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Abstract

Theory of Mind (ToM) can be used to assess the
capabilities of Large Language Models (LLMs)
in complex scenarios where social reasoning is
required. While the research community has
proposed many ToM benchmarks, their hard-
ness varies greatly, and their complexity is not
well defined. This work proposes a framework
inspired by cognitive load theory to measure
the complexity of ToM tasks. We quantify a
problem’s complexity as the number of states
necessary to solve it correctly. Our complex-
ity measure also accounts for spurious states
of a ToM problem designed to make it appar-
ently harder. We use our method to assess the
complexity of five widely adopted ToM bench-
marks. On top of this framework, we design
a prompting technique that augments the in-
formation available to a model with a descrip-
tion of how the environment changes with the
agents’ interactions. We name this technique
Discrete World Models (DWM) and show how
it elicits superior performance on ToM tasks. !

https://github.com/flecart/
complexity-tom-dwm

1 Introduction

Theory of Mind (ToM) studies how agents form
and use beliefs to reason in dynamic environ-
ments (Premack and Woodruff, 1978). Originally
developed to describe human interactions (Preston
and De Waal, 2002; Tomasello, 2009) as well as
toddlers’ psychological development (Wimmer and
Perner, 1983; Baron-Cohen et al., 1985), ToM has
been quickly adopted by other fields, including ar-
tificial intelligence (McCarthy, 1979; Scassellati,
2002), bayesian inference (Baker et al., 2011) and
machine learning (Rabinowitz et al., 2018). In ma-
chine learning, ToM has both descriptive and pre-
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Alice and Bob are in the room.
There is an apple on the table.
Alice sees Bob and the apple on the table.
Bob sees Alice and the apple on the table.

WAa

Bob exits the room.

: m Alice knows that Bob exited the room.

WMa

Alice moves the apple on the floor.

Alice knows the apple is on the floor.
Bob doesn't knows the apple is on the floor.

NWMa

]

Question: Where does Bob think the apple is?

CoT Answer: Bob thinks the apple is on the floor. X
DWM Answer: Bob thinks the apple is on the table. v/

Figure 1: Example of the DWM prompting technique
on a classical Sally-Anne QA task (Baron-Cohen et al.,
1985). Inspired by our complexity framework (Sec-
tion 3.1), DWM takes the original task and splits it into
sequences, the state events (see Def. 3.1), and prompts
the LLMs to describe the states. We show that, in most
cases, this aids the LLM in providing correct answers.

scriptive usage: on the one hand, ToM benchmarks
assess the capabilities of a model in complex en-
vironments; on the other, ToM’s frameworks such
as theory-theory (Gopnik and Wellman, 1994) and
simulation theory (Churchland, 2013) have been
widely adopted to test the proficiency of Large
Language Models (LLMs) in social tasks where
humans excel (Strachan et al., 2024).

In this work, we propose a framework to char-
acterise a ToM benchmark’s difficulty, i.e., its
complexity, as the number of state events that
are sufficient to track the state of an object, in-
cluding k™-order beliefs motivated by theoreti-
cal parallelisms with Sweller’s cognitive load the-
ory (Sweller, 2010).

We characterise the complexity of five standard
ToM benchmarks, from false belief to common-
sense and social reasoning, and compute their com-
plexity as a proxy of their inherent difficulty. In-
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spired by prompting techniques that split a task
into elementary sub-problems that are solved se-
quentially, like Tree of Thoughts (Yao et al., 2024)
and least-to-most prompting (Zhou et al., 2023a),
we introduce a technique that stimulates a model’s
reasoning capabilities via Discrete World Mod-
els (DWM). DWM leverages the notion of state-
fulness via a succinct and coherent representa-
tion of each state events, as illustrated in Fig-
ure 1. We test DWM on ToMi (Le et al., 2019),
MindGames (Sileo and Lernould, 2023), Adv-
CSFB (Shapira et al., 2024), SociallQA (Sap et al.,
2019), and FANToM (Kim et al., 2023), elicit-
ing superior performance than Chain of Thoughts
(CoT) (Wei et al., 2022) and Tree of Thoughts
(ToT) (Yao et al., 2024) on those problems whose
state spaces are informative. We further as-
sess whether memorisation affects a model’s per-
formance, and we discover that while this phe-
nomenon happens for standard benchmarks such
as ToMi (Le et al., 2019), with input-output pairs
that can be retrieved word for word via prompt-
ing, it does not strongly correlate with a drop of
performance on memorised ToM benchmarks. We
conduct our experiments on a variety of open- and
closed-source LLMs, including GPT-3.5-Turbo,
GPT-4 (OpenAl, 2023), LLaMA3-70B (Al@Meta,
2024; Dubey et al., 2024) and Mixtral 8x7B (Jiang
et al., 2024). In summary, in this paper:

* We introduce the concept of complexity of
a ToM task to quantify the hardness of keep-
ing track of the elements (e.g., agents’ beliefs
or objects’ states) that are sufficient to pro-
duce the correct answer to different problems
inspired by frameworks in cognitive science.

* We propose DWM, a simple yet effective
prompting technique that improves a model’s
capability by making implicit information ex-
plicit while not necessitating exogenous in-
formation (i.e., it does not require RAG or
fine-tuning).

We consider our work a step towards a framework
that formalizes the hardness of a ToM problem in
an unambiguous way, inspired by the theory of
World Models (Wong et al., 2023).

2 Related Work

Over 40 years of research on ToM in psychol-
ogy (Premack and Woodruff, 1978; Baron-Cohen

et al., 1985; Dennett, 1988; Wellman, 2017) on hu-
man development has created a fertile ground for
the development of these ideas in adjacent fields. In
the last decade, many works studied ToM in artifi-
cial intelligence and machine learning (Baker et al.,
2011; Rabinowitz et al., 2018), with applications
to multi-agent systems and reinforcement learn-
ing (Gronauer and Diepold, 2022). More recently,
the rise in popularity of LLMs shifted the inter-
est towards understanding and benchmarking large
models’ capacity to solve increasingly complex
ToM tasks (Aru et al., 2023; Zhou et al., 2023b;
Mahowald et al., 2024). While some researchers
believe LLMs have already become proficient in
solving ToM tasks (Bubeck et al., 2023; Kosinski,
2023; Strachan et al., 2024), others show scepti-
cism and illustrate cases where they fail on trivial
variations of well-known problems (Ullman, 2023;
Shapira et al., 2024; Sap et al., 2022). In a joint
effort between computer scientists and psychol-
ogists, many ToM benchmarks have been devel-
oped and used to test neural-network models, in-
cluding LLMs (Gandhi et al., 2022; Chen et al.,
2024; Strachan et al., 2024). Recently, concepts
such as World Models (Ha and Schmidhuber, 2018)
have found applicability mostly as discrete prompt-
ing techniques in conjunction with optimisation
procedures (Hao et al., 2023; Moghaddam and
Honey, 2023). Researchers have found evidence
of an emergent internal representation (e.g., World
Model’s surrogates) of the state games (Li et al.,
2023; Toshniwal et al., 2021) and state-tracking
abilities (Li et al., 2021; Kim and Schuster, 2023;
Kim et al., 2024), necessary for correct belief
tracking in ToM problems. Cognitive load theory
emerged in the late eighties with Sweller’s work
on human problem solving (Sweller, 1988). Most
measures of cognitive load are based on subjective
reports from humans (Sweller et al., 2011). Even
though some attempts at automatic cognitive load
measures have been present (Yin et al., 2007), they
have not been widely adopted in the community.
The works that are more similar to our complexity
framework are only tangentially related to ToM.
Inspired by the work in (Zhou et al., 2023a) and the
results in (Zhou et al., 2023b), our prompting tech-
nique is inspired by (Park et al., 2023) and (Nye
et al., 2021): the former develops an architecture
to record the agent’s experiences. The latter pro-
poses a prompting technique that forces a model
to express the intermediate computational steps to
solve a problem.
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p1: Alice and Bob are in the room.
* There is an apple on the table.

P2: Bob exits the room. P

Alice moves the apple on
3: the floor.

el

f—»

€1

obji1: Where is the apple?
obj>: Where does Bob think the apple is?
obj3: Where is Alice?

€2 €3

Tosj1 = |({e1,€2), P1DP2), (€3, p3)| = 2

Tosj2 = (€1, P1), (€2, P2), (€3, p3)| =3
Topjz = |({e1, €2, €3), p1&p2Dp3)| =1

Complexity(objz) = Tosjz + T (Tosjz + Topj3)

—
stateful

—
stateless

Figure 2: How statefulness and statelessness (Def. 3.2) are computed for the motivating example in Fig. 1. For
obj1, an optimal split to track the apple merges the first two states and chunks of the input prompt. For 0bjs, which
involves the 1%-order belief of Bob, the statefulness is higher, with e, that cannot be merged with e3 as it introduces
partial observability. The complexity of the task (bottom) is computed as per Eq. 2, where the complexity of objects
that are not directly relevant to the question/answer is discounted.

3 Methodology

In this section, we introduce a notion of complexity
for ToM problems which quantifies the hardness
of a problem as the number of computational steps
humans take to solve them and compare it with
Sweller’s cognitive load theory. We then present
the DWM prompting technique within the com-
plexity framework and show how it differs from
standard methods like CoT and ToT. We further
characterise its efficiency with the number of in-
put/output tokens and queries to a model as the
control variables.

3.1 On the Complexity of ToM

The need to provide a consistent representation of
the environment, including each agent’s beliefs, in-
spired us to characterise the complexity of a ToM
problem in terms of sufficient elements to track
to output the correct result. Consider a problem
prompt p, expressed in natural language, that de-
scribes how multiple agents interact with an envi-
ronment object obj, as illustrated in Figure 2 (top).
In our framework, an object can be the state of the
apple as well as the kM-order belief of an agent
about the apple position. Our framework naturally
extends to multiple objects by considering their
union.

Suppose that in p, the state of obj is modified
T > 0 times, thus identifying T" unique configu-

rations, namely Eopj = {ey1, .., er}. To correctly
solve a ToM task where p is complemented by a
query about obj, a model should distinguish be-
tween the interactions that modify the configura-
tion of obj, i.e., the stateful states, from those that
modify any other stateless object Obj \ obj, i.e.,
those that one does not need to track.

We first show how to define the cost of tracking
a task’s stateful states, which we complement with
that of the stateless. Both definitions concur in
defining the complexity of a ToM task.

3.1.1 Stateful and Stateless Complexity

For a ToM task, expressed as p, that describes the
evolution of an environment where an unknown
number of atomic iterations 7" modifies obj or its
perception, each environment state e; € Eqpj can
be coupled with the prompt prefix p<; s.t. p<; ©
p>¢ = P, that describes such configuration. We
denote (e, p<¢) as a generic state description, as
illustrated in Figure 2 (top).

Definition 3.1 (State event). A state event for an
object obj is an event that links adjacent state de-
scriptions that involve, for both the environment
state e; and the sub-prompt p<;, a state change
of obj. Formally, we define a relation, Fypj, to
specify which pairs of state descriptions form a
state event: Fop;((er, p<t), (€r41,p<it1)) = €1 7
etr1 N D<t41 = P<t D pry1 Where 1 <t < [pl.
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(|p| denotes the number of atomic prompts.) and @&
is the string concatenation operator.

Thus a state event Fgpj identifies those state
descriptions (e, p<;) which have a successor
(et+1,p<t+1) Where obj has changed its config-
uration.

In the context of ToM tasks, a state event could
be a person who moves an object, exits (thus intro-
ducing partial observability) or witnesses a change
in the environment (as now the description of the
environment will take that change into account),
as illustrated Figure 2 (middle). Our prompting
technique, namely DWM (Section 3.2.1), aims at
making implicit observations about objects explicit.

We finally introduce the notion of partition func-
tion to connect the maximum number of non-
empty state events relative to a prompt. Such a
notion will serve as the building block to compute
the complexity of a ToM problem.

Definition 3.2 (Partitions). A partition partgpj
w.r.t. obj identifies those state events which par-
tition a ToM prompt p into sequential segments
where obj changes its value. Formally:

Let parton; = {(es, p<t) :
Fobj((et, p<t), (€141, p<t+1)) (D
Nes € Eobj}

Def. 3.2 describes an optimal partition, partgp;j
of state descriptions that covers all the relevant
changes to obj. The partition is represented by
the set of event descriptions where ob j changes its
description immediately after. Note that this set of
event descriptions is unique for any obj.

3.1.2 The Complexity of a ToM Task

We can now define the notion of statefulness of
a ToM task specified as a prompt p as the size of
Eq. 3.2, namely Tobj = |[parton;|. The process of
computing the statefulness of an object or its belief
is illustrated in Fig. 2.

For a ToM task where the question to solve re-
lates to an object obj, one must ensure that changes
to any other object, namely Obj \ obj, do not af-
fect obj. While tracking the evolution of what is
irrelevant to answer the question is unnecessary,
a computation model must assess whether a par-
ticular environmental change affected obj. We
thus introduce the notion of statelessness, i.e., the
cost of discerning whether a change in the envi-
ronment affects obj. The computation is similar
to that of Def. 3.2, except that obj is replaced

with any object in Obj \ obj; however for state-
less objects, we introduce a discount factor 7 to
penalise the complexity of state events that do not
affect obj. Mathematically, we formalise the state-
lessness of a ToM task involving an object obj as
T ZobjeObj\obj Tonj-

Finally, we formalise the complexity of a ToM
task w.r.t. an object obj as the complexity of the
stateful states plus the (discounted) sum of the oth-
ers (i.e., stateless). Namely:

Tobj +7 Z

objeObj\obj

Tobj (2)

The process of computing the complexity of a
ToM task is illustrated in Figure 2.

3.1.3 A parallelism from the Cognitive
sciences

Understanding how humans solve complex prob-
lems has long served as a valuable source of inspi-
ration for advancing machine intelligence. Thought
frameworks in the cognitive sciences, such as Kah-
neman’s Dual-process theory (Kahneman, 2011),
have greatly influenced various fields, including
artificial intelligence. In this work, we draw ideas
from another theory, less known in the commu-
nity, the cognitive load theory (Sweller, 1994, 1988,
2010). According to this theory, three main factors
influence the mental effort humans exert when solv-
ing a particular task or learning new information:
intrinsic, extraneous and germane load. The intrin-
sic load measures the natural difficulty of a certain
task, the information that needs to be digested be-
fore answering the question. This relates to the
complexity of the material itself. The extraneous
load concerns the presentation of the information
in the problem. For example, if questions phrased
in a complex manner are used with a child, it would
be much more difficult to understand and answer
correctly compared to easier phrasing. Similarly, if
many confounding sentences or sentences that do
not matter in answering a question are present in
the text, we expect an LLM to be worse, suggesting
a weak similarity between the means of reason of
these models and humans. Finally, germane load
estimates the working memory resources needed
to understand the important parts of the problem,
i.e. the intrinsic load. If part of the memory is
devoted to the extraneous load, then the germane
load is diminished, suggesting a positive correla-
tion with intrinsic load and a negative correlation
with extraneous load.
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@ 1 will interactively prompt you with a situation where some agents interact. At the
end of each iteration, provide a succinct description of the environment, including
the agents’ beliefs.

“Alice and Bob are in the room.
There is an apple on the table.”

‘T T. [ Alice sees Bob and the apple is on the table.

Bob exits the room.
Alice knows that Bob exited the room. @

® )

Bob sees Alice and the apple is on the table. on the table.l

|
‘/Prmidc\
V

— — o - (o] o
i= =] (=} =) =} i=
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Answer e ———

Figure 3: Left: illustration of DWM prompting as per the example in Figure 1. We interactively prompt an LLM with
a ToM problem, asking to provide a succinct representation of each agent’s beliefs. Right: schematic presentation
of the DWM method. We first break the input string into 1" state descriptions. Then, for each part, we ask the
LLM to provide the state event of the environment and how it changes. In the last step, every part of the input and
description is fed to the LLM with another prompt to get the answer for the task.

3.1.4 A comparison with the Cognitive Load
Theory

Our framework, summarized in figure 2, has two
main parts: stateful and stateless complexity. These
notions have some similarities with, respectively,
the intrinsic load and extraneous load. Stateful
complexity provides a measure on the sentences
that are needed to answer the question correctly
and must be adequately represented in memory.
In a similar manner, intrinsic load concerns on
the needed information to correctly analyze a task.
Likewise stateless complexity yields information
about the confounding or irrelevant sentences and
phrases in the text akin to extraneous load. In our
setting, germane load could be interpreted as the ra-
tio of the stateful and stateless complexity: higher
ratio means higher density of useful sentences in
answering a question. This notion of load could
be used as a basis of an objective measure on the
quality of a question-answering sample: given the
same quantity of cognitive load, i.e. complexity,
we would like to have a simple presentation with
correct information, maximizing the germane load.
If the cognitive load hypothesis applies to LLMs,
maximizing the germane load would lower the com-
plexity of the tasks given to a model, and therefore
it would aid the model to answer questions more
accurately.

3.2 Discrete World Models

We first introduce the background notation for
prompting LLMs and assessing their accuracy on
a standard classification task. We then propose
our technique, namely DWM, which we eventually
connect with the notion of statefulness of a ToM

task.

Background notation. A (Large) Language
Model is a function that predicts the next token
(out of a finite vocabulary) conditioned on the se-
quence of previously fed/generated tokens, namely
Y :v € V*® = v € V. Such a mechanism can
be used to sample multiple token outputs until an
‘end-of-text’ token is predicted, by invoking v
in an auto-regressive fashion, i.e., ¥ (v|v). In our
setting, a problem is specified as a tuple (p, @),
where p is a ToM problem and () is a query function
that modifies p according to a prompting technique,
namely @ : p — p’. The LLM’s output y for an in-
put Q(p) is then compared for correctness against
an oracle €, i.e., Q : Y(Q(p)) — {0, 1}, where 1
means correct classification (0, otherwise). On a
sample of N > 0 ToM problems, the accuracy of a
model 1) is then measured as + Zf\il Q((Q(p:)),
i.e., the average number of times a model is correct
in its prediction.

3.2.1 Discrete World Models via Prompting

Given a ToM problem p and a constant 7' < |p|,
where |p| is ideally measured as the number of
state changes in the problem, we can rewrite p as
p1L B p2 @ - @ pr. Our query function adds a
standard preamble = similar to that of CoT. DWM
inserts, after each “split” p;, an additional prompt
w like ‘Now, provide a succinct description
of the state of the environment and each
agent’s belief.’ and query an LLM to provide
a representation of the current state description of
the environment. An LLM is initially queried with
x & p1 @ w, and the answer a; is concatenated to
the next query, i.e., (2B p1 Bw D aj B ps Bw) to
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retrieve as . The process is carried on for each of
the T" chunks, and, at the end, y is concatenated to
eventually prompt the model for the correct answer
to p.

Leta; = Y(x @ p1 & w), ap = Y(x & p1 &
wda ©p® - D a1 Op) = Y@
(@f;} p; Dw D ai> @ p¢), then, the final query is

T
Yz @ (@pt@w@at> S y) 3)

t=1

In this sense, our partition function (Def. 3.2)
consists of splitting a prompt into sequential chunks
of the prompt, while the LLM is prompted to
provide each state event at time 1 < ¢t < T as
et = Y(z® (@le pi ®w ® a;) ® w). The pro-
cess of prompting a model with DWM is illustrated
in Figure 3.

3.2.2 On the Complexity of DWM

DWM progressively calls an LLM 7" > 0 times to
generate informative states. For a ToM problem of
length n (i.e., the number of input tokens), which
we assume, w.l.o.g., that can be split into k& chunks
of approximately the same length |z ©p; Dw| = %,
the number of tokens generated by an LLM is of
the order of O(ZZ;I |z & (EB:;% Di Bwd ai> ),
where p; (a;) is the portion of the problem (answer)
prompted (retrieved) at iteration ¢. With the fur-
ther assumption that each answer retrieved at split
t < T has the same length o, the complexity is
further simplified to be asymptotic to O((% + 0)?).
Compared to CoT, whose complexity is O(n + o),
DWM requires an additional linear number of calls
to the model. On the other hand, ToT with the
same number of splits 7 and m > 1 experts re-
sults in even higher complexity, i.e., asymptotic to
O(m(% + 0)?).

4 Experimental Evaluation

The experiments are organised as follows. We first
test the performance of DWM on ToMi (Le et al.,
2019), MindGames (Sileo and Lernould, 2023),
Adv-CSFB (Shapira et al., 2024), SociallQA (Sap
et al., 2019), and FANToM (Kim et al., 2023), com-
paring it with CoT (Wei et al., 2022), ToT (Yao
et al., 2024) and prompting with structured data
(struct), i.e., the model is queried to first represent
the problem in a structured format such as JSON
or Yaml. We further show that ToMi has been
memorised word for word by GPT models, with

CoT (and any technique that leaves the input un-
changed) being the best-performing method. We
then quantify the complexity of the benchmarks
introduced above and highlight the correlation with
the models’ performances. Our framework shows
complexity ranges between easy and hard prob-
lems, even within a benchmark. We conduct our
experiments on GPT-3.5-Turbo, GPT-4 (OpenAl,
2023), LLaMA3-70B (Al@Meta, 2024; Dubey
et al., 2024) and Mixtral 8x7B (Jiang et al., 2024).

4.1 DWM on ToM Benchmarks

We report results for GPT-3.5-Turbo and Mix-
tral 8x7B on the five ToM benchmarks: for rea-
sons of space, results for LLaMA3-8B, LLaMA3-
70B and GPT-4 are reported in the Appendix, Sec-
tion B.1. As illustrated in Figure 4 (top), DWM
improves the performance of GPT-3.5-Turbo on
Mindgames, FANToM and Adv-CSFB by a solid
margin. On SociallQa, which has very short inputs,
DWM performs slightly worse than CoT but better
than ToT. On the other hand, on ToMi, the best
prompting techniques are CoT and ToT. While one
may think memorisation plays a role in boosting
the performance of LLMs with these prompting
techniques, in the next section, we provide evi-
dence this hypothesis is not necessarily true. With
Mixtral 8x7B (Fig. 4 (bottom)), DWM improves
the performance on ADVcsfb, FANToM, ToMi and
Mindgames, and reaches that of CoT on SociallQa.

DWM elicits more informed state spaces. We
qualitatively analysed the information elicited by
an LLM when prompted with DWM and discov-
ered that it forces a model to output information
not explicitly available in the prompt. Consider
the ToMi example in Figure 5 where GPT-4 is
prompted with a situation where agents interact
and are then queried with the first-order belief of
Benjamin. With CoT, the model makes an erro-
neous assumption about the presence of Benjamin
and Isabella in the room. On the other hand, when
prompted with DWM, GPT-4 provides an informa-
tive description of each state space, particularly
the knowledge and the uncertainty of each agent’s
beliefs, and eventually answers correctly. One ex-
ample per benchmark is available in the Appendix,
Section B.2, while many more are available for in-
spection in the Code Supplementary Material. This
phenomenon is ubiquitous to all the ToM tasks
we tested, a hint that DWM may elicit the ToM
capabilities of LLMs without requiring external
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GPT-3.5-Turbo

ToMi

FANToM

0.602,0:623 0625 0,613 0.612 0626 0625

Accuracy

Adv-CSFB

0579 0570 (553

SociallQa

0.8

0.630 .
0.622 0.611,.0624 0,604 0608 (559

0.709 0,700 0.700 0.709 0.709
0654 (436

Accuracy
o
z

0.691 0.683

0.687

B DWM--splits
B DWM-2-splits

B DWM-3-splits

B DWM-4-splits

B DWM-5-splits

B CoT-structured JSON
I CoT-structured Yaml
I Chain of Thought (CoT)
[ Tree-of-thoughts

Mixtral 8x7B

FANToM

Adv-CSFB

08

0.565 0.567 0.570 0.583 058¢

0505 0505

SociallQa

0718
0673 0673
0.627 0618

DWM--splits
DWM-2-splits
DWM-3-splits
DWM-4-splits
DWM-5-splits

B CoT-structured JSON
I CoT-structured Yaml
B Chain of Thought (CoT)
[ Tree-of-thoughts

Figure 4: Benchmarks of GPT-3.5-Turbo (top) and Mixtral 8x7B (bottom) models on different ToM tasks for DWM
(one to five splits), CoT, ToT and structured prompts (JSON and Yaml).

ToMi FANToM Mindgames Adv-CSFB SociallQa
Memorisation - perfect match 52% 35% 2% 0% 0%
Memorisation - fuzzy 89+ 15% 74+£24% 64+ 18% 51+ 11% 40+ 12%
DWM 0.625 0.579 0.618 0.8364 0.691
CoT 0.629 0.403 0.552 0.7091 0.736

Table 1: Summary of the memorisation test on five ToM benchmarks. We prompted GPT-3.5-Instruct to predict the
continuation of 100 randomly sampled test points. We computed the exact and fuzzy memorisation rate (second
row, similarity score computed via the Levenshtein distance, see the thefuzz package), which we complement with
the best performance across models of CoT and DWM.

ToMi FANToM Mindgames Adv-CSFB  SociallQa
Statefulness 262+168 244+096 1.224+090 3.24+1.35 1. +0.
Statelessness 4.27+2.1 594241891 524+2.71 2.86+1.34 1.14+0.447
| DWM - Best Split | 3 3 1 4 1 |

Table 2: Summary of the statefulness and statelessness of different ToM benchmarks. At the bottom, the value of
the split that guarantees max performance of GPT-3.5-Turbo with DWM, which we notice is strongly correlated
with the statefulness of each benchmark.
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Input Prompt

Chain of Thoughts

Benjamin entered the workshop.
Isabella entered the workshop.
Hannah entered the workshop.

Isabella hates the onion
Hannah hates the t-shirt
The pajamas is in the bottle.
Isabella moved the pajamas to the drawer.

“The pajamas are initially in the bottle. [...] Benjamin’s Presence: Benjamin is
not present in the workshop when Isabella moves the pajamas. He exits
before this action and re-enters after Isabella has already left. Based on this
sequence of events, Benjamin was not present to witness Isabella moving the
pajamas to the drawer. Therefore, in Benjamin’s understanding, the last known
location of the pajamas would still be where they were originally placed before
he left, which is the bottle. <answer>bottle</answer>"

Benjamin exited the workshop.

Isabella exited the workshop.
Benjamin entered the workshop.

Where does Benjamin think that Isabella
searches for the pajamas?

“Benjamin knows that he entered the workshop, that Isabella and Hannah also
entered, that Isabella hates onion and Hannah hates t-shirts, that the pajamas
were in the bottle but Isabella moved them to the drawer, and that he exited
and re-entered the workshop. He doesn't know that Isabella exited the
workshop. [...] <answer>drawer</answer>"y/

Discrete World Models

Question

Figure 5: Example of a real ToMi example where GPT-4 fails when prompted with CoT, yet succeeds with DWM.
CoT elicits an untruthful reasoning process (in red), while DWM correctly informs the model with the implicit
information about Benjamin’s first-order belief (in green). More examples are reported in the Appendix, Section B.2.
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Figure 6: Each boxplot summarizes the complexity anal-
ysis of the five ToM benchmarks in ascending order. We
report the average error rate (i.e., 1-accuracy) of GPT-
3.5-Turbo, GPT-4, Mixtral 8x7B and LLaMA3-70B on
the task when prompted with CoT.

information or solvers.

Memorisation in Theory of Mind. Recent
works expressed concern about ToM benchmarks’
efficacy in memorisation (Jacovi et al., 2023;
La Malfa et al., 2024b). This motivated us to quan-
tify and then analyse the impact of memorisation
of ToM benchmarks on performance. We com-
puted the percentage of memorised prompts to un-
derstand whether that affects the performance of
techniques, such as DWM, that split the prompt
into chunks and introduce additional information
instead of CoT, which leaves the input prompt un-
changed. As illustrated in Table 1, ToMi and FAN-
ToM have been heavily memorised, with entire
portions of the benchmarks that can be retrieved
word for word from GPT-3.5-Instruct (the auto-
complete model by OpenAl). Despite that, no clear

evidence of a performance drop in DWM induced
by memorisation exists. For GPT-3.5, despite CoT
having higher performance on ToMi, DWM is bet-
ter on FANToM (Figure 4). We hypothesise that as
long as a memorised problem is prompted, either
in its exact form (as for CoT) or split as in DWM,
the most potent models can recover it alongside
the ground truth label, thus invalidating the test for
both. We conclude with a note of caution: while
we discovered that ToMi and FANToM are memo-
rised by GPT-3.5-Instruct, that does not imply any
LLM, including GPT-3.5-Turbo and GPT-4, whose
training details are not released publicly, has been
trained on that data.

4.2 Statefulness of ToM Benchmarks

We used the complexity framework introduced in
Section 3.1 to characterise the statefulness and
statelessness of the five ToM benchmarks used for
the experimental evaluation. We randomly sampled
50 problems from each dataset, identified the ob-
jects, and manually labelled stateful and stateless
state events. We release the split samples alongside
a web application that facilitates manual labelling.
As illustrated in Figure 7 (left), the statefulness
of each problem, i.e., that of the object a model
must track to answer correctly, strongly correlates
with the best-performing DWM split. The stateless-
ness complexity, reported in Figure 7 (middle), i.e.,
that of objects that a model does not need to track,
grows larger for problems such as FANToM, only
partially influencing the models’ performance. We
hypothesise that the most potent models developed
some competency in discerning the relevant part of
a prompt (the stateful events) from the confound-
ing ones. We finally report, in Figure 7 (right), the
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Figure 7: Each boxplot summarizes the statefulness (left), statelessness (middle, y-axis in log-scale) and complexity
analysis (right) of the five ToM benchmarks. We report mean, standard deviation and outliers alongside the best
DWM method (by the number of prompt splits) and observe a strong correlation between the number of splits and

the statefulness.

complexity of each problem computed as per Eq. 2,
with 7 set in a range between 0.05 and 0.2 (i.e.,
the relative weight of stateless compared to stateful
events). Results suggest that FANToM is the most
difficult ToM task for humans and LLMs (see Fig-
ure 4), followed by ToMi (the second most difficult
for LLMs as well) and Adv-CSFB (which seems
easier than the others); in contrast, Mindgames and
SociallQa tend to be easier. Finally, in Figure 6, we
compare the accuracy of GPT-3.5-Turbo, GPT-4,
Mixtral 8x7B and LLaMA3-70B when prompted
with CoT (i.e., without split) on the five ToM bench-
marks with the complexity of the task as per Def. 2.
We observe a strong correlation between the error-
rate and the complexity of a task, i.e., our frame-
work correctly identifies the tasks that are harder
both for humans and current state-of-the-art LLMs.

5 Conclusions

This paper introduces a complexity framework to
measure the difficulty of Theory of Mind (ToM)
problems. It quantifies the difficulty by tracking
necessary states (stateful) and unnecessary states
(stateless), with the latter discounted in the com-
plexity computation. The framework evidences a
strong correlation between complexity and model
performance. Inspired by this framework, we pro-
pose DWM, a prompting technique that splits a
prompt into parts to query a model for a consis-
tent representation of the environment and agents’
beliefs. DWM outperforms CoT and ToT by ex-
tracting implicit but relevant information.

Limitations

Higher order belief tracking. Our theoretical
framework reduces the problem of solving a belief

ToM problem to finding the correct descriptions
that need to be tracked. It extends seamlessly to
tasks with much higher complexity, however, we
have not had the opportunity to test this theory in
those settings. We noticed that most theory of mind
tasks available in the community only require one
to five states to be correctly answered. A possible
extension would be testing the theory upon tasks
with higher state complexity, e.g. k™-order belief
tracking tasks. However, it is unclear whether this
could be useful in real applications as most human
belief tracking is limited to 5 or 6 orders (Cargile,
1970; Dennett, 1988).

On task splitting methods. It is not straightfor-
ward to automatically find the correct task splits
in a manner that correctly describes the state. An
LLM could find a way to split it by itself correctly
and use those splits to answer the question. We at-
tempted this approach, yet with a simple prompting
method, the model splits every sentence, making
the descriptions much noisier and less accurate.
Future work could try to find the best splits auto-
matically.

Memorization analysis. Training and evaluating
on the same dataset produces positively biased data
on the model’s performance. While running our
benchmarks on ToMi, we discovered that the GPT-
3.5 model had completely memorized parts of the
dataset. This motivated us to extend the memoriza-
tion test to the other tasks. We urge the research
community to include a memorization section on
every benchmark study with public datasets used
in their works. This data is crucial to conduct fair
and unbiased research on evaluating LLMs’ abili-
ties (Jacovi et al., 2023). Future works will include
an analysis of the memorisation rate of other ToM
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tasks alongside tests to quantify their impact on
different models.

On element interactivity. Sweller (Sweller,
2010) proposes a measure of complexity for cogni-
tive tasks that encompasses three main components,
namely the intrinsic, extraneous, and germane cog-
nitive load. In its framework, which has wide ap-
plications in education, the intrinsic load relates to
the number of references, or interactions, between
the elements of a problem, i.e., the information or
concept that needs to be understood to answer the
question. Our framework approximates the intrin-
sic and extraneous loads to be single sentences in a
ToM problem, which is not assured to be the best
measure.

Ethical Statement

The datasets and pre-trained LLMs that we use
are all publicly available. This paper focuses on
ToM problems’ hardness and prompting methods.
We highlight that LLMs do not guarantee the pro-
duction of factual data or correct reasoning steps,
and the prompting methods developed here should
not be regarded as the source of truth in decision-
making.
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A Experimental Setup

A.1 Experimental Details

Most of the language models used in this work fol-
low the Language Models as a Service (LMaaS)
paradigm (La Malfa et al., 2024a). This model
of service does not allow transparency and hin-
ders reproducibility. Reproducibility is difficult to
achieve as common software development frame-
works, such as CI/CD pipeline, ease the update of
the public service but change the underlying entity.
From this, it follows that the model tested by the
researcher could change at any time. This is not
solvable from the outside. Researchers have no con-
trol over the software engineering practices inside a
LMaaS$, but could set some parameters to offer the
highest possible grade of reproducibility. We set
the temperature to zero or enable greedy decoding
by default (this does not imply determinism even
if model weights are not changed). > In prompt-
ing methods where the creativity of the response
is exploited for better performance, e.g., Tree of
Thoughts (Yao et al., 2024), we set the temperature
to 0.7, the value proposed in the reference papers.

LMaaS providers. We use Huggingface for
Mixtral 8x7B. Groq Cloud for LLama-3-8B and
LLama-3-70B. Microsoft sponsorship for GPT-3.5
and GPT-4 access.

A.2 Prompting Templates

We present the different prompting techniques, tak-
ing as an example the following prompt from ToMi
and GPT-3.5-Turbo as the reference model:

1. Benjamin entered the workshop.

2. Isabella entered the workshop.

3. Hannah entered the workshop.

4. Isabella hates the onion

5. Hannah hates the t-shirt

6. The pajamas is in the bottle.

7. Isabella moved the pajamas to the drawer.
8. Benjamin exited the workshop.

9. Isabella exited the workshop.

10. Benjamin entered the workshop.

And the following question:

Where does Benjamin think that Isabella
searches for the pajamas?

Chain of Thought

>The main explanation is the https://github.com/
pytorch/pytorch/issues/75240"non-deterministic cuda
cores" another could "be batched inference in sparse
MoE models", see https://152334h.github.io/blog/
non-determinism-in-gpt-4/here

Consider the following dialogue where multiple
agents interact. At the end, I will ask you
a question to answer.

Here's the dialogue:

1. Benjamin entered the workshop.

2. Isabella entered the workshop.

3. Hannah entered the workshop.

4. Isabella hates the onion

5. Hannah hates the t-shirt

6. The pajamas is in the bottle.

7. Isabella moved the pajamas to the drawer.
8. Benjamin exited the workshop.

9. Isabella exited the workshop.

10. Benjamin entered the workshop.

This is the end of the dialogue. Now, this is a
question for you to answer.

Question: Where does Benjamin think that
Isabella searches for the pajamas?

Think step by step, answer the question with
one word and provide the answer between
<answer></answer> tags.

For example, reply with <answer>vase</answer>.

Tree of Thought

We first prompt an LLM to propose different solu-
tion paths to solve a task.

Consider the following dialogue where multiple
agents interact. At the end, I will ask you
a question to answer.

Here's the dialogue:

1. Benjamin entered the workshop.

2. Isabella entered the workshop.

3. Hannah entered the workshop.

4. Isabella hates the onion

5. Hannah hates the t-shirt

6. The pajamas is in the bottle.

7. Isabella moved the pajamas to the drawer.
8. Benjamin exited the workshop.

9. Isabella exited the workshop.

10. Benjamin entered the workshop.

Question: Where does Benjamin think that
Isabella searches for the pajamas?

Think step by step and list all possible
answers providing a single answer on each
line.

We then pick the best idea via a majority vote over
three agents simulated by the LLM itself:

Given a dialogue and several observation
choices, decide which choice is most
promising. Analyze each choice in detail,
then conclude in the last line "The best
choice is {{s}}", where s the integer id of
the choice.

Benjamin entered the workshop.

Isabella entered the workshop.

Hannah entered the workshop.

Isabella hates the onion

A w N =
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5. Hannah hates the t-shirt

6. The pajamas is in the bottle.

7. Isabella moved the pajamas to the drawer.
8. Benjamin exited the workshop.

9. Isabella exited the workshop.

10. Benjamin entered the workshop.

Here are some possible observations:

## Here we insert the output of the previous
prompt.

We eventually ask the model for a final answer.

Given this dialogue and possible observations,
answer the question with one word and
provide the answer between
<answer></answer> tags.

1. Benjamin entered the workshop.

2. Isabella entered the workshop.

3. Hannah entered the workshop.

4. Isabella hates the onion

5. Hannah hates the t-shirt

6. The pajamas is in the bottle.

7. Isabella moved the pajamas to the drawer.

8. Benjamin exited the workshop.

9. Isabella exited the workshop.

10. Benjamin entered the workshop.

Question: Where does Benjamin think that
Isabella searches for the pajamas?

## Here we insert the observations generated by
the LLM with the previous prompts.

For example, reply with <answer>vase</answer>.

Discrete World Models - 1 Split

I give you a phrase of a dialogue between
agents. I will reveal more parts of it
later. At the end, I will give you a
question you must answer.

For each phrase, you must:

# 1. Write down a succinct description of what
each agent knows about the environment and
about the other agents. Keep the
description short and do not produce
redundant information.

# 2. Each considerations you make must be
preceded by the symbol #GPT#.

Here's the dialogue:

1. Benjamin entered the workshop.

2. Isabella entered the workshop.

3. Hannah entered the workshop.

4. Isabella hates the onion

5. Hannah hates the t-shirt

6. The pajamas is in the bottle.

7. Isabella moved the pajamas to the drawer.
8. Benjamin exited the workshop.

9. Isabella exited the workshop.

10. Benjamin entered the workshop.

This is the end of the dialogue. Now, this is a
question for you to answer.

Question: Where does Benjamin think that
Isabella searches for the pajamas?

Think step by step, answer the question with
one word and provide the answer between
<answer></answer> tags.

For example, reply with <answer>vase</answer>.

Discrete World Model - 3 Split

I give you a phrase of a dialogue between
agents. I will reveal more parts of it
later. At the end, I will give you a
question you must answer.

For each phrase, you must:

# 1. Write down a succinct description of what
each agent knows about the environment and
about the other agents. Keep the
description short and do not produce
redundant information.

# 2. Each considerations you make must be
preceded by the symbol #GPT#.

Here's the dialogue:

1. Benjamin entered the workshop.
2. Isabella entered the workshop.
3. Hannah entered the workshop.

## Here the LLM provides a description of the

environment so far described by the
dialogue.

4. Isabella hates the onion

5. Hannah hates the t-shirt

6. The pajamas is in the bottle.

## Here the LLM provides a description of the

environment so far described by the
dialogue.

7. Isabella moved the pajamas to the drawer.
8. Benjamin exited the workshop.

9. Isabella exited the workshop.

10. Benjamin entered the workshop.

This is the end of the dialogue. Now, this is a
question for you to answer.

Question: Where does Benjamin think that
Isabella searches for the pajamas?

Think step by step, answer the question with
one word and provide the answer between
<answer></answer> tags.

For example, reply with <answer>vase</answer>.

Yaml/JSON

Consider the following dialogue where multiple
agents interact.

1. Benjamin entered the workshop.

2. Isabella entered the workshop.

3. Hannah entered the workshop.

4. Isabella hates the onion

5. Hannah hates the t-shirt

6. The pajamas is in the bottle.

7. Isabella moved the pajamas to the drawer.
8. Benjamin exited the workshop.

9. Isabella exited the workshop.

10. Benjamin entered the workshop.

Here is the YAML representation of the text.
## Here we substitute the JSON/Yaml
representation of the dialogue (see next
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prompt).

Question: Question: Where does Benjamin think
that Isabella searches for the pajamas?

Answer between the tags with a single word that
is the answer of the above question
For example <answer>vase</answer>.

The JSON/YAML representation is required
with the following prompt:

Consider the following dialogue where multiple
agents interact.

1. Benjamin entered the workshop.

2. Isabella entered the workshop.

3. Hannah entered the workshop.

4. Isabella hates the onion

5. Hannah hates the t-shirt

6. The pajamas is in the bottle.

7. Isabella moved the pajamas to the drawer.

8. Benjamin exited the workshop.

9. Isabella exited the workshop.

10. Benjamin entered the workshop.

Now give a structured representation of the
dialogue in YAML format. Keep track of the
information that each agent has access to
at each point in the dialogue.

It is important to have a relative
representation of the information that each
agent has access to at each point in the
dialogue.

B Additional Results
B.1 DWM Prompting

In this section, and, in particular in Figure 8, we
report results for LLaMA3-7B, LLaMA3-70B and
GPT-4 on the five ToM benchmarks and for differ-
ent prompting techniques, namely DWM (one to
five splits), JSON, Yaml, CoT and ToT.

B.2 DWM Elicits More Informed Mental
States in LLMs

In this section, we report and discuss an example of
a real prompt and the answers provided by GPT-4
for each ToM task we evaluated in this paper. For
FANToM (Figure 10), we just reported the portion
of the prompt that induces an unfaithful reasoning
process in GPT-4, due to the prohibitive length of
the input prompts. Results for ToMi, FANToM,
ADV-csfb, Mindgames and SociallQa are reported
respectively in Figures 9, 10, 11, 12 and 13.

2978



LLaMA3-8B
1 ToMi 1 FANToM 1
0.8 08 0.8
206 . 0560 0.6 06
é 0.532 2356 0.545 0534 521 0,523, 0.548 0544 0547 0258 0508 0513 0401 0500 0490 0494
g
%04 04 04
0.2 0.2 0.2
0.0 0.0 0.0
1 Adv-CSFB 1 SociallQa
B DWM-1-splits
08 08 B DWM-2-splits
B DWM-3-splits
06 BN DWM-4-splits
g B DWM-5-splits
g B CoT-structured JSON
04 B CoT-structured Yaml
[ Chain of Thought (CoT)
0.2 0 Tree-of-thoughts
0.0
LLaMA3-70B
1 ToMi 1 FANToM 1
0.8 0.8 0.8
0640 0627 615 0.629 0638 0639 0.642 0.646 ,0:662 0,645
206 2 0.6 - ). 0.588 0,580 Y 0.590 0591
£
g
%04 04
0.2 02
0.0 0.0
1 Adv-CSFB 1 SociallQa
B DWM-1-splits
B DWM-2-splits
odnt BN DWM-3-splits
B DWM-4-splits
Bl DWM-5-splits
S8 CoT-structured JSON
I CoT-structured Yaml
N Chain of Thought (CoT)
N Tree-of-thoughts
1.
08 0.790 0791170 0.779
0.720 0721 0718
0.705 0667 2:695 0699
0.562 0.567 0.573 0.572 0.6
0.4
02
0.0
. Adv-CSFB o SociallQa
B DWM-1-splits
08 B DWM-2-splits
B DWM-3-splits
06 0618 0627 0609 0.609 B DWM-4-splits
g EE DWM-5-splits
g B CoT-structured JSON
<04 B CoT-structured Yaml
I Chain of Thought (CoT)
0.2 I Tree-of-thoughts
0.0

Figure 8: Benchmarks of LLaMA3-7B (top), LLaMA3-70B (middle) and GPT-4 (bottom) models on different ToM
tasks for DWM (one to five splits), CoT, ToT and structured prompts (JSON and Yaml). For GPT-4 and ToT, we
tested 50 samples (instead of 1000).
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Input Prompt Chain of Thoughts

Benjamin entered the workshop. “The pajamas are initially in the bottle. [...] Benjamin’s Presence: Benjamin is
Isabella entered the workshop. not present in the workshop when Isabella moves the pajamas. He exits
Hannah entered the workshop. before this action and re-enters after Isabella has already left. Based on this

Isabella hates the onion sequence of events, Benjamin was not present to witness Isabella moving the
Hannah hates the t-shirt pajamas to the drawer. Therefore, in Benjamin’s understanding, the last known
The pajamas is in the bottle. location of the pajamas would still be where they were originally placed before
Isabella moved the pajamas to the drawer. he left, which is the bottle. <answer>bottle</answer>"

Benjamin exited the workshop.

Isabella exited the workshop. “Benjamin knows that he entered the workshop, that Isabella and Hannah also

Benjamin entered the workshop. entered, that Isabella hates onion and Hannah hates t-shirts, that the pajamas

were in the bottle but Isabella moved them to the drawer, and that he exited
Where does Benjamin think that Isabella and re-entered the workshop. He doesn't know that Isabella exited the
searches for the pajamas? workshop. [...] <answer>drawer</answer>"y/
Question Discrete World Models

Figure 9: Example of a a ToMI instance where GPT-4 fails when prompted with CoT, yet succeeds with DWM.
CoT elicits an untruthful reasoning process (in red), while DWM correctly informs the model with the correct
information about Benjamin’s first-order belief (in green).

Input Prompt
[...]

Conor: Raegan, you were saying about being a vegetarian. Has it had a big impact on your personal
life?

Raegan: Absolutely, Conor. It's definitely been a transformation. Initially, it was challenging to find
vegetarian alternatives to my favorite meals, but over time, it’s made me be more aware of what I'm
eating. It's also made me try out a lot of new and interesting foods, vegan ones included!

Conor: That's really insightful. I've been considering it, mainly for health reasons, but haven't taken
the leap yet. Maybe trying out that vegan restaurant is a good place to start.

Raegan: Definitely! Exploring vegan or vegetarian food can be a great first step. The variety and
flavors might surprise you! Conor: I'll keep that in mind. It's always exciting to discover something
new!

Brittney: Hey guys, I'm back! I find our talks about food trends so interesting.

[...]
Question

| What does Brittney believe were Conor's primary motivations for considering a shift to vegetarianism?

Chain of Thoughts

“Based on the dialogue, Brittney did not explicitly state what she believes Conor's primary motivations
are for considering a shift to vegetarianism. However, Conor himself mentions that he has been
considering vegetarianism mainly for health reasons. Thus, if Brittney is aware of this part of the
conversation, she would likely think that health reasons are Conor's primary motivation for
considering the change to a vegetarian diet. <answer>Health reasons</answer>"

Discrete World Models

“Brittney knows that she was part of a conversation with Conor and Raegan. She had to leave
temporarily due to her parking meter expiring. She also knows that the conversation was about food
trends, specifically vegetarianism and veganism, and finds it interesting [...] She also knows that
Conor is considering becoming a vegetarian and has suggested trying out vegan or vegetarian food
as a first step. [...] <answer>brittney doesn't have information about conor's primary motivations
for considering a shift to vegetarianism as she was not present during that part of the
conversation.</answer>" /

Figure 10: Example of a real FANToM example where GPT-4 fails when prompted with CoT, yet succeeds with
DWM. CoT elicits an untruthful reasoning process (in red), while DWM correctly informs the model with the
correct information about the partial observability Brittney has about Conor (in green).
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Input Prompt

There is a closed glass box on the table of an empty meeting room, in which a seminar is about to take
place.

Question

Fill in the blank with the best option. She loves writing with _
- pens
- pencils

Chain of Thoughts

“Based on the information provided, the attendee reads the label on the box marked "pencils" and
feels delighted upon finding it. This suggests that she has a preference for what she believes the
box contains, which according to the label are pencils, even though the box actually contains

pens. Therefore, the best answer, given her reaction to the label, would be:
<answer>pencils</answer>"

Discrete World Models

“Agent: James

James knows that the box on the table is filled with pens, not pencils, despite the label saying
"pencils". He knows that he labeled the box himself. He is aware of his own actions and the contents

of the box. He also knows that he is alone in the room and that a seminar is about to take place.
<answer>pens</answer>" v/

Figure 11: Example of a real ADV-csfb example where GPT-4 fails when prompted with CoT, yet succeeds with

DWM. CoT elicits an untruthful reasoning process (in red), while DWM correctly informs the model with the
correct information about the content of the glass box (in green).
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Input Prompt

There are three persons. Everyone is visible to others. Each person draws a card, face unrevealed (red
or black). Leah's card is shown to Leah. Raymond's card is shown to Leah. Brittney's card is shown to
Leah. Raymond's card is shown to Raymond. It is publicly announced that someone picked a red card.

Question

Leah can now know that Raymond can know whether or not nobody picked a red card.
Is the above statement in entailment or contradiction with the previous situation?

Chain of Thoughts

“In the given situation, Leah sees Raymond's card and Brittney's card, but she does not see her own
card. It is publicly announced that someone picked a red card, but Leah cannot determine whether it
was Raymond or Brittney who picked the red card based on the information she has.
<answer>contradiction</answer> x

Discrete World Models

“'Leah: Knows the color of her own card. Does not know the color of the other two persons' cards.
Knows that the other two persons can see her.

Other two persons: Do not know the color of their own cards or each other's cards. Knows that Leah
knows the color of her card. Knows that Leah can see them.

Leah: Knows the color of her own card, Raymond's card, and Brittney's card. Knows that Raymond
knows the color of his card. Knows that someone picked a red card. Raymond: Knows the color of his
own card. Does not know the color of Leah's or Brittney's cards. Knows that Leah knows the color of
his card and Brittney's card. Knows that someone picked a red card.

Brittney: Does not know the color of her own card or Raymond's card. Knows that Leah knows the
color of her card and Raymond's card. Knows that Raymond knows the color of his card. Knows that
someone picked a red card. <answer>entailment</answer>” /

Figure 12: Example of a real Mindgames example where GPT-4 fails when prompted with CoT, yet succeeds with
DWM. CoT elicits an untruthful reasoning process (in red), while DWM correctly informs the model with the
correct information about the knowledge Leah has about Raymond (in green).
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Input Prompt
| Skylar was pushed by the bully in the lunch line, so Skylar poured milk over their head.

Question

Consider the following statement, you will need to infer the correct response. At the end, I will ask you
a question to answer.

Here's the statement:

Skylar was pushed by the bully in the lunch line, so Skylar poured milk over their head.

This is the end of the dialogue. Now, this is a question for you to answer.

Question: What will Skylar want to do next?
1: Run away

2: Wait for a reaction

3: wanted to fight with the bully

Chain of Thoughts

“Based on the statement, Skylar's response to being pushed by the bully was to pour milk over their
head. This suggests that Skylar wanted to retaliate or stand up to the bully, indicating a desire to
fight back.

<answer>3: wanted to fight with the bully</answer> x

Discrete World Models

“'Agent: Skylar Knowledge about the environment: Skylar knows they are in a lunch line and that there
is a bully present. Skylar also knows they have access to milk. Knowledge about other agents: Skylar
knows the bully is aggressive and has pushed them.

Agent: The Bully Knowledge about the environment: The bully knows they are in a lunch line and that
Skylar is present. Knowledge about other agents: The bully knows Skylar is someone they can push
around, but may not anticipate Skylar's retaliatory action.

<answer>1: Run away</answer>” /

Figure 13: Example of a real SociallQa example where GPT-4 fails when prompted with CoT, yet succeeds with
DWM. CoT elicits an untruthful reasoning process (in red), while DWM correctly informs the model with the
correct next action Skylar will take (in green).

2983



