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Abstract

Adapting pretrained models to downstream
tasks is important in practical applications. Ex-
isting frameworks adapt from an initial pre-
trained model to each downstream task directly,
but ignore the sequential nature of the down-
stream tasks and their feedback effect on the
pretrained model. In this work, we propose a
new framework, called BiKT, to enable bidirec-
tional knowledge transfer between pretrained
models and downstream tasks in rounds. We
model each downstream task in the current
round as a target task for adaptation and treat all
the tasks in the previous rounds as source tasks
for feedback. We design a feedback algorithm
by multi-task learning over the labeled data of
the source tasks, where task-specific prompts
are plugged into the backbone network for de-
coupling task-exclusive knowledge from task-
shared knowledge. We further utilize the good
initiation of the new backbone network updated
in the feedback phase and the trained prompts
of the source tasks for adaptation. Evaluation
over 9 GLUE datasets, 6 SuperGLUE datasets,
and 8 other datasets using models with differ-
ent pretraining levels and different parameter
scales shows remarkable improvement in full-
shot and few-shot adaptation settings.

1 Introduction

Language models are initially pretrained on a di-
verse corpus and then adapted to various down-
stream tasks in practical applications. Finetuning
(Radford et al., 2018) and prompt tuning (Lester
et al., 2021) are two typical and widely used adap-
tation methods. In particular, finetuning updates
all the parameters of a pretrained language model,
shifting the whole backbone network towards a spe-
cific downstream task. In contrast, prompt tuning
freezes the backbone network and tunes a small
number of parameters inserted to the pretrained
model for each downstream task.

*C. Niu is the corresponding author (rvince@sjtu.edu.cn).

As shown in Figure 1a, the current pretrain-then-
tune paradigm directly adapts a pretrained model
to each downstream task, which is a one-time and
unidirectional knowledge transfer. Multiple down-
stream tasks are treated independently as different
ending points with the initial pretrained model as
the same starting point of adaptation. Nevertheless,
in practice, the deployment requirements of the pre-
trained model in different application scenarios are
raised over time rather than all at once. Therefore,
as depicted in Figure 1b, the downstream tasks
should come in a sequential way, and a certain task
for adaptation has some available previous tasks
that have been adapted to ahead of this task.

In this work, we consider how to enable the bidi-
rectional knowledge transfer between a pretrained
model and downstream tasks. Such a problem is
well-motivated. On the one hand, different from
pretraining over public corpus, the downstream
tasks in practical applications directly serve a large
scale of users and receive their feedback, thereby
generating massive fresh labeled samples. These
high-quality samples can be exploited to contin-
uously improve the generalization ability of the
pretrained model in the real open world. On the
other hand, the pretrained model, which has been
optimized over previous downstream tasks, can be-
come a better starting point of adaptation to the
current task, facilitating knowledge transfer from
upstream to downstream in the sequence of tasks.

To deal with the problem above, we propose a
new framework, called BiKT, including the feed-
back phase from sequential downstream tasks to
pretraining and the adaptation phase from pretrain-
ing to downstream tasks, thereby boosting the gen-
eralization ability of the pretrained model and im-
proving the adaptation performance. We first model
the sequential nature of downstream tasks in dif-
ferent rounds. We call a certain task in the current
round to be adapted to as the target task and treat
the tasks ahead of the target task in the previous
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Figure 1: Unidirectional adaptation to each downstream task independently in conventional finetuning and prompt
tuning frameworks (left) vs. Bidirectional feedback and adaptation between a pretrained model and sequential
downstream tasks in the proposed BiKT (right).

rounds as the source tasks for feedback. We then
design a multi-task feedback algorithm over the
source tasks for the pretrained model with trainable
prompts in an incremental way. The newly inserted
prompts are task-specific, whereas the backbone
network of the pretrained model is task-shared,
eliminating the interference of task-specific knowl-
edge on the generalization of the pretrained model.
After feedback, we further leverage the latest back-
bone network and the trained prompts of the source
tasks from the feedback phase as good model ini-
tialization for adapting to target tasks.

We summarize the key contributions as follows:

• We, for the first time, formulate the bidirec-
tional relationship between a pretrained model
and downstream tasks under the sequential
modeling of downstream tasks. In contrast,
existing pretrain-then-tune work did not have
the feedback phase and studied only the unidi-
rectional adaptation from the initial pretrained
model to each individual downstream task.

• We propose BiKT, comprising (1) a multi-task
feedback algorithm over downstream tasks
with task-specific prompts to decouple task-
exclusive and task-shared knowledge, while
enhancing the pretrained model by absorbing
task-shared knowledge; and (2) an adaptation
algorithm based on the new pretrained model
from the feedback phase for initialization.

• We extensively evaluate BiKT using 23 pub-
lic datasets with sub-billion scale models (i.e.,
BERT-base and RoBERTa-base) and billion
scale models (i.e., Qwen1.5 and Phi-1.5).
Evaluation results reveal that BiKT outper-
forms vanilla prompt tuning and finetuning by
more than 5.8% and 1.4%, respectively.

2 Related Work

In this section, we briefly review related work.

Downstream Task Adaptation. Existing full pa-
rameter finetuning methods and parameter-efficient
finetuning methods (e.g., prompt tuning (Lester
et al., 2021), LoRA (Hu et al., 2022), (IA)3 (Liu
et al., 2022), BitFit (Zaken et al., 2022)) mainly
focused on one-step adaptation and started from
the initial pretrained model and end at each individ-
ual downstream task, failing to leverage historical
tasks to boost the performance of the pretrained
model when adapting to new tasks.

For the setting of multiple downstream tasks,
one line of work (Vu et al., 2022; Asai et al., 2022;
Wang et al., 2023b) adopted multi-task learning to
learn a task-shared prompt from source tasks as
good initialization when adapting to target tasks
with prompt tuning, but kept the backbone net-
work unchanged. In contrast, BiKT executes in
rounds, not only initializing the prompts for each
target task with the learnt prompts of source tasks
but also adopting the new backbone network op-
timized in the feedback phase. Another line of
work (Wei et al., 2022; Sanh et al., 2022) pro-
posed multi-task instruction finetuning with dif-
ferent manual prompts for different downstream
tasks, enabling the pretrained model to follow hu-
man instructions more effectively. These work ide-
ally requires downstream tasks to arrive all at once.
In contrast, BiKT models the practical sequential
nature of downstream tasks and supports feedback
and adaptation in rounds. The feedback algorithm
of BiKT also takes task-specific soft prompts rather
than manual hard instructions.

Continual Learning. The original goal is to
memorize both old tasks and new tasks (Wang
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et al., 2023a). Existing work proposed regular-
ization (Liu et al., 2021), rehearsal (Rebuffi et al.,
2017), or parameter freezing (Wang et al., 2022)
to avoid catastrophic forgetting of the old tasks. In
contrast, the goal of the feedback phase in BiKT is
to memorize task-shared knowledge into the back-
bone network for better adaptation performance,
rather than to memorize specific old/source tasks.

Another variant is continual pretraining. Exist-
ing work proposed to continuously add newly ac-
quired unlabeled data for pretraining (Gururangan
et al., 2020; Ke et al., 2023; Cossu et al., 2022) or
incrementally apply unsupervised pretraining ob-
jectives (Sun et al., 2020). In contrast, BiKT mines
task-shared knowledge from the labeled data with
different distributions from downstream tasks.

3 Problem Formulation

We formulate the problem of bidirectional knowl-
edge transfer between a pretrained model and se-
quential downstream tasks, including the feedback
link from the downstream tasks to the pretrained
model and the adaptation link from the pretrained
model to the downstream tasks.

3.1 Sequential Downstream Tasks Modeling

We let 1, 2, . . . , T denote T rounds of downstream
tasks in total. In round t, a batch of nt downstream
tasks come, and their corresponding datasets are
denoted as Dt = {Dt

1, D
t
2, ..., D

t
nt
}. We let Dt

i =

(Xt
i,Y

t
i) = {xtij , ytij}

mt
i

j=1 denote the dataset of the
i-th downstream task in round t with mt

i samples in
total, where xtij and ytij denote the feature vectors
and the label of the j-th sample. For a certain down-
stream task with its dataset T t

i = Dt
i ∈ Dt, we call

it the target task to be adapted to, while calling the
tasks ahead of the target task in the previous t− 1
rounds as the source tasks for feedback, the datasets
of which are denoted as St = {D1,D2, ...,Dt−1}.

3.2 From Downstream Tasks to Pretraining

We first consider how to exploit source tasks to
improve the pretrained model before target task
adaptation. We let Θ0 denote the initial pretrained
model and let Θt denote the new pretrained model
in round t. We formulate the sequential feedback
problem of downstream tasks on the pretrained
model round by round as follows.

In round 1, there is no source task (i.e., S1 = ∅),
and the pretrained model is not updated (i.e., Θ1 =
Θ0). Then, in round 2, given the source tasks with

the datasets S2, the goal is to design a feedback
algorithm F that takes the pretrained model Θ1 and
S2 as inputs and outputs a new model

Θ2 = F (S2; Θ1), (1)

which enhances the generalization ability over tar-
get tasks. In round 3, the new pretrained model
Θ2 is further updated to Θ3 with the source task
datasets S3. Following the same reasoning, in
round t, Θt−1 functions as the starting model and
is updated to

Θt = F (St; Θt−1). (2)

In fact, the feedback algorithm needs to continu-
ously update the pretrained model with the datasets
of new downstream tasks, where the starting model
for feedback in the current round comes from the
ending model that has been optimized over the
source tasks in the previous rounds. In contrast,
there was no feedback phase in the conventional
adaptation paradigm, where the source tasks were
not exploited to update the pretrained model in
each round (i.e., ∀t,Θt = Θ0).

3.3 From Pretraining to Downstream Tasks

We then consider how to adapt to the dataset of
each target task T t

i in round t. The adaptation
should be based on the new pretrained model Θt

obtained from the feedback phase. In contrast, con-
ventional adaptation paradigm starts from the initial
pretrained model Θ0.

Intuitively, as shown in Figure 1a, existing adap-
tation methods, such as finetuning and prompt tun-
ing, directly go from the initial pretrained model to
each target task by ignoring the source tasks in the
previous rounds, implying that each downstream
task is independent from all the other tasks. In
contrast, as shown in Figure 1b, this work adopts
sequential task modeling, and for each target task,
all the previous tasks are exploited in the feedback
phase, thereby improving adaptation performance.

4 Design of BiKT

4.1 Design Objective

The workflow of BiKT is depicted in Figure 2. The
key design goal is to boost the pretrained model
with historical downstream tasks (i.e., source tasks)
in sequence to generalize better on new down-
stream tasks (i.e., target tasks).
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Figure 2: General workflow of BiKT. For the feedback
phase of BiKT (left), multiple source tasks are used to
update the task-shared backbone network and the task-
specific prompts of source tasks from current round.
For the adaptation phase of BiKT (right), the model ini-
tialization is from feedback phase, and different tuning
methods can be applied.

To design the feedback algorithm F for the
source tasks on the pretrained model, we first in-
troduce the optimization objective. In round t, the
starting model Θt−1 from the previous round will
be optimized over the datasets of the source tasks
St = {D1,D2, ...,Dt−1} = {(Xk

i ,Y
k
i )

i=nk
i=1 |k =

1, 2, . . . , t− 1}, formally,

max
∆Θt

t−1∏

k=1

nk∏

i=1

P
(
Yk

i |Xk
i ; Θ

t−1 +∆Θt
)
. (3)

where ∆Θt denotes the model update of Θt−1. The
new model Θt = Θt−1 +∆Θt with the feedback
of the source tasks not only serves as the initial-
ization for adapting to each target task in round
t as follows, but also will function as the starting
model of the feedback algorithm in round t + 1.
During the whole feedback process, to decouple
task-shared knowledge from task-specific knowl-
edge, task-specific prompts can be plugged into the
backbone network for different source tasks.

Then, for a certain target task T t
i = Dt

i =
(Xt

i,Y
t
i) ∈ Dt in round t, the objective of the

adaptation algorithm is

max
∆Θt

i

P (Yt
i |Xt

i; Θ
t +∆Θt

i), (4)

where ∆Θt
i denotes the model update of Θt for T t

i .
From the objective functions, we can see that

the feedback algorithm is essentially a multi-task
learning process over the source tasks, while the
adaptation algorithm is a single-task tuning process
for each individual target task. For each round with
a batch of downstream tasks, the latest model af-
ter the feedback process can be immediately used
for adaptation and also helps to restart the next

Algorithm 1 Feedback of Source Tasks

Require: Source tasks in round t: St =
{D1,D2, . . . ,Dt−1}; Backbone network up-
dated in round t − 1: Θt−1; Already learnt
prompts for the downstream tasks in previous
t− 2 rounds: {Φk

i |i=nk
i=1 , k = 1, . . . , t− 2}

1: Randomly mix the training data from St;
2: Insert prompts for each source task;
3: Initialize the backbone network with Θt−1;
4: if t ≥ 2 then
5: Initialize the prompts of the downstream

tasks in previous t − 1 rounds with
{Φk

i |i=nk
i=1 , k = 1, . . . , t − 2}, and freeze

these prompts;
6: end if
7: Freeze the word embedding layer;
8: Train the model with the mixed data.

feedback process, enabling bidirectional knowl-
edge transfer between a pretrianed model and the
downstream tasks.

4.2 Feedback with Trainable Prompts

The input data of the feedback algorithm F are
the random mixture of the datasets of the source
tasks. The backbone networks take the Transformer
encoder architecture for discriminative models (De-
vlin et al., 2019; Liu et al., 2019) and the decoder-
only architecture for generative models (Bai et al.,
2023; Li et al., 2023). Classification headers are
added for discriminative models to identify differ-
ent kinds of labels from different tasks, but are not
required for generative models since both inputs
and labels of samples are transformed into plain
text format.

During the feedback phase, pretrained backbone
network is finetuned over the mixed downstream
tasks. However, not all the knowledge of a task is
helpful for the others. Our goal is to accumulate
the general knowledge shared by different source
tasks. To separate task-specific knowledge from
task-shared knowledge, we introduce soft prompts
for each source task. In particular, the task-specific
prompt is prepended to the input embeddings of
the backbone network. Therefore, in round t, the
full model comprises the task-shared backbone net-
work Θt−1 and the prompts for the source tasks
St, including the trainable prompts for nt−1 down-
stream tasks in round t−1, denoted as Φt−1

i |i=nt−1

i=1 ,
and the already trained and now frozen prompts
for tasks in previous t − 2 rounds, denoted as
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Algorithm 2 Adaptation to Target Tasks

Require: A target task in round t: T t
i = Dt

i ; Back-
bone network updated in round t: Θt; Learnt
prompts for downstream tasks in previous t−1
rounds: {Φk

i |i=nk
i=1 , k = 1, . . . , t− 1}

1: Insert prompt for T t
i ;

2: Initialize the backbone network with Θt;
3: Initialize the prompt with

Φt
i =

t−1∑

k=1

nk∑

i=1

1∑t−1
k=1 nk

Φk
i ;

4: (Optional) Freeze the backbone network;
5: Train the model with Dt

i .

{Φk
i |i=nk

i=1 , k = 1, . . . , t − 2}. To achieve more
stable learning of prompts, we freeze the word em-
bedding layer of backbone network.

The training loss for discriminative models is

−
t−1∑

k=1

nk∑

i=1

mk
i∑

j=1

logP (ykij |xkij ; Θt−1,Φk
i ), (5)

where (xkij , y
k
ij) denotes a labeled sample from the

i-th task in round k, and the task-specific prompt
Φt−1
i is updated only over the dataset of the i-th

downstream task in round t− 1. The loss function
for generative models is

−
t−1∑

k=1

nk∑

i=1

mk
i∑

j=1

log

|ykij |∏

w=1

P (ykijw|xkij , ykij,<w;

Θt−1,Φk
i ),

(6)

where ykijw denotes the w-th word in the label ykij ,
ykij,<w denotes the words ahead of the w-th word,
and |ykij | denotes the size of words in ykij .

We summarize the feedback design in Algo-
rithm 1. The time complexity of T -round feed-
back is O(Tn), where n =

∑T
t=1 nt denotes the

total number of downstream tasks. Please refer to
Appendix A for detailed analysis.

4.3 Feedback-Based Model Adaptation
In round t, after getting the new backbone network
Θt based on the feedback algorithm, we use it as
an initialization to adapt to each target task. For
the target task with the dataset T t

i = Dt
i ∈ Dt,

we still insert the task-specific prompt Φt
i ahead of

the input embeddings of the backbone network. In

Round 1 Round 2 Round 3

Task #Train Task #Train #Valid Task #Train #Valid

COLA 8551 BoolQ 9427 3270 ANLI-R1 16946 1000
MNLI 392702 CB 250 56 ANLI-R2 45460 1000
MRPC 3668 COPA 800 200 ANLI-R3 100459 1200
QNLI 104743 MultiRC 27243 4848 SciTail 23587 1304
QQP 363846 RTE 2490 277 WinoGrande 10234 1267
RTE 2490 WiC 5428 638
SST-2 67349 SNLI 549367 9842
STS-B 5749 PAWS 49401 8000
WNLI 635 IMDB 25000 25000

Table 1: The statistics of the datasets for the source
tasks and the target tasks in the evaluation.

addition to the random initialization way in vanilla
prompt tuning, the prompt Φt

i of the target task
can leverage the learnt prompts of the source tasks,
namely, {Φk

i |i=nk
i=1 , k = 1, . . . , t− 1}. Empirically,

averaging all the learnt prompts is a simple but
effective way for initialization, formally,

Φt
i =

t−1∑

k=1

nk∑

i=1

1∑t−1
k=1 nk

Φk
i . (7)

Then, the adaptation to the target task can be
achieved by finetuning both the backbone network
and the task-specific prompt or freezing the back-
bone network and only tuning the prompt, denoted
as BiKTFT and BiKTPT, respectively. The loss
functions for the adaptation algorithm are the same
as those in the feedback algorithm above.

We summarize the adaptation design in Algo-
rithm 2. Compared with vanilla prompt tuning or
finetuning to the target task, the key difference is
the good initialization for both the backbone net-
work and the task-specific prompt from the feed-
back algorithm over the source tasks, which is im-
portant in both full-shot and few-shot settings.

5 Evaluation

We evaluate BiKT over a wide range of down-
stream tasks using various pretrained models.

5.1 Experimental Setups
Datasets. We take 23 nature language datasets
for downstream tasks, including CoLA, SST-2,
MRPC, STS-B, QQP, MNLI, QNLI, RTE, and
WNLI from the GLUE benchmark (Wang et al.,
2018); BoolQ, CB, COPA, MultiRC, RTE, and
WiC from the SuperGLUE benchmark (Wang et al.,
2019); SNLI (Bowman et al., 2015); PAWS-Wiki
(Zhang et al., 2019); IMDB (Maas et al., 2011);
ANLI (Nie et al., 2020); SciTail (Khot et al., 2018);
and WinoGrande (Sakaguchi et al., 2020). The de-
fault sizes of the training set and the validation set

3160



for each dataset are listed in Table 1. The detailed
task types and data distributions of all tasks are
listed in Table 8.

Pretrained Models and Prompts. We take dif-
ferent pretrained models with varying sizes, includ-
ing BERT-base with 109M parameters, RoBERTa-
base with 125M parameters, Qwen1.5-1.8B with
1.8B parameters, and Phi-1.5 with 1.3B parame-
ters. All the pretrained checkpoints are loaded
from huggingface1. For each task-specific prompt,
the default size is set to 20.

Task Configuration. For the discriminative mod-
els of BERT and RoBERTa, all the downstream
tasks are transformed into classification tasks, ex-
cept for STS-B, which is treated as a regression
task. The corresponding multi-task learning archi-
tecture shares the bottom network layers and adds
task-specific headers at the top. For the generative
models of Qwen and Phi, all the downstream tasks
are cast as text generation, following the text-to-
text approach (Raffel et al., 2020). The correspond-
ing multi-task learning architecture shares the same
model without headers. We directly evaluate the
accuracy of the generated text, rather than using the
output logits of language modeling head for preset
labels (Gao et al., 2023).

We divide the downstream tasks and their
datasets into three rounds. Since the order of
raising the deployment requirements of pretrained
model in application scenarios is natural, we allow
each round to involve different types of tasks. In
particular, round 1 involves 9 datasets from GLUE
as target tasks; round 2 involves SNLI, PAWS,
IMDB, and 6 datasets from SuperGLUE as tar-
get tasks, and the source tasks are from round 1;
and round 3 involves 3 ANLI datasets, SciTail, and
WinoGrande as target tasks, and the source tasks
are from round 1 and round 2. For few-shot (i.e.,
K-shot) learning in the adaptation to each target
task, we randomly choose K training samples in
total uniformly from different classes. We consis-
tently use the full validation set of each target task
to evaluate the model performance.

Baselines. We introduce the following baselines
for comparison: (1) Finetuning (FT), which tunes
the initial pretrained model over each target task’s
training set; (2) Finetuning with Prompt (FTPT),
which plugs the randomly initialized prompt to
the backbone network of the initial pretrained

1https://huggingface.co

model and tunes both the backbone network and
the prompt over each target task’s training set; (3)
Prompt Tuning (PT) (Lester et al., 2021), which
differs from FTPT in that only the prompt is tuned
while the backbone network is frozen; and (4)
Prompt Tuning with Multi-Task Learning Ini-
tialization (PTMT) (Vu et al., 2022), which differs
from PT in that the initialization of each target
task’s prompt is a shared prompt learnt over multi-
ple source tasks.

To validate the extensibility of BiKT, we also
replace PT or FT in the adaptation algorithm of
BiKT with parameter-efficient finetuning methods:
(5) LoRA (Hu et al., 2022), which injects low rank
decomposition matrices into each layer of the back-
bone; (6) (IA)3 (Liu et al., 2022), which scales
activations by learned vectors; and (7) BitFit (Za-
ken et al., 2022), which only tunes the bias terms.

Comparison Fairness We note that all exist-
ing methods followed the conventional adaptation
paradigm that considered the unidirectional adapta-
tion from a pretrained model to each downstream
task independently. Thus, depending on whether
there is a feedback phase before adaptation, we can
classify the baselines we used into two categories
for fair comparison.

The first category of baselines, including FT,
FTPT, PT (Lester et al., 2021), LoRA (Hu et al.,
2022), (IA)3 (Liu et al., 2022), and BitFit (Za-
ken et al., 2022), followed the conventional adapta-
tion paradigm, which directly adapted a pretrained
model to each downstream task without feedback.
The fair comparison with these baselines validates
the necessity of the proposed feedback algorithm
of BiKT in the adaptation phase by updating the
model with the datasets of the previous tasks, and
also reveals the good compatibility of BiKT with
different tuning methods. For the second category
of baselines, including PTMT (Vu et al., 2022) and
BiKT without task-specific prompt, we have mod-
eled existing methods into a feedback phase, after
which the adaptation performance over the new
model are used for comparison. The fair compari-
son with these baselines validates the necessity of
separating the task-specific prompts and the task-
shared backbone.

Implementation Details. We implement BiKT
and all the baselines in PyTorch. The workstation
has 8 NVIDIA V100 32G GPUs. For all methods,
we use the AdamW optimization scheme. For the
finetuning type of algorithms, including the base-
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Model & Method
Round 2 Round 3

BoolQ CB COPA MRC RTE WiC SNLI PAWS IMDB Avg. ANLI-R1 ANLI-R2 ANLI-R3 SciTail WinoGrande Avg.

BERT-base (FT) 73.1 84.5 59.2 68.5 61.7 66.0 90.4 92.6 93.9 76.7 47.0 48.5 48.7 94.0 56.9 59.0
BERT-base (FTPT) 71.5 70.8 54.7 68.8 58.7 62.9 90.2 92.6 93.7 73.8 46.3 47.4 48.5 93.6 54.8 58.3
BERT-base (BiKTFT) 78.9 80.4 66.5 70.2 77.1 67.2 90.9 92.7 93.6 79.7 47.3 47.4 49.1 94.8 58.1 59.4

BiKTFT vs. FT +5.8 -4.1 +7.3 +1.7 +15.4 +1.2 +0.5 +0.1 -0.3 +3.0 +0.3 -1.1 +0.4 +0.8 +1.2 +0.4
BiKTFT vs. FTPT +7.4 +9.6 +11.8 +1.4 +18.4 +4.3 +0.7 +0.1 -0.1 +5.9 +1.0 +0.0 +0.6 +1.2 +3.3 +1.1

BERT-base (PT) 65.0 72.0 55.3 62.9 59.2 61.4 84.3 83.0 91.9 70.5 41.9 40.5 42.0 87.2 54.8 53.3
BERT-base (PTMT) 71.5 74.4 62.8 65.9 68.3 65.1 83.4 82.9 92.3 74.1 42.1 40.5 41.6 91.0 56.5 54.3
BERT-base (BiKTPT) 72.9 85.1 66.5 65.2 76.3 65.2 86.3 85.1 92.2 77.2 42.7 40.8 42.7 92.6 56.2 55.0

BiKTPT vs. PT +7.9 +13.1 +11.2 +2.3 +17.1 +3.8 +2.0 +2.1 +0.3 +6.7 +0.8 +0.3 +0.7 +5.4 +1.4 +1.7
BiKTPT vs. PTMT +1.4 +10.7 +3.7 -0.7 +8.0 +0.1 +2.9 +2.2 -0.1 +3.1 +0.6 +0.3 +1.1 +1.6 -0.3 +0.7

RoBERTa-base (FT) 81.5 94.0 56.7 79.0 78.2 71.5 91.4 94.6 95.4 82.5 52.8 47.4 48.3 95.7 55.8 60.0
RoBERTa-base (FTPT) 81.4 92.9 60.3 71.5 77.1 71.1 91.3 94.7 95.4 81.7 52.7 48.3 49.0 95.7 57.2 60.6
RoBERTa-base (BiKTFT) 81.1 91.7 71.2 78.1 84.4 68.0 91.3 94.3 94.8 83.9 52.1 47.9 49.1 95.5 59.4 60.8

BiKTFT vs. FT -0.4 -2.3 +14.5 -0.9 +6.2 -3.5 -0.1 -0.3 -0.6 +1.4 -0.7 +0.5 +0.8 -0.2 +3.6 +0.8
BiKTFT vs. FTPT -0.3 -1.2 +10.9 +6.6 +7.3 -3.1 +0.0 -0.4 -0.6 +2.2 -0.6 -0.4 +0.1 -0.2 +2.2 +0.2

RoBERTa-base (PT) 67.5 70.8 54.8 58.4 61.0 62.3 86.6 88.0 94.5 71.6 41.7 39.4 40.4 90.8 56.5 53.8
RoBERTa-base (PTMT) 74.9 91.1 73.0 64.9 75.8 70.0 86.7 88.5 94.8 80.0 44.2 40.1 39.7 92.1 58.3 54.9
RoBERTa-base (BiKTPT) 75.6 87.5 71.7 71.2 83.6 66.9 87.9 89.9 93.4 80.8 46.2 41.3 42.4 93.2 57.4 56.1

BiKTPT vs. PT +8.1 +16.7 +16.9 +12.8 +22.6 +4.6 +1.3 +1.9 -1.1 +9.2 +4.5 +1.9 +2.0 +2.4 +0.9 +2.3
BiKTPT vs. PTMT +0.7 -3.6 -1.3 +6.3 +7.8 -3.1 +1.2 +1.4 -1.4 +0.8 +2.0 +1.2 +2.7 +1.1 -0.9 +1.2

Qwen1.5-1.8B (FT) 79.6 90.6 81.3 80.4 73.4 72.3 90.9 94.4 95.5 84.3 52.0 50.2 52.2 94.6 61.3 62.1
Qwen1.5-1.8B (FTPT) 74.1 93.8 76.6 78.0 74.7 71.3 90.1 94.2 95.2 83.1 51.7 51.0 53.3 94.5 62.6 62.6
Qwen1.5-1.8B (BiKTFT) 80.7 96.1 82.0 80.6 86.5 71.6 91.3 94.6 95.5 86.5 57.8 51.6 52.1 94.9 63.8 64.0

BiKTFT vs. FT +1.1 +5.5 +0.7 +0.2 +13.1 -0.7 +0.4 +0.2 +0.0 +2.2 +5.8 +1.4 -0.1 +0.3 +2.5 +1.9
BiKTFT vs. FTPT +6.6 +2.3 +5.4 +2.6 +11.8 +0.3 +1.2 +0.4 +0.3 +3.4 +6.1 +0.6 -1.2 +0.4 +1.2 +1.4

Qwen1.5-1.8B (PT) 74.8 67.2 57.8 80.4 75.7 62.5 89.3 92.4 96.0 77.4 48.5 46.0 48.8 94.7 52.1 58.0
Qwen1.5-1.8B (PTMT) 73.3 89.1 59.4 79.9 78.8 61.7 90.0 90.9 96.2 79.9 50.7 46.4 44.7 94.5 57.0 58.7
Qwen1.5-1.8B (BiKTPT) 75.2 92.2 65.6 82.5 87.5 67.8 90.6 92.1 95.7 83.2 58.7 45.9 50.7 94.9 59.6 62.0

BiKTPT vs. PT +0.4 +25.0 +7.8 +2.1 +11.8 +5.3 +1.3 -0.3 -0.3 +5.8 +10.2 -0.1 +1.9 +0.2 +7.5 +4.0
BiKTPT vs. PTMT +1.9 +3.1 +6.2 +2.6 +8.7 +6.1 +0.6 +1.2 -0.5 +3.3 +8.0 -0.5 +6.0 +0.4 +2.6 +3.3

Phi-1.5 (FT) 80.0 92.2 88.3 77.8 78.6 70.5 92.0 94.3 95.0 85.4 49.8 48.2 49.3 95.4 69.2 62.4
Phi-1.5 (FTPT) 78.7 94.6 89.4 77.6 77.9 71.3 89.3 94.1 94.5 85.3 52.6 49.3 49.9 95.6 69.4 63.4
Phi-1.5 (BiKTFT) 81.4 96.1 91.3 80.1 84.9 71.7 92.3 94.6 94.4 87.4 53.9 48.9 51.0 95.3 69.6 63.7

BiKTFT vs. FT +1.4 +3.9 +3.0 +2.3 +6.3 +1.2 +0.3 +0.3 -0.6 +2.0 +4.1 +0.7 +1.7 -0.1 +0.4 +1.3
BiKTFT vs. FTPT +2.7 +1.5 +1.9 +2.5 +7.0 +0.4 +3.0 +0.5 -0.1 +2.1 +1.3 -0.4 +1.1 -0.3 +0.2 +0.3

Phi-1.5 (PT) 69.1 67.2 54.7 77.0 66.9 60.8 88.0 86.0 93.8 73.7 45.5 41.6 47.3 93.4 64.8 58.5
Phi-1.5 (PTMT) 69.6 62.5 55.5 74.9 62.5 61.4 87.7 88.4 94.4 73.0 43.1 42.3 43.8 94.6 64.3 57.6
Phi-1.5 (BiKTPT) 75.3 85.9 80.5 78.9 80.9 66.6 90.1 89.4 94.6 82.5 50.9 41.6 47.1 95.0 62.9 59.5

BiKTPT vs. PT +6.2 +18.7 +25.8 +1.9 +14.0 +5.8 +2.1 +3.4 +0.8 +8.8 +5.4 +0.0 -0.2 +1.6 -1.9 +1.0
BiKTPT vs. PTMT +5.7 +23.4 +25.0 +4.0 +18.4 +5.2 +2.4 +1.0 +0.2 +9.5 +7.8 -0.7 +3.3 +0.4 -1.4 +1.9

Table 2: The full-shot performance of our BiKT and the baselines with BERT-base, RoBERTa-base, Phi-1.5, and
Qwen1.5-1.8B in terms of accuracy (%) when adapting to different target tasks.

lines FT, FTPT, the feedback algorithm of BiKT,
and the adaptation algorithm of BiKTFT, the learn-
ing rate is set to 2e-5, and the epoch number is set
to 10. For the prompt tuning type of algorithms,
including the baselines PT, PTMT, and the adapta-
tion algorithm of BiKTPT, the learning rate is set to
2e-3, and the epoch number is set to 20. For LoRA,
(IA)3, BitFit and the BiKT version of them, the
learning rate is set to 2e-4, and the epoch number
is set to 20. The target modules for LoRA, (IA)3,
BiKTLoRA and BiKT(IA)3 include the query, key,
value matrix, and the dense MLP in a transformer
block. Specially, we use the CausalModel for train-
ing and inferring on Phi and Qwen. The parameters
of Phi and Qwen are quantized to FP16.

5.2 Evaluation Results and Analysis

5.2.1 Full-Shot Performance
We first evaluate BiKT and the baselines using
BERT-base, RoBERTa-base, Qwen1.5-1.8B, and

Phi-1.5 with full training set for adaptation. Table
2 shows the adaptation performance of each target
task in round 2 and round 3.

From Table 2, we can observe that for both the
finetuning type and the prompt tuning type of al-
gorithms, BiKT achieves the best performance for
most of the target tasks and achieves the best on
average. In particular, for different pretrained mod-
els, BiKTFT averagely outperforms FT by 1.4% –
3.0% in round 2 and by 0.4% – 1.9% in round 3;
and BiKTPT averagely outperforms PT by 5.8% –
9.2% in round 2 and by 1.0% – 4.0% in round 3.
We can also observe from Table 2 that compared
with PTMT, BiKTPT improves the adaptation per-
formance in round 2 by 3.1%, 0.8%, 3.3%, and
9.5% using BERT-base, RoBERTa-base, Qwen1.5,
and Phi-1.5, respectively; and improves the adapta-
tion performance in round 3 by 0.7%, 1.2%, 3.3%,
and 1.9%, respectively. These results demonstrate
that the feedback design of BiKT in round 2 and
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round 3 provides better initialization for adapting
to target tasks.

By closely examining the finetuning type of al-
gorithms, we can find that BiKTFT outperforms FT
by 1.4% – 3.0% in round 2, while FTPT underper-
forms FT by 0.1% – 2.9% after adding task-specific
prompt. This validates that the improvement of the
adaptation algorithm in BiKT mainly comes from
the optimization of the backbone network in the
feedback phase over the source tasks rather than
purely adding the randomly initialized prompt for
each target task in the adaptation phase.

5.2.2 Few-Shot Performance
We then evaluate BiKTFT, FT, BiKTPT, and PT us-
ing Qwen1.5-1.8B and Phi-1.5 in K-shot learning
settings, where K ranges from 16, 32, to 100. The
results are shown in Table 3.

The first key observation from Table 3 is that
BiKTFT outperforms FT by 2.0% – 9.9% and 12.8%
– 14.6% over Qwen1.5-1.8B and Phi-1.5 in round
2 under different few-shot settings, respectively;
and improves the performance by 1.1% – 3.7% and
2.8% – 3.9% in round 3, respectively. The sec-
ond key observation is that BiKTPT outperforms
PT by 7.4% – 18.5% and 3.3% – 18.0% in dif-
ferent rounds and different few-shot settings over
Qwen1.5-1.8B and Phi-1.5, respectively. We can
also find a performance drop of PT over Phi-1.5
due to overfitting, when K increases.

The results above reveal that the feedback algo-
rithm of BiKT enables robust few-shot ability in the
adaptation phase, whereas the original pretrained
models even with higher pretraining levels cannot.

Model & Method
Round 2 Avg. Round 3 Avg.

16-Shot 32-Shot 100-Shot 16-Shot 32-Shot 100-Shot

Qwen1.5-1.8B (FT) 62.7 72.3 77.2 45.5 47.5 51.2
Qwen1.5-1.8B (BiKTFT) 72.6 74.7 79.2 49.2 50.0 52.3

BiKTFT vs. FT +9.9 +2.4 +2.0 +3.7 +2.5 +1.1

Qwen1.5-1.8B (PT) 54.0 56.2 58.4 41.6 41.8 43.5
Qwen1.5-1.8B (BiKTPT) 71.9 74.7 74.5 49.0 50.7 53.2

BiKTPT vs. PT +17.9 +18.5 +16.1 +7.4 +8.9 +9.7

Phi-1.5 (FT) 58.7 60.7 66.9 44.2 44.4 47.3
Phi-1.5 (BiKTFT) 72.5 75.3 79.7 47.9 47.2 51.2

BiKTFT vs. FT +13.8 +14.6 +12.8 +3.7 +2.8 +3.9

Phi-1.5 (PT) 54.5 52.8 57.7 44.3 42.5 41.8
Phi-1.5 (BiKTPT) 66.8 67.1 75.7 47.6 47.7 47.2

BiKTPT vs. PT +12.3 +14.3 +18.0 +3.3 +5.2 +5.4

Table 3: The few-shot performance of our BiKT and the
baselines with Qwen1.5-1.8B and Phi-1.5.

5.2.3 Ablation Study
Impact of Task-Specific Prompt. To verify the
necessity of task-specific prompt in the feedback
algorithm over the source tasks, we show the adap-

tation performance of BiKTPT to each target task
with and without task-specific prompt in the feed-
back phase. The prompts in the adaptation phase
of BiKTPT for the target tasks are randomly initial-
ized. From the results in Table 4, we can see that
introducing the task-specific prompt in the feed-
back phase improves the adaptation performance
by 1.0% and 1.1% for BERT-base and Qwen1.5-
1.8B, respectively. These results validate the func-
tionality of task-specific prompt in separating the
general knowledge from task-specific knowledge to
enable more focused optimization of the backbone
network in the feedback algorithm.

Model Without Prompt With Prompt ∆

BERT-base 76.2 77.2 +1.0

Qwen1.5-1.8B 82.1 83.2 +1.1

Table 4: The adaptation performance of BiKTPT with
and without task-specific prompt in the feedback.

Impact of Task Order. To explore the impact
of task order, we switch the downstream tasks in
round 1 and those in round 2. In particular, we
regard tasks in round 2 as source tasks for feedback
and tasks in round 1 as target tasks for adaptation.
We report the model adaptation performance us-
ing BERT-base and Qwen1.5-1.8B in the Table
5. We can observe that the average accuracy of
BiKTPT is still 2.0% and 7.2% higher than PT over
BERT-base and Qwen1.5-1.8B respectively, which
indicates that BiKT gains consistent improvements
with different task order.

Model & Method Avg.

BERT-base (PT) 74.0
BERT-base (BiKTPT) 76.0

BiKTPT vs. PT +2.0

Qwen1.5-1.8B (PT) 78.4
Qwen1.5-1.8B (BiKTPT) 85.6

BiKTPT vs. PT +7.2

Table 5: The performance of BiKT over BERT-base and
Qwen1.5-1.8B by changing task order.

5.2.4 Extensibility with Tuning Methods
To validate the extensibility of the adaptation al-
gorithm in BiKT, we replace the default prompt
tuning module with LoRA, (IA)3, or BitFit. We
take five tasks used in (IA)3 (Liu et al., 2022) as the
target tasks to evaluate the adaptation performance
in round 2. The results are shown in Table 6.

We can observe that BiKT with different tuning
methods are better than applying these methods on
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the original pretrained model. In particular, BiKT
with LoRA outperforms LoRA by 8.0% and 4.5%,
BiKT with (IA)3 outperforms (IA)3 by 8.0% and
3.7%, and BiKT with BitFit outperforms BitFit by
7.3% and 4.6% on average over BERT-base and
Qwen1.5-1.8B, respectively. These results demon-
strate that BiKT is compatible with different tuning
methods and improves the adaptation performance
by taking the optimized backbone network and the
trained prompts from the previous feedback phase.

Model & Method BoolQ CB COPA RTE WiC Avg.

BERT-base (LoRA) 72.6 69.6 58.0 62.5 64.8 65.5
BERT-base (BiKTLoRA) 77.8 76.8 68.0 76.8 68.3 73.5

BiKTLoRA vs. LoRA +5.2 +7.2 +10.0 +14.3 +3.5 +8.0

BERT-base ((IA)3) 71.2 69.6 56.5 63.9 64.7 65.4
BERT-base (BiKT(IA)3) 77.4 76.8 69.0 75.7 66.9 73.2

BiKT(IA)3 vs. (IA)3 +5.3 +7.2 +12.5 +11.8 +2.2 +8.0

BERT-base (BitFit) 70.0 71.4 56.0 60.4 64.4 64.4
BERT-base (BiKTBitFit) 75.9 76.8 65.5 73.9 66.6 71.7

BiKTBitFit vs. BitFit +5.9 +5.4 +9.5 +13.5 +2.2 +7.3

Qwen1.5-1.8B (LoRA) 76.8 73.4 78.1 79.5 68.4 75.3
Qwen1.5-1.8B (BiKTLoRA) 79.0 90.6 77.3 86.1 66.1 79.8

BiKTLoRA vs. LoRA +2.2 +17.2 -0.8 +6.6 -2.3 +4.5

Qwen1.5-1.8B ((IA)3) 71.9 92.2 74.2 78.8 65.3 76.5
Qwen1.5-1.8B (BiKT(IA)3) 76.1 93.8 80.5 85.8 64.8 80.2

BiKT(IA)3 vs. (IA)3 +4.2 +1.6 +6.3 +7.0 -0.5 +3.7

Qwen1.5-1.8B (BitFit) 73.4 71.9 77.3 78.8 63.1 72.9
Qwen1.5-1.8B (BiKTBitFit) 76.7 89.1 71.9 85.8 64.1 77.5

BiKTBitFit vs. BitFit +3.3 +17.2 -5.4 +7.0 +1.0 +4.6

Table 6: The improvement of the full-shot adaptation
performance over five tasks used in (IA)3 with BERT-
base, Qwen1.5-1.8B and different tuning methods.

5.2.5 Extended Study
Efficient Feedback As mentioned in Section
4.2, the time complexity of T -round feedback is
O(Tn). To improve efficiency, we let the feed-
back algorithm of BiKT run in an incremental way,
which we call BiKTInc. Similarly to BiKTPT, we
also define BiKTInc

PT . More specifically, the feed-
back in round t runs only on the newly introduced
datasets in round t− 1, rather than the datasets of
all the previous rounds. As a result, the dataset
of each downstream task will be traversed only
once, and the overall complexity is reduced to
O
(∑T

t=1 1× nt

)
= O(n), which is independent

of T and is more efficient. We also evaluate the
model performance with leveraging the datasets
of all the previous rounds for feedback and with
leveraging the datasets of the previous one round.
In particular, we compare the feedback effect in
round 3 with leveraging the datasets of round 2
(i.e., BiKTInc) and that with leveraging the datasets

of both round 1 and round 2 (i.e., BiKT). Table 7
shows the model adaptation performance for each
downstream task in round 3 using BERT-base. We
can observe that BiKTInc

PT is averagely 1.3% less
accurate than BiKTPT for feedback, but still outper-
forms the baseline PT with no feedback by 0.54%
on average.

Model & Method ANLI-R1 ANLI-R2 ANLI-R3 SciTail WinoGrande Avg.

BERT-base (PT) 38.6 39.9 40.4 86.7 52.1 51.54
BERT-base (BiKTPT) 38.4 38.9 42.7 92.7 54.2 53.38
BERT-base (BiKTInc

PT ) 38.3 38.7 41.7 89.0 52.7 52.08

Table 7: The comparison between the feedback effect
with leveraging the datasets of round 2 (i.e., BiKTInc)
and that with leveraging the datasets of both round 1
and round 2 (i.e., BiKT).

6 Conclusion

In this work, we have studied the relationship be-
tween pretrained models and downstream tasks.
We first have modeled the sequential nature of
downstream tasks and have proposed the new
framework of bidirectional knowledge transfer,
called BiKT, including the two phases of adaptation
and feedback. We have designed a multi-task feed-
back learning algorithm with trainable task-specific
prompts as well as a model adaptation algorithm
with feedback-based initialization. Evaluation re-
sults over several datasets using different models
with varying sizes have demonstrated the effective-
ness of BiKT in both full-shot and few-shot settings
as well as the remarkable advantage over conven-
tional finetuning and prompt tuning methods.

Limitations

We regard soft prompts as the descriptions of tasks
to separate task-specific knowledge and task-shared
knowledge from downstream tasks, which is, how-
ever, just a hypothesis without theoretical proof.
We have provided detailed discussion about this
hypothesis in Appendix B.
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A Time Complexity Analysis

Time Complexity of Adaptation. For adaptation
to the dataset of each downstream task, BiKT lever-
ages the latest backbone network and the trained
prompts of the source tasks from the feedback
phase for good initialization. Thus, we do not intro-
duce extra overhead compared with conventional
adaptation methods, which are based on the initial
pretrained model.

Time Complexity of Feedback. For the feed-
back phase in round t, the trainable parameters in-
clude only the backbone network and the prompts
for the downstream tasks in round t − 1. Thus,
the size of trainable parameters does not increase
with the number of rounds and the feedback phase
is scalable from model. Regarding the datasets,
BiKT leverages the datasets of all the previous
rounds for feedback to achieve better model per-
formance. For T rounds in total, nt downstream
tasks in round t, and

∑T
t=1 nt = n downstream

tasks in total, the dataset of each downstream task
in round t will be traversed by the model for the
later T − t rounds. Hence, the overall complexity
is

∑T
t=1(T − t)nt ≤ T

∑T
t=1 nt = O(Tn). To

improve efficiency, we also introduce BiKTInc in
Section 5.2.5 and reduce the time complexity to
O(n), which is independent of T .

B Explanation for Separation of
Knowledge

We interpret the separation of task-specific knowl-
edge and task-shared knowledge from the back-
propagation perspective. The backbone network
is shared among tasks, while prompts are indepen-
dent among different tasks. Thus, during back-
propagation, prompts are only affected by the gra-
dient from the corresponding task’s data, while the
task-shared backbone is affected by the gradient
generated by all the tasks’ data. Formally, we have
Φi = Φi + ∆Φi, Θ = Θ +

∑
i∆Θi where Φi

denotes the prompts of the i-th source task, ∆Φi is
the gradient for the prompt of the i-th source task,
Θ denotes the backbone network, and ∆Θi is the
gradient for backbone network using the data of the
i-th source task. We can observe that the backbone
network is optimized over the mixed distribution
of all the tasks’ data in the direction of the aggre-
gate gradient, while the prompt is optimized over a
specific task’s data distribution.

In addition, the ablation study of the impact of

task-specific prompts validates the functionality
of task-specific prompts in separating the general
knowledge from task-specific knowledge to enable
more focused optimization of the backbone net-
work in the feedback algorithm.

C Dataset Details

We conduct our experiments on 23 datasets and
the detailed task types and data distributions of
all tasks are listed in Table 8. 9 datasets as target
tasks for round 1 and as source tasks for round 2
and round 3 are from GLUE benchmark, which
is a wide-ranging collection of natural language
understanding tasks:

• CoLA (Warstadt et al., 2019) is a linguistic
acceptability analysis task. The input is one
short sentence. The labels are {ungrammati-
cal, grammatical} in language and {0, 1} for
discriminative model.

• MNLI (Williams et al., 2018) is a natural lan-
guage inference task. The inputs are two sen-
tences. The labels are {neutral, contradiction,
entailment} in language and {0, 1, 2} for dis-
criminative model.

• MRPC (Dolan and Brockett, 2005) is a para-
phrase detection task. The inputs are two sen-
tences from news. The labels are {not equiv-
alent, equivalent} in language and {0, 1} for
discriminative model.

• QNLI is a question-answer inference task.
The input are one question and one answer
sentence from SQuAD v1.0 (Rajpurkar et al.,
2016). The labels are {not equivalent, equiva-
lent} in language and {0, 1} for discriminative
model.

• QQP is a question equivalent analysis task.
The inputs are two questions. The labels are
{not duplicates, duplicates} in language and
{0, 1} for discriminative model.

• RTE is a textual entailment analysis task. The
input are two sentences. The labels are {not
equivalent, equivalent} in language and {0, 1}
for discriminative model.

• SST-2 (Socher et al., 2013) is a sentiment
analysis task. The input is one sentence from
movie reviews. The labels are {negative, posi-
tive} in language and {0, 1} for discriminative
model.
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Round 1 Task Task Type Text Corpora

CoLA Linguistic Acceptability Analysis Task NLP books and journals
MNLI Natural Language Inference Task Speech, fiction, and government reports
MRPC Paraphrase Detection Task Online news
QNLI Question-Answer Inference Task Questions and paragraphs of Wikipedia
QQP Question Equivalent Analysis Task QA pair from Quora, a community question and answer site
RTE Textual Entailment Analysis Task News and Wikipedia
SST-2 Sentiment Analysis Task Movie comment
STS-B Textual Similarity Analysis Task Headlines of news, video and image
WNLI Natural Language Inference Task Mannually created competition data

Round 2 Task Task Type Text Corpora

BoolQ Question-Answering Task Google search engine and Wikipedia page
CB Textual Entailment Task News articles, fiction and dialogue
COPA Causal Inference Task Personal stories written in Internet weblogs
MultiRC Question-Answering Task News
RTE Textual Entailment Analysis Task News and Wikipedia page
WiC Word Sense Disambiguation Task English lexicographic resource, verb-based resource and Wiktionary
SNLI Natural Language Inference Task Human-written English sentence pairs
PAWS Paraphrase Identification Task Wikipedia pages
IMDB Sentiment Classification Task Movie comment

Round 3 Task Task Type Text Corpora

ANLI-R1 Natural Language Inference Task Wikipedia
ANLI-R2 Natural Language Inference Task Wikipedia
ANLI-R3 Natural Language Inference Task Wikipedia, news, fiction, manually annotated sub-corpus, and WikiHow
SciTail Textual Entailment Task Text corpus of web sentences
WinoGrande Commonsense Reasoning Task WikiHow

Table 8: Detailed task types and data distributions of all tasks in our experiments.

• STS-B (Agirre et al., 2007) is a textual similar-
ity analysis task. The inputs are two sentences
extracted from news headlines, video captions,
image captions, and natural language infer-
ence data. The label is a number ranging from
0 to 5 and number in string form for generative
models.

• WNLI is a natural language inference task.
The input are two sentences. The labels are
{not entailment, entailment} in language and
{0, 1} for discriminative model. Although
some work excluded WNLI due to its adver-
sarial training and validation splits, we still
use it as source task to prove the stability of
our methods.

6 datasets as target tasks for round 2 and as source
tasks for round 3 are from SuperGLUE benchmark,
which is a more difficult benchmark for natural
language processing:

• BoolQ (Clark et al., 2019) is a question-
answering task. The inputs are one question
and one passage. The labels are {no, yes} in
language and {0, 1} for discriminative model.

• CB (De Marneffe et al., 2019) is a textual

entailment task. The inputs are one premise
and one hypothesis. The labels are {neutral,
contradiction, entailment} in language and {0,
1, 2} for discriminative model.

• COPA (Roemmele et al., 2011) is a causal
inference task. The inputs are one question
subject, one premise and two choices. The
labels are {choice1, choice2} in language. As
for discriminative model, we convert one sam-
ple into two data and each data contains only
one choice. If the choice is correct, the label
is 1; otherwise, it is 0.

• MultiRC (Khashabi et al., 2018) is a question-
answering task. The inputs are one paragraph,
one question and one answer. The labels are
{false, true} in language and {0, 1} for dis-
criminative model.

• RTE is a textual entailment analysis task. The
input are two sentences. The labels are {not
entailment, entailment} in language and {0,
1} for discriminative model.

• WiC (Pilehvar and Camacho-Collados, 2019)
is word sense disambiguation task. The in-
put are two sentences. The labels are {false,
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K-Shot Model & Method
Round 2 Round 3

BoolQ CB COPA MRC RTE WiC SNLI PAWS IMDB Avg. ANLI-R1 ANLI-R2 ANLI-R3 SciTail WinoGrande Avg.

16
Qwen1.5-1.8B (FT) 62.9 65.6 68.0 51.9 56.2 53.0 53.3 59.1 94.3 62.7 33.2 36.3 35.5 72.1 50.2 45.5
Qwen1.5-1.8B (BiKTFT) 60.8 82.8 66.4 54.7 83.1 52.7 86.9 72.4 93.7 72.6 45.5 38.6 38.0 74.6 49.5 49.2

32
Qwen1.5-1.8B (FT) 66.8 81.2 70.3 66.8 71.6 55.6 75.7 68.2 94.2 72.3 37.7 39.6 35.2 73.4 51.5 47.5
Qwen1.5-1.8B (BiKTFT) 64.9 81.2 64.1 66.9 85.6 54.2 87.9 73.6 93.8 74.7 46.2 36.0 37.3 78.3 52.3 50.0

100
Qwen1.5-1.8B (FT) 64.6 95.3 79.7 70.0 75.3 59.2 80.1 76.2 94.7 77.2 42.0 33.6 41.0 88.1 51.1 51.2
Qwen1.5-1.8B (BiKTFT) 63.1 89.1 77.3 74.1 85.6 58.8 88.0 82.8 93.9 79.2 48.9 34.8 39.6 88.7 49.7 52.3

16
Qwen1.5-1.8B (PT) 62.4 51.6 56.2 57.2 52.2 50.2 35.8 53.3 66.8 54.0 33.1 34.8 33.6 56.1 50.4 41.6
Qwen1.5-1.8B (BiKTPT) 62.7 79.7 50.0 73.2 80.0 53.3 85.5 70.5 92.4 71.9 41.2 35.3 39.2 79.8 49.6 49.0

32
Qwen1.5-1.8B (PT) 62.4 50.0 54.7 56.4 57.2 53.9 36.0 54.4 80.5 56.2 35.7 34.6 33.2 53.3 52.4 41.8
Qwen1.5-1.8B (BiKTPT) 62.7 82.8 63.3 73.3 80.3 56.2 86.4 74.8 92.3 74.7 46.6 34.0 35.9 86.2 50.7 50.7

100
Qwen1.5-1.8B (PT) 62.4 59.4 57.8 55.9 55.9 54.1 37.9 55.7 86.8 58.4 37.6 33.5 33.8 60.3 52.3 43.5
Qwen1.5-1.8B (BiKTPT) 62.6 81.2 67.2 76.1 84.4 59.2 86.3 59.8 93.6 74.5 49.7 34.9 39.4 90.0 52.0 53.2

16
Phi-1.5 (FT) 61.9 58.9 58.7 58.5 54.6 50.0 44.7 52.1 88.7 58.7 35.1 34.1 34.6 62.0 55.2 44.2
Phi-1.5 (BiKTFT) 63.3 80.4 68.3 72.2 73.6 55.6 81.2 65.1 92.6 72.5 36.0 34.6 36.9 79.5 52.5 47.9

32
Phi-1.5 (FT) 54.3 66.1 61.5 59.4 54.6 51.2 56.5 55.6 87.1 60.7 33.8 35.6 31.1 68.6 52.8 44.4
Phi-1.5 (BiKTFT) 66.8 85.7 76.9 68.2 75.7 54.7 84.7 72.7 92.5 75.3 43.9 35.6 31.4 75.3 49.7 47.2

100
Phi-1.5 (FT) 62.1 76.8 79.8 60.5 57.5 55.9 64.5 55.6 89.6 66.9 37.0 35.4 36.0 73.0 54.9 47.3
Phi-1.5 (BiKTFT) 66.0 92.9 84.6 73.5 80.7 59.8 87.0 79.4 93.1 79.7 41.3 36.6 37.9 86.4 54.0 51.2

16
Phi-1.5 (PT) 59.5 51.6 54.7 53.6 55.0 50.6 37.8 54.6 72.7 54.5 34.8 36.0 35.7 63.8 51.4 44.3
Phi-1.5 (BiKTPT) 61.5 73.4 54.7 54.4 71.2 55.9 85.0 56.9 88.5 66.8 35.9 32.7 37.0 81.5 50.5 47.6

32
Phi-1.5 (PT) 49.0 39.1 48.4 55.5 58.1 52.0 37.0 55.4 80.3 52.8 35.0 35.6 33.5 56.5 52.2 42.5
Phi-1.5 (BiKTPT) 61.7 68.8 68.8 71.7 56.9 51.2 77.5 55.9 91.7 67.1 35.7 35.1 33.1 83.9 50.4 47.7

100
Phi-1.5 (PT) 46.9 67.2 57.0 50.1 59.4 53.8 44.3 55.7 84.7 57.7 35.4 33.9 35.0 54.9 49.7 41.8
Phi-1.5 (BiKTPT) 64.1 93.8 75.8 68.8 79.1 54.8 83.5 68.8 92.3 75.7 39.4 34.8 36.7 73.1 51.9 47.2

Table 9: Detailed results of Table 3. All results are based on prompt tuning with 20 prompt vectors. Under {16, 32,
100}-shot settings, BiKTPT outperforms PT over Qwen1.5-1.8B and Phi-1.5.

true} in language and {0, 1} for discrimina-
tive model.

3 datasets as target tasks for round 2 and as source
tasks for round 3 are publicly available:

• SNLI (Bowman et al., 2015) is a natural lan-
guage inference task. The inputs are two sen-
tences. The labels are {neutral, contradiction,
entailment} in language and {0, 1, 2} for dis-
criminative model.

• PAWS-Wiki (Zhang et al., 2019) is a para-
phrase identification task. The inputs are two
sentences from Wikipedia pages. The labels
are {not entailment, entailment} in language
and {0, 1} for discriminative model.

• IMDB (Maas et al., 2011) is a sentiment clas-
sification task. The input is one sentence from
movie reviews. The labels are {negative, posi-
tive} in language and {0, 1} for discriminative
model.

5 datasets as target tasks for round 3 are also pub-
licly available:

• ANLI-R1 (Nie et al., 2020) is the first round
of ANLI, which is a natural language infer-
ence task. We use the test part as validation
dataset. The inputs are one premise and one
hypothesis. The labels are {n, c, e} in lan-
guage and {0, 1, 2} for discriminative model.

• ANLI-R2 is the second round of ANLI. We
use the test part as validation dataset. The
format of inputs and labels is same with ANLI-
R1.

• ANLI-R3 is the third round of ANLI. We use
the test part as validation dataset. The format
of inputs and labels is same with ANLI-R1.

• SciTail (Khot et al., 2018) is a textual entail-
ment task. The inputs are two sentences. The
labels are {neutral, entails} in language and
{0, 1} for discriminative model.

• WinoGrande (Sakaguchi et al., 2020) is a
commonsense reasoning task. The inputs are
one sentence to be filled in and two options.
We format options into one sentence with its
index. The labels are {option1, option2} in
language and {0, 1} for discriminative model.

D Detailed Evaluation Results

Table 9 shows details of the results under few-
shot learning settings. We can observe that under
all few-shot settings, BiKTPT outperforms PT and
BiKTFT outperforms FT. Table 10 shows the full
results of ablation experiments. The results reveal
that adding task-specific prompts for feedback has
a positive effect and can incorporate task features
into the model. Table 11 shows the full results of
PT and BiKTPT on BERT-base with reverse order
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of tasks. Although the tasks in round 1 and tasks in
round 2 are switched, BiKTPT still outperform PT.

Model Method BoolQ CB COPA MRC RTE WiC SNLI PAWS IMDB Avg.

BERT-base
without prompt 71.6 82.7 62.8 63.9 77.0 64.2 86.5 85.2 92.2 76.2
with prompt 72.9 85.1 66.5 65.2 76.3 65.2 86.3 85.1 92.2 77.2

Qwen1.5-1.8B
without prompt 76.8 85.9 60.9 82.9 86.9 66.9 90.8 91.5 95.9 82.1
with prompt 75.2 92.2 65.6 82.5 87.5 67.8 90.6 92.1 95.7 83.2

Table 10: Detailed results of Table 4. The adaptation re-
sults are based on prompt tuning with 20 prompt vectors.
Adding prompts has positive influence on the feedback
algorithm.

Model & Method COLA MNLI MRPC QNLI RTE STS-B QQP SST-2 Avg.

BERT-base (PT) 44.1 73.0 72.8 85.4 61.4 81.3 83.6 90.0 74.0
BERT-base (BiKTPT) 43.2 74.6 81.9 84.7 65.3 85.0 82.9 90.0 76.0

BiKTPT vs. PT -0.9 +1.6 +9.1 -0.7 +3.9 +3.7 -0.7 +0.0 +2.0

Qwen1.5-1.8B (PT) 72.5 84.9 78.1 80.3 60.4 72.9 84.6 93.2 78.4
Qwen1.5-1.8B (BiKTPT) 79.1 85.9 80.5 90.5 84.4 82.6 86.2 95.4 85.6

BiKTPT vs. PT +6.6 +1.0 +2.4 +10.2 +24.0 +9.7 +1.6 +2.2 +7.2

Table 11: Detailed results of Table 5. The performance
of BiKT over BERT-base and Qwen1.5-1.8B by chang-
ing task order.
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