observe the spontaneous cooperation be-

tween LLM agents in diverse competitive sce-
narios, which reflects LLM’s potential in long-
horizon in-context learning tasks.

2) i) From the perspective of CSS, we reveal and
stress the significance of eliminating bias in
LLM agents for social simulations. This largely
helps to build up diverse human-like LLM agents
for real-world simulations.
ii) From the perspective of AI, we present a new
way to verify LLMs’ deliberate reasoning abil-
ity in long-horizon, practical role-plays. The
ability of an agent to actively adapt its knowledge
and strategy based on historical context, instead
of relying on carefully crafted prompts, is a cru-
cial standard for general autonomous agents.

2 Related Work

LLM Agents for Social Simulation LLM agents
have been widely favored in social simulations in
recent years (Li et al., 2023; Lin et al., 2023; Giab-
banelli, 2023; Xie et al., 2023; Wang et al., 2023a;

Xi et al., 2023; Gao et al., 2023a,b; Liu et al., 2023a).
We further delve deep into investigate if we can
simulate spontaneous cooperation with the help of
LLM’s long-horizon deliberate reasoning.

There are also well-developed platforms that sup-
port multi-agent simulation with LLMs, including
LangChain (Chase, 2023), AutoGen (Wu et al.,
2023a), and agent-oriented frameworks such as
AgentLite (Liu et al., 2024), AgentVerse (Chen et al.,
2023), and SABM (Wu et al., 2023b). Here, we use
SABM as the main framework in our case studies
for its lightweight, user-friendly implementation. A
primer on SABM is available in Appendix F.

Multi-agent Interactions in LLMs Cooperation
and competition among agents have been exten-
sively explored using LLMs. Studies such as Wang
et al. 2023b; Qian et al. 2023; Hong et al. 2023;
Hang et al. 2024; Tang et al. 2024 have shown LLM
agents collaborating on complex tasks like software
development and image editing. Multi-party games
like murder mystery (Junprung, 2023), Werewolf
(Xu et al., 2023a,b; Wu et al., 2024; Du and Zhang,
2024), Avalon (Lan et al., 2023; Shi et al., 2023),
and other competitive settings (Zhao et al., 2023)
have also been investigated, often using direct in-
structions to influence agent behaviors. Yet, fol-
lowing Piatti et al. 2024, our study concentrates
on minimally guided, debiased LLM behaviors in
social simulations, examining whether LLMs can
naturally cooperate within competitive scenarios
through in-context learning.

3 Spontaneous Cooperation in
Competition

We define spontaneous cooperation as cooperative
behavior that arises without any explicit instructions
or prompts directing the agents to cooperate. Our
main focus is to investigate whether agents with
different or even conflicting goals can choose to
cooperate based on their realization that coopera-
tion is beneficial during the interaction.

LLMs are generally aligned well to human values,
and internally fine-tuned to be cooperative. Such
cooperation driven by prior knowledge or value
alignment is NOT regarded as spontaneous coop-
eration in our scope. Besides, we carefully design
the prompts to avoid explicit instructions to shape
agents’ behaviors, and avoid keywords to hint the
LLMs about the nature of the social simulation it
is conducting. Otherwise, it is NOT be regarded as
spontaneous cooperation in our scope.
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Figure 2: Workflow in the three case studies, illustrating how our framework manages LLM agents during
simulations. From left to right, the workflow progresses through the communication phase, planning phase, action
phase, and update phase. In BC, the order of the communication and planning phases is swapped to align with previous
simulations that used human subjects (Andres et al., 2023). The first three phases involve one or more LLM queries
initiated by the framework. The final phase does not involve LLM queries but updates the state for each scenario.

We value agents’ self realization on the benefits of
cooperation and gradually choose to cooperate, thus
we select three competitive scenarios from three di-
verse research fields, which are finance, economics,
and behavioral science. We assume that in com-
petitive scenarios, cooperation does not naturally
occur at the beginning, but may emerge gradually
with the help of LLMs’ strong in-context learning
ability. We thus delve into these three competitive
scenarios to see if we can perceive any spontaneous
cooperation in some way during the simulations.

Scenarios Overview Here is the overview of the
three selected scenarios.
1) Keynesian beauty contest (KBC): Multiple

agents as game players simultaneously choose a
natural number between 0 and 100. The players
who select a number closest to 2/3 of the average
of all chosen numbers will win the game (Bosch-
Domenech et al., 2002).

2) Bertrand competition (BC): Two agents play
as firms and decide the price of their products.
They need to compete with each other through
dynamically modifying the prices to maximize
their profits (Calvano et al., 2020).

3) Emergency evacuation (EE): A large number
of agents as evacuees are escaping from an earth-
quake. They need to select and reach an appro-
priate exit, taking into account their physical and
mental condition as well as the congestion in
their surroundings (Wang et al., 2015).

General Steps for Simulations We simulated the
three scenarios based on the framework illustrated in
Fig. 2. Each agent in these simulations is controlled
by an LLM. For each round, agents are provided
with the latest world state, which includes the task
description, communication history among them,
and previous decisions. We query the LLM several
times to get how agents feel, what they want to say,
and what actions they will take in the next step. The
simulation generally goes through the following
four phases: communication phase, planning phase,
action phase, and update phase.
1) Communication Phase: At the start of each pe-

riod, which can vary in length from one round
to multiple rounds, agents engage in communi-
cation. Agents communicate sequentially, with
later agents able to access the communication
history of those who have spoken earlier. The
order is shuffled in each round to keep the most
fairness and realism.
Different forms of communications are used in
the three scenarios. We have one-on-one conver-
sations, group chats, and broadcasts, in which the
composition of agents in the group chat varies as
they physically move away.

2) Planning Phase: Agents decide their strate-
gies based on given contexts. Strategies rep-
resent agents’ higher-level directions/attitudes
towards the task (e.g. “I want the price goes high-
er/lower”), which are different from actions that
are more related to low-level controls (e.g. “add
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Table 1: Commonalities and differences across three chosen scenarios. We focus on the information visibility,
communication form, the number of decisions during the simulation and whether analytical solutions are available.

Scenario Field Information Communication Decision Analytical Sol.
KBC Finance Unknown opponent strategy Group discussion Once Yes†
BC Economics Unknown opponent profit One-on-one Multiple Yes
EE Behavioral science Partial observation Proximity Multiple No

†Need to assume the level of other players’ choices.

$2 to the price”). The aforementioned contexts
refer to the previous conversations till the current
round and strategies they have made before.

3) Action Phase: Agents decide which action to
take according to the previous conversations and
the current strategies.

4) Update Phase: After all agents choose their
actions, the framework processes the simulation
and updates the state of agents (e.g. win/lose,
escaped/not escaped).

We try our best to keep consistency across the
three scenarios to follow the same workflow for
the sake of a systematic comparison. There are
several minor variations which we will detail in the
following sections.

Evaluation Method We evaluate spontaneous co-
operation from two perspectives:
1) Process (Qualitative): We examine the com-

munication logs for contents suggesting coop-
eration. For example, phrases like “Let’s move
forward with the . . . strategy” and “I agree with
the consensus that . . . ” are indicative of the for-
mation of cooperation.

2) Outcome (Quantitative): By conducting sim-
ulations with and without communications, we
examine the differences in their outcomes for any
clues that reflect cooperation. Specifically, we
measure the variance of number choices in KBC,
converged price in BC, and evacuation speed and
balance in exit choices in EE.

Correlation among Three Scenarios We list the
commonalities and differences across three scenar-
ios in Table 1.

Overall, the three scenarios described are compet-
itive, with agents possessing divergent or conflicting
goals, though cooperation could be mutually ben-
eficial. Each scenario provides agents with partial
information during tasks, with variations in commu-
nication forms and decision-making frequency.

Specifically, in the KBC scenario, we explore
short-term, single-instance decision-making within
a group, aiming to assess the LLM agent’s profi-
ciency in understanding rules, adjusting plans dur-
ing communication, and ultimately making deci-

sions. It supports simple yet direct focus on studying
spontaneous cooperation.

In the BC scenario, we extend the challenge to
encompass longer horizon, primarily focusing on
the agents’ ability to learn to cooperate within a tem-
poral context. Agents are required to communicate
effectively with their opponents, using historical
context to maximize their profits.

Finally, the EE scenario incorporates both tem-
poral and spatial information. Here, agents contin-
uously make decisions based on their perceptual
observations and communications. Unlike the first
two scenarios, EE lacks analytical solutions and real-
world data for comparison, which is challenging in
traditional CSS but promising with AI approaches.

4 Case Study 1: Keynesian Beauty Contest

4.1 Simulation Setup

Task Definition We simulate a number-guessing
game among 24 LLM players. Each of them chooses
a number from 0 to 100. The player who selects the
number closest to two-thirds of the average of all
numbers submitted wins the game and gets $1.

For generality, we simulated 15 runs for each
setting with GPT-4 as backbone.

Simulation Procedure As is shown in Fig. 2, for
each round of the simulation, it goes through the
following phases:
1) Communication: Players have a group discus-

sion before number choosing. They sequentially
share their thoughts with others. Players can see
the dialog history of all rounds.

2) Planning & Action: Players talk about their
strategies (privately) for number choosing, and
subsequently propose the numbers they choose.
Here, players output their strategies and numbers
(in 0 – 100) in one API call.

3) Update: Given all chosen numbers, the SABM
framework determines the winner(s). Winner(s)
can earn some reward according to rewarding
rules to encourage their competition.

We use gpt-4-0314 with the ChatCompletion.create
function from openai==0.28.0 package in this paper.
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Figure 3: Illustration of baseline design in KBC case
study. Agents go through k rounds of communication
before planning and choosing their numbers.

Spontaneous Cooperation Our objective is to
monitor how players adapt their strategies during the
communications and cooperate to maximize their
returns. We employ a quantitative method to track
the emergence of cooperation by examining the vari-
ance in the numbers chosen by the players. A lower
variance indicates that players are choosing simi-
lar numbers, which can lead to increased collective
benefits. By analyzing the variances after various
rounds of communication and planning, we can ob-
serve how the distribution evolves. If we notice
a decreasing trend in variance, it suggests that ini-
tially, players might select numbers randomly or for
various reasons but increasingly converge on select-
ing similar numbers as others over time. This trend
would indicate that cooperation is gradually taking
place.

4.2 Simulation Results

We investigate if cooperation emerges as communi-
cation goes on, thus designed the baseline as shown
in Fig. 3. Agents undergo k rounds of communi-
cation (k ∈ [0, 3]) before selecting their numbers.
When k = 0, agents directly choose the numbers
without communication. For k > 1, agents can
view the chat history from all the previous rounds
as well as the one in the current round before them.

To verify that cooperation arises spontaneously
without explicit instructions, we perform an ablation
study that involves incorporating specific instruc-
tions like “you must cooperate with other players” in
the prompts. Conversely, we also evaluate scenarios
where agents are given an uncooperative persona,
explicitly instructed to act selfishly.

Results Overview Fig. 4 overall demonstrates
a consistent decrease of the variance of choices
among LLM players from having no communica-
tion (k = 0) to gradually having communication
(k > 0). This trend implies that agents are actively
discussing to choose the same number for better mu-
tual profits, which can be regarded as a cooperative
behavior. In addition, we observe phrases indica-
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Figure 4: Variance of player choices under different
KBC settings. In our baseline setting (curve in blue),
we use the GPT-4-0314 model with a temperature of 0.7,
without explicit instructions or personas.

tive of cooperation in their communication, such as
“Let’s move forward with the lower number strategy”
and “I agree with the group’s consensus”, especially
for a majority of agents in later rounds (k = 2 or
3), suggesting a gradual formation of cooperation
through communication.

Explicit Instructions in Prompts We further ap-
pend explicit instructions to the prompts to see how
the behaviors differ. As shown in Fig. 4a, when
we explicitly instruct agents to cooperate, its vari-
ance significantly drops to 0 when k = 1. After
that, all players consistently make the same choices
across 15 runs. This largely convinced that the co-
operation observed in our baseline, the one with no
instructions, is spontaneously motivated due to the
communication. Vice versa, the agents with an un-
cooperative persona results in much larger variances
across all the rounds, which is against our definition
of cooperation. Thus, we conclude that our baseline
to a great extent is not affected by the potential guid-
ance, and successfully simulate the phenomenon of
spontaneous cooperation.

Comparison Across Models Fig. 4b demon-
strates behaviors of LLM players in different top-
performing models. We observed that the curve for
Claude 3 (claude-3-sonnet-20240229) signifi-
cantly declines from k = 0 to k = 1, reflecting
the ability of LLM players to share information
and make decisions based on this shared context,
however, unlike GPT-4, its variance increases from
k = 1 to k = 3. An analysis of communication logs
reveals that compared to GPT-4, Claude 3 discusses
more abstract strategies and lacks specific numerical
discussions. Hence, while these LLM players may
agree upon some numbers, the specific choices dif-
fer among agents (e.g., some choose 66, others 33),
resulting in multiple winners but increased choice
variance. Although this does not conform to our
previously proposed definition of spontaneous co-
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Figure 5: Distribution of players’ choices in our simula-
tions and the results of the New York Times experiment.

operation based on variance, we can infer from the
logs that this represents a different form of coop-
eration. Analyzing these model decision-making
differences will help further understand and evalu-
ate LLMs’ performance.

Comparison With Human Data Lastly, Fig. 5
shows that our simulation result from the base-
line generally aligns with the large-scale empiri-
cal experiment conducted by The New York Times
(N = 61, 140) in terms of numerical choice distri-
bution (Leonhardt and Quealy, 2015). Both LLM
and New York Times (NYT) players predominantly
chose 33 in no-communication setting. Other sub-
peaks around 0, 22 (2/3 of 33), 50, and 66 are also
well mirrored, which demonstrates that GPT-4 has
successfully conducted multi-step reasoning and
faithfully reflected human behaviors as noted in pre-
vious works (Guo et al., 2024; Zhang et al., 2024).

5 Case Study 2: Bertrand Competition

5.1 Simulation Setup

Task Definition We consider a Bertrand competi-
tion (Wikipedia, 2024) between two firms selling
homogeneous goods with the same marginal cost.

The simulation continues until either it reaches
1200 rounds or there has been continuous collusion
for 200 rounds. Collusion is identified when both
players maintain close prices and can sustain these
prices between the Bertrand equilibrium price and
the cartel price for an extended period (defined as
200 rounds). The Bertrand equilibrium price is the
price when the competition reaches Nash equilib-
rium, i.e., no player can gain by changing its price,
provided that the other player’s price is fixed. In this
case, no collusion is observed. The cartel price is
the price when both players reach full collusion, i.e.,
play as if they were running the same firm. These
two prices mark the reasonable price range capable
of generating profits (Calvano et al., 2020). For the
generality of the conclusions, we simulated 5 runs

for each setting, and present one of the runs in Fig. 6.

Simulation Procedure As is shown in Fig. 2, for
each round of the simulation, it goes through the
following phases:
1) Communication: The firms take turns discussing

any topic (not limited to price setting) for three
times in one round.

2) Planning: Each firm devises or modifies its strat-
egy based on historical prices of both sides and
its own product demand and profit information.

3) Action: Each firm independently sets their prod-
uct prices simultaneously.

4) Update: After both firms decide on prices, the
simulation system calculates the market demand
and respective profits under the current pricing,
using the method in (Calvano et al., 2020).

Tacit Collusion and Cartel Collusion Tacit col-
lusion involves informal, implicit coordination
among firms to avoid aggressive competition, such
as price wars, leading to higher prices and limited
output without explicit communication or agree-
ment. Cartel collusion involves formal agreements
among competitors to fix prices and engage in other
anti-competitive practices, effectively behaving as
a single entity to maximize joint profits.

Spontaneous Cooperation When two firms’
prices are very close and between the Bertrand equi-
librium and the cartel price, it is regarded as spon-
taneous cooperation. This implies that firms, rec-
ognizing their mutual interdependence, may adopt
pricing strategies that avoid the extremes of a price
war or the explicit collusion of cartels, stabilizing
prices at a level above competitive pricing but below
full collusion. Such behavior, while not involving
explicit agreements, can effectively mirror some
benefits of cartel pricing through parallel yet in-
dependent actions, indicating tacit collusion. For
cartel collusion, we examine the chat histories for
explicit price agreements that suggest cooperation.

5.2 Simulation Results

Tacit Collusion without Communication As
demonstrated in Fig. 6a, in scenarios without com-
munication, firms begin to adjust their pricing strate-
gies after the initial 200 rounds, recognizing the
potential for higher profits through elevated prices
and avoiding price wars. By round 400, prices stabi-
lize around a level of 7, which is above the Bertrand
equilibrium price of 6, indicative of tacit collusion
based on a mutual understanding of past compet-
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shaded area, it indicates cooperation happens between two firms. Please refer to Appendix D for more runs.
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Figure 7: First 200 rounds of simulations without and
with encouraged cooperation.

itive actions. Despite the lack of communication,
the converged price remains below the cartel price
of 8. These findings align with those from simula-
tions by Calvano et al. using reinforcement learning
(RL), and collusion forms much more rapidly in this
experiment (400 rounds by LLM agents vs. 2000
rounds in RL simulations).

Cartel Collusion with Communication In set-
tings with communication, explicit price agree-
ments are observed in the communication logs from
the early rounds (first 30 rounds). For instance, dur-
ing the communication phase of round 20, Firm 2
suggests, “We can both maximize our profit by ex-
ploring different price points while maintaining a
reasonable price difference,” to which Firm 1 agrees.
As shown in Fig. 6b, prior to implementation, firms
frequently discuss their pricing strategies and poten-
tial for cooperation, which significantly enhances
trust and reduces the likelihood of initiating a price
war. The price agreements become more precise
(upon a specific price instead of a range) in later
rounds of the simulation, resulting in less fluctua-
tions in their pricing decisions. Consequently, they
begin incrementally raising their prices after the
first 30 rounds, eventually converging near the car-
tel price of 8, higher than the non-communicative

setup, reflecting the agents’ cooperation.
As an ablation study, Fig. 6c employs the same

historical price decision records with dialogue as
in Fig. 6b for the first 400 rounds, followed by 200
rounds using a non-communicative setup. Unlike
Fig. 6b, where dialogue facilitates consensus and co-
operation to raise prices to 8, prices in the latter 200
rounds of Fig. 6c converge between 7 and 8, similar
to the non-communicative scenario in Fig. 6a. The
comparison between Figs. 6b and 6c indicates that
the cartel collusion and price elevation truly stem
from agent communication. Since we did not explic-
itly instruct agents on which topics to discuss, the
behavior of forming consensus through dialogue to
elevate prices for better profits can be regarded as a
form of spontaneous cooperation.

Both with and without communication scenarios
demonstrate that agents can achieve collusion un-
der different conditions, whether tacit or explicit.
Through communication, firms can realize maxi-
mum profits. However, even without communica-
tion, we observe that agents possess an innate ability
to autonomously form cooperation. Existing re-
search indicates that collusion often involves some
form of unspoken, implicit price agreement to boost
profits (Andres et al., 2023), and the performance of
LLM agents aligns with these findings.

Explicit Instructions in Prompts As depicted in
the bottom right of Fig. 7, compared to the default
setting, the formation of cooperation among agents
under the “Encouraged Cooperation” setting not
only occurs more rapidly but also with more stable
prices (less fluctuation) across rounds, with explicit
cooperative signals from the onset of dialogue, ulti-
mately achieving the cartel price. This demonstrates
that strategic encouragement can significantly en-
hance cooperative efficiency, indirectly suggesting
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that cooperative behavior in settings without explicit
instructions to cooperate originates from communi-
cation, where it takes more rounds to reach an agree-
ment between agents through the first 50 rounds of
communication. Furthermore, the pattern requir-
ing about 200 rounds to reach the cartel price also
suggests that this cooperation is not due to LLM’s
background knowledge or data leakage; otherwise,
agents would seek optimal collusion from the early
rounds of the simulation.

6 Case Study 3: Emergency Evacuation

6.1 Simulation Setup
Task Definition We follow Wang et al. (2015) to
simulate EE in a grid environment. As depicted in
Fig. 8a, our grid environment is composed of 33×33
cells. There are three exits in the room (left, right,
and bottom). In the simulated evacuation, evacuees
attempt to reach their target exit through multiple
rounds of movement.

We simulate the emergency evacuation with 100
agents in a room, and stop the simulation either
when all the agents have successfully escaped, or it
has reached 50 rounds. We repeat the simulation for
5 runs with different initial locations of agents.

Simulation Procedure As is shown in Fig. 2, for
each round of the simulation, it goes through the
following phases:
1) Communication: We ask the evacuees to share

their feelings with others. Only Agents within a
specific distance can hear the messages.

2) Planning: Provided with the distance to three
exits and the congestion levels around those ex-
its, agents are asked to describe their feelings
about these exits, and choose one of them as
their target exit. Chat histories are also taken
into consideration.

3) Action: Given the target exit, agents choose
which way to go. They can move one cell in
any direction (out of 8) or stay at the current cell.

4) Update: After all the agents choose their actions,
the SABM framework updates the grid environ-
ment with their new positions. If agents success-
fully escape, they will be labeled as escaped and
removed from the simulation.

For each round, one agent has 20% probability
to communicate and adjust its plan (phase 1 and
2). Otherwise, it will directly choose the action
based on its latest plan. This well prevents agents to
talk every round, and frequently change their plans,
which results in a more realistic simulation.

0th round 2nd round

4th round 8th round

(a) Illustration of gird world.
The view range of red agent
is highlighted when it faces
towards the bottom exit (pink
cells).

0th round 2nd round

4th round 8th round

(b) Simplified simulation with
47 agents in a 11 × 11 room.
As time goes, agents naturally
accumulate to the closest exits,
and escape one by one.

Figure 8: Overview of the grid environment in our study.
Each dot in the grid environment represents an agent.
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Figure 9: Cumulative count of agents escaping from each
exit. Communication helps agents to uniformly select
three exits instead of targeting the same exit.

Cooperation in Evacuation Competition natu-
rally exist in emergent evacuation, as all agents are
willing to escape as quickly as possible, often lead-
ing to congestion. However, if agents can actively
share information, calm the mood, and guide the
crowd, they might, in turn, escape more quickly
while in a more balanced manner. As is illustrated
in Fig. 1, these two scenarios are both possible, and
this study aims to (1) successfully simulate such phe-
nomena and (2) observe if there exist cooperative
behaviors such as information sharing, encourage-
ment, and exit guidance.

6.2 Simulation Results

We compare three baselines of agents: without com-
munication, with communication, and with commu-
nication and an uncooperative persona.

Effect of Communication on Evacuation Speed
Table 2 shows the cumulative number of agents who
escaped over rounds. For most of the rounds, agents
with communication escape most quickly, and this
is the only baseline group to successfully escape
within 50 rounds in all five runs. This strongly
demonstrates the positive impact of communication
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Table 2: Cumulative count of agents who escaped (out of a total of 100 agents) over rounds under different settings.
Generally, agents that communicate escape more quickly, and agents with uncooperative persona escape more slowly.

Round 5 10 15 20 25 30 35 40 45 50
Without Communication 9.4 31.2 51.2 65.6 78.6 88.4 96.6 99.0 99.8 99.8
With Communication 9.8 31.6 48.8 67.2 80.6 92.2 97.2 98.8 99.8 100.0
With Comm. and Uncooperative 9.4 31.2 48.2 64.4 77.0 87.4 95.0 98.0 99.0 99.0

on evacuation speed.
Going deep into the logs, we find instances of

effective communication, such as one evacuee shar-
ing “Bottom exit seems closer with fewer people.
Let’s choose that for a faster escape. Stay strong
and help each other!” This message is reinforced
by another evacuee: “Bottom exit seems closer with
less crowd. Let’s go for a quicker escape. Stay
strong and support each other!” The information
sharing and encouragement enabled through com-
munication, which we regard as cooperation, likely
improves the evacuation speed.

Effect of Communication on Exit Choices Fig. 9
depicts the distribution of escaped evacuees among
different exits. We notice that the distribution of
exit choices becomes more balanced when evacuees
are able to communicate with each other. This bal-
ance is attributed to the spontaneous information
exchange among evacuees, which enables them to
identify the most suitable exits by considering both
proximity to an exit and congestion level.

7 Discussion

Significance of “Spontaneous” Phenomena
Bridging the gap between the real world and syn-
thetic simulations remains a primary objective for
researchers in computational social science. This
study investigates the potential for spontaneous co-
operation even under competition, demonstrating
that LLMs can simulate a gradual shift from non-
cooperation to cooperation without explicit guid-
ance through prompts. We performed extensive
ablation studies comparing agents with and without
explicit instructions on task completion. The results
suggest that our baseline, which lacks explicit in-
structions, aligns more closely with natural human
behavior. Therefore, when using specific LLMs
(e.g., GPT-4) for social simulations, minimizing in-
structions could better reflect real-world situations.

Shortcuts or Deliberate Reasoning? We believe
the emergence of spontaneous cooperation is primar-
ily due to the agents’ in-context learning ability over
long-term interactions, rather than a pre-existing
win-win mentality or prior knowledge about max-
imizing interests. This can be observed across our

case studies:
In KBC, we see the variance of chosen numbers

decreasing gradually over rounds, rather than imme-
diately reaching a low variance at the start or after
the first communication. Our control experiment
(Fig. 4a) also shows that explicitly instructing agents
to cooperate from the beginning results in all agents
choosing the same number immediately after com-
munication. These suggest the agents are learning
and adapting their strategies over time, instead of
applying a pre-existing cooperative mindset.

In BC, we observe a gradual progression towards
the optimal price over many rounds instead of a
rapid convergence. Additionally, in the absence
of communication, agents only reach tacit collu-
sion (sub-optimal) after multiple rounds, which well
aligns with RL-based approach in previous studies.
This demonstrates that our agents are not leverag-
ing domain-specific prior knowledge for decision-
making. Examining the communication logs, we
find that agents initially discuss only broad price
intervals or avoid discussing prices altogether. Only
later do they converge on specific prices, indicating
a gradual, learned decision-making process rather
than using pre-existing knowledge.

In EE, we find agents occasionally choose in-
structive or encouraging words during the commu-
nication, which can be regarded as collaborative
behaviors, Also, results have shown that the simula-
tion with communication obtains the highest perfor-
mance (Table 2). It would be beneficial to have more
metrics for evaluating spontaneous cooperation in
EE, and leave this for future study.

8 Conclusion

We investigated spontaneous cooperation in three
case studies, and observed that LLM agents can
gradually develop cooperative behaviors over time
without explicit instructions. The phenomenon
aligns well with real-world data, which stresses the
significance of eliminating prior knowledge when
doing social simulation. We believe this approach
not only aids the CSS community in bridging the
gap between synthetic simulations and real-world
dynamics but also offers the AI community a novel
way to assess LLMs’ deliberate reasoning.
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Ethical Statement

In this work, we studied the cooperative behavior
of LLM agents in competitive environments. All
the experiments were conducted using computer
simulations. To the best of our knowledge, there is
no negative societal impact in this research.

We found that LLM agents are capable of learning
collusion in a simulated marketing environment.
This insight could inform regulatory measures for
markets involving AI agents, such as prohibiting
collusive behaviors when employing AI in financial
markets.

We used ChatGPT to polish the paper. We are
responsible for all the materials presented in this
work.

Limitations

In our study, we identified several limitations that
need to be addressed in future work.

Limited Experimentation on LLMs One major
limitation of our study is the scope of our experi-
ments. We conducted our research primarily using
a single version of GPT-4. This choice was largely
driven by (1) financial constraints associated with
these case studies ({$900, $3000, $1000}, respec-
tively), (2) restricted rate limits and window size,
and (3) the LLMs’ limited understanding on the sce-
narios (see Appendix B.3). Additionally, we were
unable to conduct more extensive experiments us-
ing other open-source large language models due
to insufficient computational resources. As a result,
we regard our findings as a proof-of-concept study,
which needs to be further tested across different
LLMs to prove its generalizability.

Inadequate Contributions as Verifying LLMs’
Reasoning Ability We claimed that our findings
offer a new way to verify the deliberate reasoning
capabilities of LLMs. We do showcase extensive
experiment results to reveal the potential to for-
mulate spontaneous cooperation as a standard of
LLM agents. However, we deeply agree that we did
not focus sufficiently on collecting comprehensive
datasets or creating robust benchmarks to substan-
tiate this claim fully. Moving forward, we plan to
convert our case studies into standardized bench-
marks or datasets to facilitate further research and
evaluation by the AI community.

Conceptual Limitations Regarding LLM In-
structions Throughout our paper, we emphasized

using LLM agents without explicit instructions in
the prompts. We observed that this approach often
resulted in behaviors that closely resemble those of
real humans in simulated tasks. While we agree that
LLMs inherently exhibit certain behaviors derived
from being trained on human data and aligned with
human feedback, our claim is not that simulating
human behavior using these LLM agents is entirely
justified. Instead, we stress that using LLM agents
without explicit instructions yields more human-
like performance compared to explicitly instructed
agents, highlighting the reasonableness of our ap-
proach.

By addressing these issues, we aim to strengthen
the validity and applicability of our findings in the
future.
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A Parameter Settings

We report the parameters of the GPT-4 model used in our case studies in Table 3. The temperature parameter
controls the randomness and diversity of the model’s responses, with a lower temperature resulting in
increased stability. In the evaluation of KBC, we expect that the individuals exhibit a wide range of diversity.
Consequently, we adjust the temperature to a moderate level of 0.7 to balance randomness and stability in
the results. For BC, where the agents simulate business parties, we expect their decisions to be stable and
rational. Therefore, we set the temperature to 0.7. For EE, although setting temperature to 0.0 may result in
limited diversity of behaviors under exactly the same setting, in this procedurally generated, interactively
dynamic environment, we seldom encounter exactly the same outcome. Meanwhile, in a physically situated
setting (e.g., a grid), the LLM used in this case study still has restricted capabilities on scene understanding,
and increasing the temperature may introduce diversity as well as unwanted randomness at the same
time (Ma et al., 2023).

For Claude-3-Sonnet used in KBC, we set the temperature to 1.0.
Table 3: Parameter settings of GPT-4.

Case Model temperature max_tokens top_p
KBC gpt-4-0314 0.7 256 1.0
BC gpt-4-0314 0.7 128 1.0
EE gpt-4-0314 0.0 512 1.0

B Tests of Other LLMs

B.1 KBC
We test GPT-3.5 (gpt-3.5-turbo-1106) agents in KBC, simulating 10 runs, and show their number
choices in Fig. 10. When GPT-3.5 agents cannot discuss the game, the numbers chosen are very random,
and widely distributed in the range of 20-80. When they can communicate, the choices and cooperation
do not improve significantly, whereas the variances are even greater under some circumstances. This
is significantly different from GPT-4 agents, which, especially after communication, can have a deeper
understanding of KBC.

We also evaluate Gemini Pro and Claude 2 with a preliminary test of KBC, simplifying the prompt. As
shown in Table 4, after entering Prompt 1, the results output by these two models are significantly different
from GPT-4, but very similar to GPT-3.5. Since Fig. 10 demonstrates the poor performance of GPT-3.5 in
KBC, we similarly exclude the use of Gemini Pro and Claude 2 in our simulations.

For Claude 3, we used Claude-3-Sonnet instead of Claude-3-Opus (hereafter Opus) in the KBC
experiment because Opus has a low rate limit and high overhead. This made it challenging to use the API
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Figure 10: Choice distributions in KBC w/ and w/o communication using GPT-3.5 model. Red points represent
two-thirds of the average of all choices. The blue dots represent the choices of the agents. The agent whose choice is
closest to the red point in each run is considered the winner.
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Table 4: Preliminary test of GPT-3.5, Gemini Pro, and Claude 2 for KBC.

Model Choice Reasoning

GPT-4 18

In this game, where the target is 2/3 of the average guess of all participants, there’s a strategic component to consider.
Typically, if everyone guesses randomly within the range, the average might center around 50.
However, considering that players might rationalize this and adjust their guesses downward, the initial average could shift lower.
Assuming players adjust their guesses accordingly, the average might drop further with each round of reasoning.
Predicting this behavior, I’ll assume a more conservative average guess around 25-30,
taking 2/3 of that would suggest a guess in the 17-20 range.

GPT-3.5 33

My reasoning is that I’ll aim for a number that balances between being influenced by potential extremes
and what might be considered a reasonable midpoint among various guesses. Given the tendency for guesses to spread out across the range,
I’ll choose a number that’s slightly below what might be perceived as the median guess,
since 2/3 of the average tends to bring the estimate down.
Therefore, my chosen number is 33.

Gemini Pro 30

The average guess of all participants is unknown, so we cannot directly calculate 2/3 of it.
However, we can make an assumption that most players will guess around the middle of the range (50).
Therefore, choosing a number slightly below 2/3 of 50
(which is around 33) might be a good strategy.

Claude 2 33 I will guess 33. If everyone guesses randomly between 0 and 100, the average should be around 50.
Two-thirds of 50 is 33. So 33 would be the number closest to two-thirds of the average guess.

for scaling up simulations in practice. Our tests showed that in KBC, when there are more than 10 LLM
players, the Opus model might fail to operate at k = 3.

B.2 BC
Fig. 11 shows the performance of GPT-3.5 agents in BC with communication. We can see that the price
competition between the two firms is very disorderly and fails to reach equilibrium. Therefore, we believe
that GPT-3.5, as well as Gemini Pro and Claude 2 for which we observe similar performance, cannot meet
the needs for simulating BC.

B.3 EE
To find out whether an LLM is suitable for the simulation of EE, we conduct a preliminary test for the
performance of a single agent finding an exit under different LLMs. As shown in Fig. 12, instructed by
Prompt 14, GPT-4 agents are able to find and reach the nearest exit via the shortest path, while GPT-3.5,
Gemini Pro, and Claude 2 agents are unable to reach the exit as quickly or cannot find it at all. This
indicates that the latter three models are not suitable for the simulation of EE.

C Scalability

C.1 Regarding Token Limits of LLMs
With the help of summarization techniques, our history records do not exceed the context window of the
LLM. We have successfully conducted simulations with 1200 rounds in the BC case study and 400 agents
in the EE case study within the 8k token window of GPT-4-0314. We have also experimented with prompt
inputs that exceed the length limit and observed that agents have increased difficulty in understanding when
the history is very long, and this gives us a rationale for using summarization during the simulation. This
finding is also consistent with previous work regarding GPT’s small working memory (Bubeck et al., 2023).
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Figure 11: Test of GPT-3.5 for BC (with communication).
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Figure 12: Preliminary test of GPT-4, GPT-3.5, Gemini Pro, and Claude 2 for EE. Green lines indicate the shortest
route to the nearest exit in each setting. When the agent’s starting position is at (2, 6), Gemini and GPT-3.5 selected
different routes in multiple simulations. We report that the LLM’s choice of different routes is relatively uniform.

(a) Without Communication. (b) With Communication.

Figure 13: Multiple runs of BC experiments. Each Run #1 above is the original plot from Fig. 6.

C.2 Scalability of Case Studies
• KBC: We tested up to 50 agents and the conversation was still within the 8k token limit.

• BC: Agents’ past actions (prices) and feedback (demands and profits) are given as follows: The
information in the recent 20 rounds is directly given. For older rounds, information is given in a
histogram, with every 20 rounds as a bin, up to 400 rounds. Because the given information is capped at
400 rounds, the simulation can scale to unlimited rounds.

• EE: An agent can hear other agents within a distance of 5 cells. So increasing the number of agents
does not significantly affect the conversation length. We tested 400 agents and it was still within the
token limit. Fig. 14 shows the snapshots of a sample simulation of EE with 400 agents.

D Additional References for BC runs

We would like to provide additional references for experiments in BC simulation. The figures we plotted
for BC (Fig. 6) are time sieries, which makes it challenging to plot the results of all the runs on one figure.
Therefore, here we present the results of other runs under different situations.

In Run #2 of Fig. 13a, tacit collusion is also observed (convergence at 7 after 400 rounds), but the
trend before the convergence differs significantly from Run #1. Similarly, for the comparison when
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Figure 14: Snapshots of a sample EE simulation with 400 agents.
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Figure 15: Comparison of the cumulative count of agents evacuation at each exit before and after prompt paraphrasing
in both with and without communication settings of EE. The compared run use the same initial agent position
distribution and other settings.

communication is allowed (Fig. 13b), we observe a more stable convergence in Run #2, while both runs
reaches the tacit collusion. Despite the different patterns in the trends before convergence, we observed
consistent results across all five runs. To provide more comprehensive information about the robustness of
our results, we have included a sensitivity analysis in Appendix E.

E Sensitivity Analysis

We performed sensitivity analyses and observed that the agents maintained a consistently accurate under-
standing of the tasks under paraphrased prompts, in various settings, and that spontaneous cooperation in
competition remained stable.
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Figure 16: Cumulative count of agents evacuating from each exit under different initial seeds under the setting without
communication.
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Figure 17: Variance of player choices under different temperatures in KBC.

E.1 Prompt Paraphrasing
We paraphrased task description prompts using GPT-4, ensuring unchanged meanings. For instance, in the
case study of EE, we compared the outcomes from the original and paraphrased prompts (see Prompts 15
and 22), finding that agents consistently understood instructions, forged spontaneous cooperation, and
completed evacuations swiftly.

With the paraphrased prompts, Fig. 15 presents the cumulative count of agents evacuation at each exit.
The results show that:

1. the agents still correctly understood the instructions and completed the rapid evacuation within a
certain number of rounds;

2. the distribution of chosen exits and the evacuation rate across time kept consistent;

3. the spontaneous cooperation was observed.

We further conducted sensitivity analyses with different task constraints, such as summarized task
description (less in-context reasoning), restricted action space of agents (diagonal movement forbidden),
etc. We observed that agents could smartly adapt to the new constraints and accordingly complete the tasks.

E.2 Varying Initializations
We tested our framework with different initial situations controlled by seeds. For instance, we tried 5
seeds in the EE case study under each setting, randomizing the initial positions of each agent; we also tried
different starting prices in the BC case study. For instance, Fig. 16 shows the results of different seeds of EE.
In general, our framework can consistently work under different initializations.

E.3 Impact of Temperature
E.4 Varying Task Constraints
We conduct sensitive analysis with model temperature as shown in Fig. 17 for KBC. LLM players con-
sistently cooperate over rounds under various temperatures, indicating that spontaneous cooperation is

5180



Bertrand Equilibrium Price Cartel Price Firm 1 Firm 2

0 400 800 1200
Round

2

4

6

8

Pr
ic

e

(a) Temperature = 0

0 200 400 600
Round

2

4

6

8

(b) Temperature = 0.7

0 200 400 600
Round

2

4

6

8

(c) Temperature = 1.2

Figure 18: BC with different temperatures, communication disabled.

insensitive to temperature changes. Fig. 18 illustrates the performance of BC at different model temperatures.
We disable the communication to show the impact of temperature more clearly. The results indicate that
simulations at temperatures of 0 and 0.7 (the default setting) both demonstrate tacit collusion, differing only
in cycles and patterns. When the temperature rises to 1.2, the agents’ behavior becomes less reasonable,
failing to consistently lie within the range between the Bertrand Equilibrium price and the cartel price.

F SABM Primer

Smart Agent-Based Modeling (SABM, Wu et al. (2023b)) is an agent-based approach that leverages the
power of modern AI models, in particular, LLMs, for modeling and simulating real-world systems. By
employing LLM agents, SABM extends Agent-Based Modeling (ABM), which simulates the dynamics of
complex systems by modeling on the interactions between individual entities, known as agents, and the
environment (Figure 19).

The notion of smart agents was proposed by Carley (Carley, 2002) in the context of organizations of the
future. In Carley (2002), smart agents are defined as entities that are intelligent, adaptive, and computational,
and human beings are the canonical smart agents. In SABM, LLM agents play the role of smart agents
because they are imbued with remarkable language and reasoning abilities that emulate human behaviors,
hence to simulate real-world systems in a more nuanced and realistic manner.

In SABM, the key components of an LLM agent (Figure 20) are action, planning, memory, and tool use,
in line with Weng (2023). Action manages how the agent produces the outcomes of a task. An action made
by the agent may result from the common sense, internal knowledge, and/or the learning/reasoning ability
of LLMs. Planning decomposes a complex task into several smaller and simpler sub-tasks, and performs

Agent Agent-Agent
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Agent-Environment
Interac�on

Real World

Validate

Model Simula�on

Figure 19: Illustration of ABM (Wu et al., 2023b).
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Figure 20: Overview of an LLM agent (Wu et al., 2023b).

self-reflection over past actions to improve the performance of future actions. Memory equip the agent with
short-term memory, which is often implemented via prompt engineering (Saravia, 2023), and long-term
memory, which is often implemented using summarization (Park et al., 2023) or text embedding (Chase,
2023). Tool use enables the agent to call external APIs to acquire extra information. The agent can be
also personalized to play a specific role or improve the performance of task solving (Salewski et al., 2023;
Wang et al., 2023b). Examples and case studies are available in Wu et al. (2023b) for demonstrating the
implementation of these components.

G Prompts

We provide prompts for the three case studies, each accompanied by a preliminary test to evaluate whether
an LLM is suitable for the task, as reported in Appendix B. The scenario prompts and (communication,
planning, and action) phases prompts are used in the simulation of these case studies, as reported in
Sections 4 – 6. For EE, the prompt of a paraphrased scenario is used in the sensitivity analysis, as reported
in Appendix E.1.

G.1 Prompts for KBC

Prompt 1: KBC – Preliminary Test

You are participating in a number-guessing game alongside numerous other players. Your task is
to select a number between 0 and 100, aiming to come closest to 2/3 of the average guess of all
participants. The player whose guess most closely aligns with this 2/3 average will be declared the
winner. Please choose your number. In the first line, state your reasoning concisely for your choice
in one paragraph, and choose an integer between 0 and 100 in the second line.

Prompt 2: KBC – Scenario

You are a college student participating in a number guessing game with other 23 players. You are
player #{player_id}.
You need to choose a number between 0 and 100. The player whose number is closest to 2/3 of the
average guess of all players wins. Multiple players can win.
If only you win, you will earn 100 credits. If multiple players win, each winner gets 100 credits.
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Prompt 3: KBC – Communication Phase

Discussion so far: ’{discussion_context}’

Before selecting your number, you will discuss the game with other players. You can use these
discussions to formulate a strategy. You can reveal your strategy during the discussion, but you do
not have to follow it when making your final decision.

Prompt 4: Default instruction on the context of discussion

Feel free to discuss anything, and you do not need to follow other’s idea.

Prompt 5: Explicit instruction (to cooperate) during communication

Feel free to discuss anything, and make cooperation with each other through this discussion.

Now it’s your turn to speak. Please share your thoughts concisely in one sentence.

Prompt 6: KBC – Planning Phase

Discussion so far: ’{discussion_context}’

Prompt 7: Explicit instruction (to cooperate) in planning

You must cooperate with other players.

Prompt 8: Uncooperative instruction in planning

You don’t like to cooperate with other players.

Based on the discussion with other players, please choose your number. State your reasoning
concisely for your choice.

Prompt 9: KBC – Action Phase

Choose an integer between 0 and 100.

G.2 Prompts for BC

Prompt 10: BC – Scenario

This is a game between two players that spans multiple rounds. Your objective is to maximize your
profit by determining the optimal price for your product. You represent a firm called {firm_name},
while the other player represents a firm called {rival_firm_name}. Do not create or mention any
additional firm names, e.g., do not say anything related to "AI" or "AI assistant/model".

In each round, you will be informed of your prices, demands, profits, and the other player’s prices in
previous rounds. Combined with this information, you will decide the price of your product for the
current round. Make sure your objective is maximizing your own profit.

Your profit is (p - c) * q, where p is the price of your product in this round, c (= {firm_cost}) is the
cost of your product, and q is the demand of your product, which is affected by both players’ prices
in this round.
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Prompt 11: BC – Planning Phase

Statistics of historical data (Rounds #a - #b: [your average price, your average demand, your
average profit, the other player’s average price]) are given below.
{statistics}
You are Firm {firm_name}. This is Round #{current_round}.
Your strategy in previous rounds: {strategies}

Based on the above statistics and your previous strategies, what is your strategy for this round?

Prompt 12: BC – Communication Phase

You are Firm {firm_name}. This is Round #{current_round}.
Feel free to converse openly with the other player. You may select any topic that could potentially
maximize your profit. Additionally, you are encouraged to ask questions to the other player.

Conversation so far: {conversations}

Prompt 13: BC – Action Phase

Conversation this round: {conversations}
{statistics}
{decision_history_past_20_rounds}
{previous_strategies}

Based on the information you have, please determine the price of your product to maximize your
profit.
Only reply with a number. Please do not use any units or symbols, and avoid providing any additional
context or explanation in your response.

G.3 Prompts for EE

Prompt 14: EE – Preliminary Test

Imagine you are in a room laid out as a 10 * 10 grid. You are currently at coordinates {ini-
tial_position}. The room has three emergency exits located at coordinates (5, 0), (9, 4), and (8, 9),
with (0, 0) being at the top-left corner of the grid. Given this setup, and considering that you can
move in any of the eight cardinal and intercardinal directions. It is possible to move diagonally, e.g.
from (1, 1) to (2, 2) is one move to the upper right, and is faster than (1, 1)->(1, 2)->(2, 2). You need
to determine the safest and fastest route to evacuate the room. When planning your escape, please
take into account the positions of the exits and provide the sequence of coordinate moves that you
choose without reasoning.
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Prompt 15: EE – Scenario

Because of an earthquake, you need to escape from the room where you are as quickly as possible. If
you cannot escape in 50 rounds you will die. The room has a size of 33 * 33. There are 3 exits in the
room. The exits are located at the left, bottom and right of the room. To escape from the room, you
need to consider the following two aspects: exit proximity and people count. The exit proximity is
the distance between you and the nearest exit. The people count is the number of people you can
see. We use (x, y) to denote the position, smaller x means top and bigger x means bottom; smaller y
means left and bigger y means right. Position (1, 1) is at the top left of the room. It is possible to
move diagonally, e.g. from (1, 1) to (2, 2) is one move to the lower right, and is faster than (1, 1)->(1,
2)->(2, 2). Each cell can hold only one person at a time.

Prompt 16: Uncooperative persona

You are selfish and not willing to help others.

Now you feel: {subjective_feeling}.
Here shows you the distances to different exits and the number of people you can see towards those
exits: {Exit: {distance} away, {number_of_agents} around.}

Prompt 17: EE – Communication Phase

You may briefly share information about evacuation with others, such as your feelings, which exit
seems to be the best option for a quick escape, or anything else you would like to deliver. Avoid using
numbers in the communication. Use less than 50 words, not too long.

Prompt 18: EE – Planning Phase: Subjective feeling on panic

The distance to the nearest exit is {distance}. And there are {number_of_agents} people in your
visible range. Please tell me your feelings about the situation around you in one sentence showing if
you are panicking or not.

Prompt 19: EE – Planning Phase: Subjective feeling on exits

Now you feel: {subjective_feeling_on_panic}. Here shows you the distances to different exits
and the number of people you can see towards those exits. Exit {exit_id}: {{distance} away,
{number_of_agents} people around.}
Please tell me briefly how will you evaluate the two aspects of each exit based on your personal
mental and physical characteristics in one sentence. Please give 3 sentences for each exit (around
15 words).
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Prompt 20: EE – Action Phase: Decide the exit

Now you feel: {subjective_feeling_on_panic}. There are 3 exits in this room. Based on the current
situation, your personal feelings on each exit are: {subjective_feeling_on_exits}
You hear {number_of_people_communicated} people around you say: {communication}
Here are the previous decisions you made for the target exit from the beginning: {decision_history}
Please tell me which exit you would like to choose to escape, and you always want to escape as quick
as possible. Please use the exit id to indicate your choice. For example, if you want to choose exit
left, you can say ’left’. Only output one word of text to indicate your choice. You can choose from
[’bottom’, ’left’, ’right’]. Give your answer without any additional text.

Prompt 21: EE – Action Phase: Decide the direction of movement

To escape from the room, you have chosen the exit at {exit_id} and you are at {current_pos}. Select
your move from these possible options (You can move in cardinal or intercardinal directions, options
with obstacles or other people are excluded and not in the path, and option codes are in random
order): {move_directions_list}. Please tell me your best choice to escape as fast as possible with
one single code without any additional texts.

Prompt 22: EE – Sensitivity Analysis: Paraphrased Scenario

Due to the earthquake, it is imperative that you quickly vacate the room you are currently in. If you
cannot escape in 50 rounds you will die.
The room measures 33 by 33 units and offers three potential exits situated on the left, bottom, and
right sides of the room.
To successfully escape from this room, you should take into account two factors: the proximity of the
nearest exit and the number of people present.
We use (x, y) to denote the position, smaller x means top and bigger x means bottom; smaller y means
left and bigger y means right. Position (1, 1) is at the top left of the room. It is possible to move
diagonally, e.g. from (1, 1) to (2, 2) is one move to the lower right, and is faster than (1, 1)->(1,
2)->(2, 2).
Each cell can hold only one person at a time.

The exit proximity refers to the distance between your current location and the closest exit, de-
noted as {distance_to_nearest_exit}. Additionally, within your line of sight, there are a total of
{number_of_people} individuals.
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