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Abstract
Chain-of-Thought (CoT) prompting has been
shown to enhance the multi-step reasoning ca-
pabilities of Large Language Models (LLMs).
However, debates persist about whether LLMs
exhibit abstract generalization or rely on shal-
low heuristics when given CoT prompts. To un-
derstand the factors influencing CoT reasoning
we provide a detailed case study of the sym-
bolic reasoning task of decoding shift ciphers
(Andress, 2014), where letters are shifted for-
ward some number of steps in the alphabet. We
analyze the pattern of results produced by three
LLMs—GPT-4, Claude 3, and Llama 3.1—
performing this task using CoT prompting. By
focusing on a single relatively simple task, we
are able to identify three factors that system-
atically affect CoT performance: the probabil-
ity of the task’s expected output (probability),
what the model has implicitly learned during
pre-training (memorization), and the number of
intermediate operations involved in reasoning
(noisy reasoning). We show that these factors
can drastically influence task accuracy across
all three LLMs; e.g., when tested with GPT-4,
varying the output’s probability of occurrence
shifts accuracy from 26% to 70%. Overall, we
conclude that CoT prompting performance re-
flects both memorization and a probabilistic
version of genuine reasoning.†

1 Introduction

Reasoning, one of the key aspects of human in-
telligence, is the process of thinking about some-
thing logically and systematically using evidence
and past experiences to make a decision (Wason,
1968; Wason and Johnson-Laird, 1972; Fagin et al.,
2004). The impressive performance of Large Lan-
guage Models (LLMs) across a wide range of tasks
has spurred extensive research into their reason-
ing capabilities (Huang and Chang, 2023; Qiao

*Work begun while at Princeton University.
†Code and data are available at https://github.com/

aksh555/deciphering_cot.

et al., 2023). It remains unclear whether the be-
havior of these systems is based on true reasoning
or on shallow heuristics. Some results provide
evidence that LLMs are able to reason (Suzgun
et al., 2023; Lampinen et al., 2024; Saparov and
He, 2023), while others show that they still struggle
on tasks that humans can easily solve via reasoning
(Han et al., 2022; Valmeekam et al., 2023; McCoy
et al., 2023; Razeghi et al., 2022; Cao et al., 2024).

The Chain-of-Thought (CoT; Wei et al., 2022)
prompting strategy has played a significant role
in this debate. CoT involves prompting an LLM
to generate a sequence of intermediate reasoning
steps before producing the final answer, given some
in-context exemplar(s) of how to break the task into
steps. CoT and its several variants (Kojima et al.,
2022; Zhou et al., 2023; Wang et al., 2023b) have
been shown to substantially improve performance
over standard prompting. Recent works have tried
to identify which aspects of the demonstration con-
tribute to CoT’s enhanced performance (Huang and
Chang, 2023; Madaan and Yazdanbakhsh, 2022;
Jin et al., 2024), typically relying on assessing per-
formance across a wide range of tasks.

In this work, we take a different approach: we
present an extensive case study on a single task that
allows us to disentangle reasoning from memoriza-
tion. The task we selected is solving shift ciphers,
a simple type of code in which each letter is shifted
forward a certain number of positions in the alpha-
bet (Figure 1, panel 1). We choose this task because
it allows us to independently manipulate several
factors that could be relevant for characterizing how
LLMs solve reasoning tasks when prompted with
CoT: difficulty, frequency, and answer probability.

Our results suggest that CoT performance re-
flects three factors: probability, memorization, and
noisy reasoning. First, the accuracy of CoT is af-
fected by the probability of the correct output, with
more probable outputs resulting in a stronger effect
of CoT. Second, performance is higher when mem-

3710

mailto:akshblr555@gmail.com
https://github.com/aksh555/deciphering_cot
https://github.com/aksh555/deciphering_cot


Shift Cipher Task Number DomainStandard Prompting

Chain-of-Thought: Probabilistic and Memorization-Influenced Noisy Reasoning

Example: CAT FDW

GPT-4

predicted signature 
of noisy two-way 

reasoning

 input/output: text message
 prompt: only descriptionA BX Y Z C

A B C D E F

Encoding

Decoding
ROT-3

 input/output: number sequence
 prompt: description + math 
formula + demonstration

 input/output: text message
 prompt: description + demonstration

higher accuracy 
for frequently 
seen shifts 

(particularly 13)

predicted signature of 
memorization effects

Overall decoding performance 
across different probability bins

higher 
accuracy  

for 
high prob

higher accuracy 
on smaller shifts

predicted signature of 
probabilistic effects

Figure 1: Overview. (1) Task: We have LLMs decode messages written in a shift cipher, in which each letter is
shifted a fixed number of positions forward in the alphabet. (2) With standard prompting, GPT-4 performs poorly
across most shift levels. (3) However, GPT-4 scores nearly perfectly on an isomorphic task based on numbers rather
than letters. (4) With CoT prompting, GPT-4 adopts probabilistic and memorization-influenced noisy reasoning.
That is, its performance (right) combines the trends we have hypothesized for each of the three factors on the left.

orization is possible, as indicated by the frequency
of encountering different shift cipher variants dur-
ing pre-training. The effects of probability and
memorization show that CoT performance is not
fully systematic abstract reasoning. Nonetheless,
CoT performance is not solely driven by superfi-
cial heuristics: it also shows some hallmarks of true
reasoning—albeit a noisy version of true reasoning,
in which the error rate increases along with task
difficulty (where we quantify task difficulty by the
number of implicit reasoning steps involved). In
addition, we find evidence that the effect of CoT
fundamentally depends on generating sequences of
words that increase the probability of the correct an-
swer when conditioned upon; as long as this is the
case, CoT can thus succeed even when the demon-
strations in the prompt are invalid. In the ongoing
debate about whether LLMs reason or memorize
(Feldman, 2020; Zhang et al., 2023a; Magar and
Schwartz, 2022; Srivastava et al., 2024; Antoniades
et al., 2024), our results thus support a reasonable
middle-ground: LLM behavior displays aspects of
both memorization and reasoning, and also reflects
the probabilistic origins of these models.

2 Related Work

In-Context Learning in Language Models. It
has been argued that LLMs can learn a task purely
from demonstrations given in their context with-
out any additional training (Brown et al., 2020), a
phenomenon known as in-context learning (ICL).
There have been many investigations into how ICL
operates. Theoretical frameworks have modeled
the pretraining data as a mixture of Hidden Markov
Models (Xie et al., 2022) and have argued that
ICL is the result of implicit Bayesian inference
(Zhang et al., 2023b), an argument supported with
evidence from synthetic data and tasks (Chiang
and Yogatama, 2024). The emergence of ICL has
been attributed to factors including data distribu-
tional properties (Chan et al., 2022), pretraining
term frequencies (Razeghi et al., 2022), and the
creation of task vectors (Hendel et al., 2023). How-
ever, the extent to which ICL is true learning is
unclear (Pan et al., 2023; Min et al., 2022). For
example, Kossen et al. (2024) shows that ICL re-
lies on in-context label information but cannot fully
overcome preferences acquired during pre-training,
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which is evidence against the view that ICL is true
learning.

Understanding CoT. Theoretical arguments
have been formulated about how CoT improves
the expressivity (Feng et al., 2023; Li et al., 2024;
Merrill and Sabharwal, 2024) and sample complex-
ity (Li et al., 2023) of ICL. Empirical studies have
shown that CoT performance can be dramatically
influenced by many features of the CoT prompt
(Madaan and Yazdanbakhsh, 2022; Wu et al., 2023;
Jin et al., 2024); for example, the relevance and
ordering of reasoning fragments is more important
than their accuracy (Wang et al., 2023a,b; Ye and
Durrett, 2022), and minor input perturbations can
substantially bias models’ answers (Turpin et al.,
2024), suggesting that the models lack general rea-
soning abilities (Stechly et al., 2024).

Our high-level goal in this work is to character-
ize what type of reasoning happens in LLMs when
they are prompted with CoT prompting: to what
extent is CoT performance driven by abstract rea-
soning vs. simple heuristics such as memorization?
This question also implicitly underlies many of the
papers discussed above, but directly focusing on
this question leads us to investigate probability, fre-
quency, and difficulty (see Section 4)—a different
set of factors than those studied in prior work.

3 Approach

One challenge of evaluating the role of memoriza-
tion and reasoning in the performance of LLMs
is that these models are typically evaluated on a
wide range of complex reasoning tasks, whose va-
riety and complexity can obscure the factors that
drive performance. By contrast, we propose to
tease apart the factors behind the efficacy of CoT
prompting by focusing on a single relatively simple
task: deciphering text encoded with a shift cipher.

Encoding a message with a shift cipher in-
volves replacing every letter with another letter
that is some fixed number of positions (called
shift_level) forward in the alphabet; decoding
is the reverse (shifting backward) as shown in Fig-
ure 1. These are also known as rotation ciphers
since they rotate the alphabet forward some num-
ber of steps, and they are given the name rot-k
where k corresponds to shift_level. For example,
given the test word “FDW” and that rot-3 encryp-
tion has been used (shift_level = 3), decoding
involves shifting every letter 3 steps backward—
i.e., F → C, D → A, and W → T to obtain “CAT”

as the output. In our experiments, we give an LLM
a single word encoded with a shift cipher and ask
it to decode this text to recover the original word.

3.1 Motivation for using shift ciphers
Our main reason for using shift ciphers is because
they involve a sharp dissociation between task com-
plexity and task frequency (a key factor in mem-
orization). The complexity of the decipherment
task is determined by the shift level—ciphers that
require more intermediate steps are more complex.
Different shift levels also vary in their frequency
in internet text (McCoy et al., 2023), and hence in
the training data of large language models. Specifi-
cally, rot-13 is widely used in internet forums to
conceal text such as puzzle solutions and spoilers,
and rot-3 and rot-1 commonly appear in tutori-
als on decipherment (rot-3 is also known as the
Caesar cipher, having apparently been used by the
eponymous Caesar to encrypt his messages). In
addition, shift ciphers facilitate investigation of the
effect of probability because the correct answer can
be any string, allowing us to modulate the proba-
bility of that string easily. Further, the systematic
nature of the task makes it easy to generate exam-
ples and to verify correctness. Finally, decoding
each letter in the message is an independent step,
allowing us to easily analyze these individual steps.

McCoy et al. (2023) previously evaluated GPT
models on shift ciphers, focusing on standard
prompting along with some initial results using
CoT. They study the effect of only probability and
memorization, while we conduct a more extensive
investigation into LLM behavior when prompted
with CoT by additionally studying the influence
of complexity and analyzing more models. Impor-
tantly, we add nuance to their findings by arguing
for a middle-ground viewpoint that acknowledges
the LLM weaknesses identified by McCoy et al.
(2023) but also brings in novel observations that
highlight the hallmarks of true reasoning that are
present in these systems.

3.2 The effect of CoT on shift ciphers
Data. We constructed a dataset comprising 7-
letter words having exactly 2 tokens (measured
using the tokenizer used by GPT-4) to control for
confounding factors relating to tokenization. We
found all 3-letter and 4-letter tokens from the lower-
case English alphabet and formed words by consid-
ering possible combinations of 3-letter word-initial
tokens followed by 4-letter non-word-initial tokens.
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Standard

Rot-13 is a cipher in which each letter is shifted 13 positions forward
in the alphabet. For example, here is a message written in rot-13 along
with the original text that it was created from:
Rot-13 text: "fgnl"
Original text: "stay"

Decode this message to produce the original text:
Rot-13 text: <test_input>

Figure 2: Standard prompt having just the description
and demonstration.

Following McCoy et al. (2023), we compute the
log probability as the log probability that GPT-2
(Radford et al., 2019) assigns to the sentence ‘The
word is "WORD"’, minus the log probability that
it assigns to ‘The word is "’; thus, this yields the
log probability assigned to just the word and the fol-
lowing quotation mark in the context of ‘The word
is "’. The closing quotation mark is included be-
cause it indicates the end of the word. The words
were scored by their log probability and arranged
in descending order. Subsequently, five bins were
formed by selecting equidistant log probability val-
ues as centers, with bin1 having the highest proba-
bility and bin5 having the lowest probability. We
manually checked the words in this dataset and
filtered them to ensure there were no inappropri-
ate words used to obtain 150 words for each bin.
We partitioned the 150 examples into two subsets:
a subset containing 100 words used to evaluate
GPT-4, and a subset containing 50 words used to
evaluate logistic regression models that were fitted
to GPT-4’s performance on the 100-word subset.
We prepared the inputs for the models by produc-
ing the shift-cipher-encoded versions of the words
from the 5 probability bins across 25 shift levels
(1 to 25). We ran all evaluations a single time; the
accuracies that we report are accuracies over these
100-example sets.

We then assessed performance on this dataset
using a variety of different prompts:

– Standard. This is a prompt with just the de-
scription of the task and demonstration but no
reasoning steps (Figure 2).

– Text-CoT. This prompt encourages the model to
decode a message one letter at a time (Figure 3).
We chose this way of framing the CoT prompt
following McCoy et al. (2023), who tried several
variants and found this to be the best. To get
a reasoning step correct, the model must have
learned the alphabet during pre-training.

– Math-CoT. The prompt (Appendix A.1 Fig-

Text-CoT

Rot-13 is a cipher in which each letter is shifted 13 positions
forward in the alphabet. For example, here is a message written in
rot-13:
Rot-13 text: "fgnl"

To decode this message, we shift each letter 13 positions backward:
1. f -> s
2. g -> t
3. n -> a
4. l -> y
Therefore, the original text is: "stay"

Here is another message in rot-13. Decode this message one letter at
a time. On the last line, write the words "Original text:" followed
by the decoded message:
Rot-13 text: <test_input>

Figure 3: Text-CoT prompt consisting of a description
and demonstration that includes several reasoning steps.

ure 9) encourages a reasoning pipeline that in-
volves translating each letter to a number, per-
forming the shift by applying arithmetic to this
number, then converting the result back to a let-
ter. The prompt also specifies the mapping be-
tween letters and positions, eliminating the need
for the model to have internalized the positions
of the letters in the alphabet.

– Number-sequence CoT (Number-CoT). This
prompt (Appendix A.1 Figure 10) makes use
of an alternative task that is isomorphic to shift
ciphers but based in the number domain—the
input and output are number sequences instead
of letter sequences. Reasoning involves applying
arithmetic to the input elements in the number se-
quence to get a corresponding output sequence.

We ran experiments using both open and closed
source models: GPT-4 (gpt-4-0613) (OpenAI,
2023), Claude 3 (claude-3-opus-20240229) (An-
thropic, 2024), and Llama-3.1-405B-Instruct
(MetaAI, 2024). The reason for using such strong
models is that their shift cipher performance is sig-
nificantly improved by prompting with chain of
thought. Additionally, this helps us to control sev-
eral sources of extraneous errors making it easier
to focus on the task itself and isolate the factors
affecting CoT: It ensures that the format of the
demonstration is closely followed, and that copy er-
rors (errors in copying information from the prompt
such as letters from encoded text and letter-position
mappings) are rare. We set temperature to 0 and
max_new_tokens to 200.

Figure 1 provides some initial results for GPT-4.
Using standard prompts, GPT-4 gets zero accuracy
across most shift levels, but it improves substan-
tially (to an average accuracy of 32%) when Text-
CoT is used; this result replicates the finding in
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McCoy et al. (2023) that CoT is helpful for shift
ciphers but still remains far from perfect. However,
with Number-CoT, GPT-4’s performance becomes
nearly perfect (more details are in Appendix A.1).

These results paint CoT prompting in a puzzling
light. Prompting with Number-CoT showed that
GPT-4 has the core reasoning abilities that would
be needed to decode shift ciphers nearly perfectly.
Thus, if CoT prompting led to symbolic reason-
ing, GPT-4 would score perfectly. The fact that
it does not shows that CoT reasoning is not pure
symbolic reasoning. Nonetheless, it is also clear
that CoT does substantially improve over standard
prompting, so it is unlikely that CoT reasoning
can be explained away as simple memorization. If
CoT reasoning is neither simple memorization nor
pure symbolic reasoning, what is it? This question
motivates our experiments in the next section.

4 Disentangling the factors influencing
CoT performance

We consider four types of reasoning processes that
LLMs might be adopting.
(a) Symbolic reasoning is the use of discrete, de-

terministic inference rules. Shift ciphers can
be perfectly decoded with a simple symbolic
algorithm, so a system using fully systematic
reasoning should attain 100% accuracy.

(b) Noisy reasoning is like symbolic reasoning
but with the addition of noise that introduces
some possibility of each intermediate opera-
tion in a reasoning step being wrong. Thus, if
the system uses noisy reasoning, we should
see accuracy decrease as we increase the num-
ber of operations that need to be performed.
Shift ciphers let us test this possibility: by
varying shift_level, we can modulate the
number of operations that need to be per-
formed in every reasoning step and observe if
accuracy varies accordingly.

(c) Memorization is a strategy in which a sys-
tem memorizes the tasks it has encountered
in pre-training but does not generalize to new
tasks. If memorization is all that LLMs do,
we should see higher performance in the cases
that are frequently encountered during pre-
training than the ones that are not. McCoy
et al. (2023) show that 13 is by far the most
common shift level in natural corpora because
this shift level (sometimes called rot-13) is
popular in some online communities. Thus,
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Figure 4: Hypothetical accuracy vs. shift-level for
various types of reasoning. Under noisy one-way, the
model only shifts letters backward; under noisy two-
way, it adopts the shorter path between going forward
and backward. The hypothetical memorization accuracy
is based on shift level frequencies in internet corpora.
Probabilistic would involve much higher scores on high
prob than low prob.

a hallmark of memorization would be much
higher accuracy at 13 than other shift levels.

(d) Probabilistic reasoning frames a task as
choosing the output that is most probable
given the input. Such reasoning would be in-
fluenced by the prior probability of the output:
a probabilistic reasoner should show accuracy
that increases as the prior probability of the
correct answer increases.

Figure 4 illustrates the hypothetical performance
trends that would be observed in a system adopting
each reasoning approach. These approaches are
not mutually exclusive; e.g., a reasoner could be
influenced by both probability and memorization.
Indeed, as discussed below, we find that LLMs’
performance when prompted with CoT displays
hallmarks of several different types of reasoning;
see Figure 1, panel 4 for GPT-4 and Figure 11 in
the Appendix for Claude 3 and Llama 3.1.

First, accuracy generally decreases as the shift
level increases, a hallmark of noisy reasoning.
LLMs’ performance is, in particular, indicative of
a two-way version of noisy reasoning in which it
can decode a message by shifting letters forward or
backward (e.g., instead of decoding a shift of 25 by
shifting back 25 letters, it could instead shift for-
ward 1 letter, as doing so requires fewer steps); this
two-way nature shows up in the way that accuracy
increases as the shift level changes from 20 to 25.

Second, evidence of probabilistic reasoning can
be seen in the fact that accuracy is substantially
higher for high prob (the highest-probability bin,
bin 1) than low prob (the lowest-probability bin,
bin 5). High prob / low prob refer to the prob-
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ability of the words that are the correct answers
when our examples are decoded, where probability
is quantified using GPT-2 as described in Section
3.2. The “high prob” cases are common words such
as {’mariner’, ’shrines’, ’paywall’, . . . }, while the
“low prob” cases are nonsense letter sequences such
as {’xcbrouw’, ’jsxrouw’, ’levjspx’, . . . }.

Finally, although a shift level of 13 requires the
most reasoning steps of any shift level (assuming
decoding can be done forward or backward), there
is a spike in accuracy at a shift level of 13. As
discussed above, this spike is a hallmark of memo-
rization since 13 is the most common shift level in
natural corpora.

For the upcoming detailed analysis experiments,
we use GPT-4 as the main reference model, since
Claude 3 and Llama 3.1 exhibited similar trends as
GPT-4 on the evaluations presented so far.*

4.1 A simple probabilistic approach to
modeling the reasoning process

To make these intuitively-stated observations more
rigorous, we perform a logistic regression to deter-
mine the statistical significance of several factors.
The outcome variable is a binary variable indicat-
ing whether GPT-4 got the correct answer on each
example. We include the following predictors:

• input_logprob: log probability of the en-
coded input text as measured by GPT-2 (Rad-
ford et al., 2019). The inputs tend to have a very
low probability because they are enciphered.

• output_logprob: log probability of the
ground-truth output text as measured by GPT-2.

• shift_freq: we used the frequency of occur-
rence of all shift levels that McCoy et al. (2023)
provided based on analysis of the C4 corpus
(Raffel et al., 2020). The assumption is that
the distribution of shifts in C4 is similar to the
distribution in the training data for GPT-4.

• shift_level: the number of steps that must be
performed to decode each letter; this feature is
added to account for one-way reasoning.

• min (shift_level,26− shift_level): this
value is the minimum number of steps that
must be performed to decode each letter, un-
der the assumption that decoding can be done
by moving shift_level steps backward or
(26− shift_level) steps forward; as discussed
above, GPT-4 indeed shows evidence of using
both of these decoding directions.

*The detailed results of Llama-3.1-405B-Instruct and
claude-3-opus-20240229 are shown in Appendix §A.2.
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Figure 5: The logistic regression curve captures the
overall trend exhibited by GPT-4.

Several of these variables correspond to the critical
properties that are indicative of our hypothesized
reasoning processes: output_logprob should have
a significant effect if probabilistic reasoning is used,
shift_freq should have a significant effect if
memorization is used, and min(shift_level, 26−
shift_level) quantifies the difficulty of the task,
which should have a significant effect if noisy rea-
soning is used. The remaining factors are included
as potential confounds to control for. The overall
logistic regression thus took the following form:

correct ∼ input_logprob+ output_logprob

+ shift_freq + shift_level

+min(shift_level, 26− shift_level)

Logistic regression results. The fol-
lowing features had a statistically sig-
nificant effect on model performance:
output_logprob, shift_freq, shift_level, and
min(shift_level, 26 − shift_level) (p < 10−15

in all cases). These results therefore quantitatively
support the conclusion that GPT-4 incorporates
processes based on probability, memorization, and
noisy reasoning (both forward and backward).

Figure 5 shows the predictions of the logistic re-
gression compared to GPT-4’s actual performance.
The logistic regression correctly predicts the main
trends in GPT-4’s behavior (as expected, it does not
match the curve exactly due to the simplicity of the
model). In the next few subsections, we conduct
some additional experiments that investigate each
hypothesized reasoning type in more detail.

4.2 Analyzing the effect of probability
If an LLM is influenced by probability, we would
expect to occasionally observe unfaithfulness be-
tween the chain of reasoning steps produced by
the LLM and the LLM’s final answer. Specifically,
if the individual reasoning steps would point to a
final output that is low-probability, a probabilistic
reasoner might instead produce a different final an-
swer that has a higher probability. For example, in
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Figure 6: Actual overall decoding accuracy vs. faith-
ful accuracy across shift levels showing the effects of
probability. The effect is amplified for low probability
outputs as seen in the larger drop in accuracy between
the orange and blue bin 5 (low probability) lines.

our CoT experiments, each step produces one let-
ter, and these letters must be concatenated to form
the final answer. If the individual step outputs are
S, T, A, Z, the final answer should be STAZ, but a
model might instead “self-correct” by producing
the higher-probability word STAY.

Such unfaithfulness can help or hurt the model.
When the correct answer truly is a low-probability
word such as STAZ, then correcting to STAY would
reduce the model’s accuracy. However, if the model
had made a mistake during the reasoning chain—
such as by producing S, T, A, Z when the chain
should have been S, T, A, Y—then correcting to
STAY would rescue the model from its error.

To investigate unfaithfulness, we compare the
faithful accuracy that would be obtained by con-
catenating GPT-4’s step outputs to the actual over-
all accuracy. We indeed observe that overall ac-
curacy is generally lower than faithful accuracy,
illustrating that unfaithfulness occurs. Further, the
drop in accuracy is more pronounced in the low-
probability setting than the high-probability set-
ting, which is consistent with the intuition that the
lower the probability of a concatenated answer is,
the more likely it will be that a probability-reliant
model will be steered away from that answer. See
Figure 6 for the full results.

Table 1 provides a more detailed view of un-
faithfulness. Incorrect intermediate chains (i.e.,
concatenated step outputs) are followed by correct
final answers much more often in the setting where
the correct answer has a high probability (34% and
55% of the time for rot-4 and rot-13, respectively)
than in the low probability setting (1% and 19%
of the time for rot-4 and rot-13, respectively). On
the other hand, correct intermediate chains are fol-
lowed by incorrect final answers less often in the
high probability setting (7% and 1% of the time
for rot-4 and rot-13, respectively) than in the low-

Prob Chain Steps
Output

rot-4 rot-13
Correct Incorrect Correct Incorrect

High Correct 19 7 15 1
Incorrect 34 40 55 29

Low Correct 7 14 7 9
Incorrect 1 78 19 65

Table 1: Confusion matrices (100 examples; 2 probabil-
ity bins {high, low}) for rot-4 and rot-13. Effect of
memorization: incorrect step outputs lead to correct fi-
nal answers more often for rot-13 than rot-4. Effect of
probability: Unfaithfulness has a positive effect more of-
ten in high-probability bins than in low-probability bins;
Conversely, unfaithfulness has a negative effect more
often in low-probability bins than in high-probability
bins.

probability setting (14% and 9% of the time for
rot-4 and rot-13, respectively).

These results support the hypothesis that GPT-
4 over-relies on the prior probability of potential
outputs (see Jang et al. (2023) for some related
observations). If the answer has a high probability
of occurrence, the model’s priors favor generating
it even if its intermediate reasoning steps suggest
an alternative output. Conversely, if the answer
is of lower probability, then even if the chain of
reasoning is correct, the priors exert a detrimental
influence leading to incorrect final answers.

4.3 Analyzing the effects of noise

The statistically significant impact of shift_level
is evidence that GPT-4’s CoT behavior is in part
a noisy version of symbolic reasoning. Accuracy
falls as the shift level increases from 1 to 12 and
then recovers at higher shift levels (Figure 8), con-
sistent with a noisy reasoning process in which
deciphering each letter with a shift level of n in-
volves min(n, 26 − n) implicit steps, with noise
that gives each step some probability of being per-
formed incorrectly. Note that the implicit steps
referred to here are different from the steps that
are explicitly produced in the chain of thought: the
chain of thought uses one explicit step per letter
(Figure 3), but here we are discussing the opera-
tions that must be implicitly carried out within each
step of this chain in order to decode each letter.

Noise relating to complementary shift levels.
We have argued that the relation between accuracy
and shift level is evidence that GPT-4 uses a two-
way strategy. That is, accuracy is high for small
shifts such as 1 but also for large shifts such as 25,
which could plausibly be explained by GPT-4 im-
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Figure 7: Normalized frequency distribution vs. predicted shift_level of step answers for rot-20 to rot-23. The
appearance of peaks at 26− shift_level in Math-CoT and Text-CoT prompts showcases the model’s noisy attempt
in taking the shorter path—i.e., moving 26− x shifts forward.

plicitly selecting whichever direction will minimize
the number of steps it needs to compute—shifting
letters backward for small shift levels or forward
for large shift levels. This two-way strategy is ef-
fective in that it supports strong performance on
large shift levels such as 25. However, we also
observe evidence that it contributes to the noise
that causes accuracy to decline as the shift level
increases. Figure 7 shows the actual shift level
that GPT-4 produces for each letter in its chain
of thought, for each of four intended shift levels.
Across all four of these cases, GPT-4 shows peaks
at both shift_level and 26 − shift_level. Thus,
while some of the noise affecting the reasoning pro-
cess may be random, it appears that at least some
of the noise can be attributed to confusion between
possible shift levels. Decoding a shift level of n can
be done by shifting backward n steps or forward
26− n steps, but it appears that GPT-4 sometimes
mixes up these two strategies by shifting forward
n steps (or, equivalently, shifting backward 26− n
steps), contributing to the overall noise.

Discretization. Another factor that interacts with
noise is temperature. In principle, if CoT en-
tailed pure symbolic reasoning, it would assign
100% probability to the correct continuation (i.e.,
each predicted next token) and 0% probability to
everything else. If so, the temperature used would
not affect performance. However, we observe that
CoT scores better with a low temperature. For
instance, in rot-13, GPT-4’s accuracy is 30.0%
at temperature=0 and 0.33% at temperature=1.
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Figure 8: Accuracy for Text- and Math- CoT prompt
styles with GPT-4. Math-CoT performs better than Text-
CoT, but both display evidence of memorization as ac-
curacy is highest for shift level 13—the most frequent
shift in real-world corpora.

This shows that its predicted distribution over the
vocabulary is not fully discrete—it has some noise
in it that a low temperature can remove. How-
ever, even a temperature of 0 does not make the
performance perfect because noise does not solely
arise in the final distribution over the vocabulary
(which temperature modifies) but also influences
the implicit intermediate steps used to produce that
distribution (which temperature does not change).

4.4 Analyzing the effect of memorization

To further investigate memorization, we focus
on rot-13, because frequency is generally con-
founded with simplicity for the other shift levels
(e.g., rot-1 is simple as well as frequent). 13 is the
most frequent shift level (McCoy et al., 2023), and
we observe in Figure 8 that GPT-4 shows a spike
in accuracy at this shift level in both Text-CoT and
Math-CoT, providing strong evidence that memo-
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rization plays a role in GPT-4’s CoT performance.
We also observe that memorization influences

unfaithfulness. Consider the cells in Table 1 that
involve incorrect chain steps outputs but correct
final answers; such cases are much more common
for rot-13 than for other levels, including rot-4
(the other shift level shown in that table); e.g., in
the high-probability case, 55% of rot-13 examples
fall in this category, while only 34% of rot-4 exam-
ples do. This pattern also provides some evidence
for memorization: for rot-13, the model may have
two “paths” for producing the final output—it could
use the chain of thought it has produced, or it could
go directly from the input to the output due to mem-
orization. Thus, when it produces the final output,
it might implicitly weigh both of those paths, which
helps it to correct faulty chains because it has a
back-up path to consider. However, for rot-4, it
may be that only the path involving the chain of
thought is available, such that GPT-4 cannot fix
incorrect chains as easily because it does not have
this alternative path to fall back on.

4.5 The role of intermediate reasoning steps

Finally, we study the role of the intermedi-
ate reasoning steps that are involved with CoT
prompting—both the chain that GPT-4 produces
and the chain provided in the demonstration.

Strong reliance on the surface strings produced
in reasoning steps. First we focus on the chain
of thought that GPT-4 produces before providing
its final answer. We consider two potential roles
that this chain could have. First, it could be that
the chain is helpful because it provides text that
is useful for GPT-4 to condition on in later steps.
Alternatively, it could be that the critical aspect of
CoT reasoning is internal—rather than depending
on the text that is produced, CoT could be help-
ful because it gives the LLM the opportunity to
internally perform additional reasoning steps.

To disentangle these possibilities, we modify the
prompt so that GPT-4 is told to perform the same
steps of reasoning as before, but to have the inter-
mediate output that it produces be uninformative.
Specifically, we used the Text-CoT prompt but in-
structed the model to not reveal step answers and
instead output a *. The step answers in the demon-
stration were also replaced by ‘*’; thus we left the
format of reasoning intact but the expected gen-
eration token was no longer a component of the
final answer. Next, we asked the model to explic-

itly think about the correct letter that should go
in the place of the * but just not write it down. In
the demonstration, we first provided an example
with all step answers and then repeated the same
example but with a * in place of each output letter
(see Appendix A.3 Figure 12 for prompts).

In both settings, performance was similar to that
of the standard prompting variant (shown in Fig-
ure 1, panel 2). This is evidence that CoT depends
on “self-conditioning”—explicitly producing text
that will be useful as context to condition on when
producing the final answer. Merely instructing a
model to “think” silently is not helpful, suggesting
that the reasoning does not occur internally. These
results corroborate prior work finding that CoT is
unhelpful when the model is told to produce con-
tentless “filler” tokens instead of contentful text
(Lanham et al., 2023); models can reason internally
when explicitly trained to do so (Pfau et al., 2024),
but current LLMs without this explicit training do
not seem to have this ability.

Little reliance on the validity of the demonstra-
tion. In experiments described in Appendix A.3,
we also find that the validity of the reasoning shown
in the prompt does not have a strong effect of CoT
performance for shift ciphers. That is, even when
the demonstration is perturbed such that it contains
many errors, GPT-4’s CoT performance remains
approximately the same. This finding corroborates
prior work showing that the validity of demonstra-
tions did not matter much (Wang et al., 2023a;
Madaan and Yazdanbakhsh, 2022; Ye et al., 2023);
the demonstration seems to merely guide the model
to solve the task by providing a format to generate
accurate reasoning steps (Min et al., 2022).

5 Conclusion

We have used the case study of shift ciphers to dis-
entangle the factors that influence CoT reasoning,
with a focus on characterizing what type of rea-
soning is used in models prompted with CoT. We
found that CoT performance is statistically signifi-
cantly influenced by the probability of occurrence
of the expected task output, the frequency of the
task in corpora, and the number of reasoning steps
that must be (implicitly) performed. These results
suggest that CoT reasoning can be characterized as
probabilistic, memorization-influenced noisy rea-
soning, meaning that LLM behavior displays traits
of both memorization and generalization.
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Limitations

We have conducted extensive studies on a single
task, decoding shift ciphers; we chose this task be-
cause it enables us to separate memorization from
reasoning in a controlled manner as explained in
Subsection 3.1, and these factors cannot be easily
disentangled for most other tasks. Our prompts
contain one example demonstration (i.e. one-shot
CoT prompting), but a single demonstration con-
tains multiple reasoning steps which provide more
than just one reference of decoding to the model. In
addition, while our experiments showed that these
frontier models display some hallmarks of true rea-
soning, they also showed some ways in which they
make errors due to a reliance on memorization
and probability; future work could investigate how
these limitations could be overcome.

Ethical Considerations

We do not believe that this work raises major po-
tential risks. As is the case with any analysis work,
there is some risk that our results could lead some
readers to overestimate or underestimate the abili-
ties of LLMs, either of which could have negative
consequences: overestimation can contribute to
hype, while underestimation can result in the field
paying too little attention to potential harms. How-
ever, we believe that this risk is minimal because
we have aimed to present our results in a balanced
way that highlights both strengths and limitations.
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Math-CoT

Rot-13 is a cipher in which each letter is shifted 13 positions forward
in the alphabet. For example, here is a message written in rot-13:
Rot-13 text: "fgnl"

To decode this message, we need to shift each letter 13 positions backward.
Let’s start by writing the position-letter mapping for the alphabet:
a -> 0
b -> 1
· · ·

Next, we find the encoded letter as follows:
Position of original letter = (Position of given letter - 13) mod 26

Then map the found position to the corresponding letter using the
letter-position mapping.

Using this,
1. f -> (5 - 13) mod 26 = 18 -> s
2. g -> (6 - 13) mod 26 = 19 -> t
3. n -> (13 - 13) mod 26 = 0 -> a
4. l -> (11 - 13) mod 26 = 24 -> y
Therefore, the original text is: "stay"

Here is another message in rot-13. Decode this message one letter at a
time. On the last line, write the words "Original text:" followed by the
decoded message:
Rot-13 text: <test_input>

Figure 9: Math-CoT prompt.

A Additional Details & Experiments

A.1 Math- & Number- CoT prompts

While the Standard prompt (Figure 2) yields poor
performance on most shift levels, the Number-CoT
prompt (Figure 10) in contrast gives nearly per-
fect scores across the shift levels. It is to be noted
that some miscellaneous noise is captured in the
Number-CoT case. This arises mostly due to in-
complete generations/half-completed chains requir-
ing more tokens than needed as the model does
some additional sub-reasoning steps, and in very
rare cases produces numbers greater than 25. The
Math-CoT prompt used is shown in Figure 9.

A.2 Results with Llama 3.1 and Claude 3

We display the results with Llama 3.1 and Claude
3 when prompted with standard prompts and Text-
CoT in Figure 11. Interestingly, Llama 3.1 was
trained on CoT data, such that even when it is
prompted with standard prompts it generates rea-
soning steps. However, as we can see from Fig-
ure 11, with Text-CoT there is a further enhance-
ment in scores across the shift levels. Overall,
both models display trends similar to that of GPT-4
shown in Figure 1.

A.3 Impact of producing explicit reasoning
steps and validity of steps in
demonstration.

Figure 12 shows the prompts used to test the im-
portance of producing explicit reasoning steps by
forcing the model to “think” silently.

Number-CoT

Shift-13 is a process in which each number is shifted 13 positions
forward until it reaches 26 and subsequently circles back to 1. For
example, here is a sequence of numbers written in shift-13:
shift-13 sequence: "5,6,13,11"

To decode this sequence, we need to shift each number 13 positions
backward.
New position = (Given position - 13) mod 26

Using this,
1. 5 -> (5 - 13) mod 26 -> 18
2. 6 -> (6 - 13) mod 26 -> 19
3. 13 -> (13 - 13) mod 26 -> 0
4. 11 -> (11 - 13) mod 26 -> 24

Therefore, the original sequence of numbers is: "18,19,0,24"

Here is another sequence of numbers in shift-13. Decode this sequence one
number at a time. On the last line, write the words "Original sequence:"
followed by the decoded sequence:
shift-13 sequence: <test_input>

Figure 10: The shift cipher task reformatted to be per-
formed in the domain of numbers rather than the domain
of letters (Number-CoT). Here both the encoded input
and decoded output are number sequences abstracting
out the alphabet and its influences.

Outputs from silent thinking. We observe that
many of the outputs produced in the case when
the reasoning step answers are * are related to the
task of shift ciphers. It seems that the model now
relies on terms such as cipher and decode that are
present in the description, perhaps relying less on
the reasoning steps because these reasoning steps
are now less informative given that each step’s out-
put is now *. Influenced by the probabilistic effects
discussed before it produces outputs having a high
probability and containing words related to secu-
rity, safety, and programming such as encryption,
code cracker, decoded, Javascript, and Instagram.

Validity. Next we consider the chain that is pro-
vided to GPT-4 within the prompt. Prior work has
found that the validity of the reasoning shown in the
prompt does not have a strong effect on CoT perfor-
mance; CoT is approximately as helpful when the
chain of thought in the prompt contains errors as
when it does not (Wang et al., 2023a; Madaan and
Yazdanbakhsh, 2022; Ye et al., 2023). Here we test
whether this observation extends to shift ciphers.

We first tried applying random corruptions to the
steps in the demonstration. Each step answer in the
demonstration was replaced by a random letter; the
format of the chain was left unchanged, with only
the produced letters being modified. We also tried
applying systematic corruptions by having the lin-
guistic description of the task specify rot-13 yet
having the demonstration illustrate rot-14. Fig-
ure 13 shows the prompts used.

With both corruptions, GPT-4’s performance re-
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Figure 11: Accuracies with Claude 3 and Llama 3.1. The top panel shows the performance when prompted with
Standard prompting. The bottom panel shows the trend with Text-CoT. The shaded regions indicate the gap between
the low and high probability bins.

Hidden reasoning steps

Rot-13 is a cipher in which each letter is shifted 13 positions forward in the alphabet. For example, here is a message written in rot-13:
Rot-13 text: "fgnl"

To decode this message, we shift each letter 13 positions backward; but instead of revealing what each letter becomes, we will replace it with a ’*’
until we write the final answer:
1. f -> *
2. g -> *
3. n -> *
4. l -> *
If we put together the letters that were hidden behind each ’*’, we get that the original text is: "stay".

Here is another message in rot-13. Decode this message one letter at a time. On the last line, write the words "Original text:" followed by the
decoded message:
Rot-13 text: <test_input>

Partially hidden reasoning steps

Rot-13 is a cipher in which each letter is shifted 13 positions forward in the alphabet. For example, here is a message written in rot-13:
Rot-13 text: "fgnl"

To decode this message, we shift each letter 13 positions backward:
1. f -> s
2. g -> t
3. n -> a
4. l -> y

But, in order to preserve secrecy, we will ask you to write your answer in a slightly different way: Instead of revealing what each letter becomes,
we will replace it with a ’*’ until we write the final answer. Using this format, the reasoning shown above becomes:
1. f -> *
2. g -> *
3. n -> *
4. l -> *

Therefore, the original text is: "stay"

Here is another message in rot-13. Decode this message one letter at a time. As you produce each ’*’, we want you to still think about the correct
letter that should go in the place of the star - just don’t write it down. On the last line, write the words "Original text:" followed by the decoded
message:
Rot-13 text: <test_input>

Figure 12: Text-CoT prompt consisting of hidden (top) and partially hidden (bottom) reasoning steps.
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1. Text-CoT: rot-13 description with rot-14 demonstration

Rot-13 is a cipher in which each letter is shifted 13 positions forward in the alphabet. For example, here is a message written in rot-13:
Rot-13 text: "ghom"

To decode this message, we shift each letter 13 positions backward:
1. g -> s
2. h -> t
3. o -> a
4. m -> y
Therefore, the original text is: "stay"

2. Math-CoT: rot-13 description with rot-14 demonstration

Rot-13 is a cipher in which each letter is shifted 13 positions forward in the alphabet. For example, here is a message written in rot-13:
Rot-13 text: "ghom"

Using this,
1. g -> (6 - 14) mod 26 = 18 -> s
2. h -> (7 - 14) mod 26 = 19 -> t
3. o -> (14 - 14) mod 26 = 0 -> a
4. m -> (12 - 14) mod 26 = 24 -> y
Therefore, the original text is: "stay"

3. Random corruptions in demonstration

Rot-13 is a cipher in which each letter is shifted 13 positions forward in the alphabet. For example, here is a message written in rot-13:
Rot-13 text: "fgnl"

To decode this message, we shift each letter 13 positions backward:
1. f -> w
2. g -> a
3. n -> b
4. l -> i
Therefore, the original text is: "stay"

Figure 13: Prompt snippets with different types of mismatches/corruptions. The corruptions that were introduced
are highlighted in yellow.

mained approximately as strong as when it was
given accurate, uncorrupted demonstrations. This
result corroborates the aforementioned prior work
that found no strong correlation between the va-
lidity of the reasoning shown in the demonstration
and the model performance. The demonstration
seems to merely guide the model to solve the task
by providing a format to generate accurate reason-
ing steps (Min et al., 2022).
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