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Abstract

Video Large Language Models (Video LLMs)
have achieved impressive performance on
video-and-language tasks, such as video ques-
tion answering. However, most existing Video
LLMs neglect temporal information in video
data, leading to struggles with temporal-aware
video understanding. To address this gap,
we propose a Time Gating Video LLM (TG-
Vid) designed to enhance temporal modeling
through a novel Time Gating module (TG).
The TG module employs a time gating mech-
anism on its sub-modules, comprising gat-
ing spatial attention, gating temporal atten-
tion, and gating MLP. This architecture enables
our model to achieve a robust understanding
of temporal information within videos. Ex-
tensive evaluation of temporal-sensitive video
benchmarks (i.e., MVBench, TempCompass,
and NExT-QA) demonstrates that our TG-Vid
model significantly outperforms the existing
Video LLMs. Further, comprehensive ablation
studies validate that the performance gains are
attributed to the designs of our TG module. Our
code is available at https://github.com/LaVi-
Lab/TG-Vid.

1 Introduction

The advancement of Large Language Models
(LLMs) (Touvron et al., 2023; Chiang et al., 2023)
has greatly fueled multi-modal research, such as
Image LLMs (Liu et al., 2024b; Bai et al., 2023;
Dai et al., 2023; Liu et al., 2024a) which have
achieved success on image-and-language down-
stream tasks (Goyal et al., 2017). Inspired by
Image LLMs, many recent efforts manage to em-
power LLMs to understand video data (Maaz et al.,
2023; Li et al., 2023c; Liu et al., 2024d). The typ-
ical architecture of these Video LLMs comprises
a pretrained vision encoder (Radford et al., 2021;
Sun et al., 2023), a pretrained LLM (Chiang et al.,
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2023), and a connection module in between (Zhu
et al., 2023; Dai et al., 2023).

Despite the impressive performance demon-
strated by Video LLMs (Maaz et al., 2023; Xu et al.,
2017; Yu et al., 2019; Jang et al., 2017), a recent
study (Liu et al., 2024e) reveals that most Video
LLMs perform comparably to, or even worse than,
Image LL.Ms. This discrepancy arises because ex-
isting video benchmarks can often be adequately
addressed by single-frame bias (Lei et al., 2022;
Buch et al., 2022), without the need for capturing
the temporal dynamics of videos. To better eval-
uate the temporal modeling capability, multiple
temporal-sensitive benchmarks have been devel-
oped (Liu et al., 2024e; Li et al., 2023c; Xiao et al.,
2021) that cannot be solved by simply relying on
single-frame bias as a shortcut.

In this paper, we aim to enhance the tempo-
ral modeling ability of Video LLMs and evaluate
our model on the temporal-sensitive benchmarks.
Specifically, we propose a temporal-aware Video
LLM (TG-Vid) in this work, featuring a novel
Time Gating module (TG) to enhance temporal
modeling. This TG module comprises three sub-
modules, gating spatial attention, gating temporal
attention, and gating MLP, simultaneously captur-
ing spatial and temporal information. A recent
relevant work ST-LLM (Liu et al., 2024d) also tries
to enhance temporal modeling, by directly utiliz-
ing BT-Adapter (Liu et al., 2024c) which applies
spatio-temporal attention in parallel to the vision
encoder. In contrast, our work builds gating spatio-
temporal attention on top of the vision encoder, and
our gating mechanism imposes effective module-
specific control over each sub-module of the TG
module. As validated by experiments, our design
achieves better performance on temporal-sensitive
benchmarks.

We conduct comprehensive experiments on
three temporal-sensitive video benchmarks (i.e.,
MVBench (Li et al., 2023c), TempCompass (Liu
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Figure 1: Model architecture of TG-Vid. Given a video with T" frames, the vision encoder extracts 7" frame-level

embeddings.

Our TG employs a novel time gating mechanism to enhance video temporal modeling, thereby

enhancing the frame-level video modeling ability of the QFormer. Moving forward, the QFormer compresses each
frame-level video embedding from L patch tokens to Ly query tokens, followed by LLMs.

et al., 2024¢e) and NExT-QA (Xiao et al., 2021)).
The results show that our TG-Vid significantly out-
performs the existing Video LLMs across all bench-
marks and demonstrate the effectiveness of our TG-
Vid on temporal-aware video understanding. The
thorough ablation studies further emphasize that
the performance gains are attributed to the designs
of our TG module.

2 Related Work

Video Large Language Models. Benefited from
the reasoning power of large language models
(LLMs) (Zhang et al., 2022; Brown et al., 2020;
Touvron et al., 2023; Chiang et al., 2023; Zhao
et al., 2023), Video LLMs (Li et al., 2023b; Maaz
et al., 2023; Zhang et al., 2023; Lin et al., 2023;
Tang et al., 2023; Ren et al., 2024; Wang et al.,
2024c; Tan et al., 2024) have shown impressive
performance on video-and-language tasks, such as
video question answering (Xu et al., 2017; Jang
etal.,2017; Yuetal., 2019; Maaz et al., 2023; Xiao
et al., 2021). However, most existing Video LLMs
inherit the design of Image LLMs (Zhu et al., 2023;
Liu et al., 2024b; Dai et al., 2023) and overlook the
temporal modeling that is critical for video data,
leading to unsatisfactory capability on temporal-
aware video understanding (Li et al., 2023c; Liu
et al., 2024e). For example, TempCompass (Liu
et al., 2024e) reveals that the temporal understand-
ing ability of most Video LLMs is on par with or
even weaker than Image LLMs. In this work, we
propose a temporal-aware Video LLM, featuring a
new architecture of time gating module to enhance
video temporal modeling.

Video Temporal Modeling. Modeling tempo-
ral information has been a long-standing topic in
video research. Early work utilizes 3D convolu-
tional networks (CNN5s) to achieve spatio-temporal
video modeling (Carreira and Zisserman, 2017; Fe-
ichtenhofer et al., 2016; Tran et al., 2015). To
reduce training costs, subsequent CNN-based mod-
els explore factorizing convolutions across spa-
tial and temporal dimensions (Sun et al., 2015;
Tran et al., 2019, 2018; Xie et al., 2018; Feichten-
hofer, 2020). Further, by leveraging the superiority
of Transformer in processing sequences, Times-
Former (Bertasius et al., 2021) and ViViT (Arnab
et al., 2021) employ Transformer-based architec-
tures to enhance spatio-temporal modeling via spa-
tial and temporal attention. Beyond single action,
a line of work seeks to learn the temporal order-
ing of actions in procedural activities (Bojanowski
et al., 2014; Chang et al., 2020; Zhao et al., 2022;
Zhong et al., 2023). More recently, pretrained
image-language models (Radford et al., 2021) are
transferred to video tasks (Ni et al., 2022; Pan et al.,
2022; Luo et al., 2022; Fang et al., 2021; Liu et al.,
2024c), such as action recognition and video re-
trieval. Unlike these works, we extend the idea of
spatio-temporal attention to Video LLMs, targeting
at temporal-sensitive VideoQA and filling the gap
of video modeling in Video LLMs.

3 Methodology

In this section, we introduce our Time Gating
Video LLM (TG-Vid). Fig. 1 provides an overview
of our model architecture. To enhance the temporal
modeling of a Video LLM (comprising an LLM,
a vision encoder, and a connection module), we
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propose a Time Gating (TG) module with a novel
module-specific time gating mechanism.

3.1 Preliminary

Given a video input with 7' frames, a pretrained
vision encoder (Sun et al., 2023) extracts patch em-
beddings for each frame and concatenates them
into video embeddings V € RT*ILvXDv ' \where
Ly denotes the number of patch embeddings in
each frame and Dy denotes the dimension of patch
embeddings. On the other side, given the text in-
put, we employ the text embedder of a pretrained
LLM (Chiang et al., 2023) to obtain the text embed-
dings T € RYm™Pr_ where Lt denotes the number
of text tokens and Dt denotes the dimension of
the text embeddings. This video and text encoding
process is common in Video LLMs methods (Li
et al., 2023c; Wang et al., 2024b; Liu et al., 2024d).

Our model design extends spatio-temporal atten-
tion from ViViT (Arnab et al., 2021) and Times-
Former (Bertasius et al., 2021). We provide the
background knowledge of spatio-temporal atten-
tion. For clarity, we first formulate the vanilla
N-layer Spatio-Temporal module (ST), which
is placed between the vision encoder and the
QFormer. Each ST layer comprises a spatial atten-
tion, a temporal attention, and a two-layer MLP.
Given the input V¢ € RT*ILv*Dv the (-th layer of
ST (VY is set as V) can be formulated as:

V§ = ReshapeS(V?) (1)

Y§{=MSALN(VE)) +VE (2

V4 = ReshapeT(Y5) 3)
)

Y5 =MSALN(VL) + VL @)
Vi1 = ReshapeM(Y%) ®)
VA = Y{ = MLPLN(V{)) + Vi, (6)

where LN(+) denotes layer normalization (Ba et al.,
2016), MSA(+) denotes multi-head self-attention,
and MLP(+) denotes a two-layer MLP. ReshapeS(-)
reshapes V¢ € RT*LvxDv a9 VE € RT*Lv-Dy,
ReshapeT (-) reshapes Y§ € RT*Iv-Dv a5 VA ¢

REVXT-Dv - and ReshapeM(-) reshapes Y§ €
RLvXT-Dv 44 Vﬁ/[ € RT*xLvxDy

3.2 Time Gating Module (TG)

The vanilla ST module can model the spatio-
temporal information in video inputs. However,
directly inserting a randomly initialized ST module
into Video LLM results in unstable training and
sub-optimal performance. To address this issue,

we propose a novel Time Gating Module (TG),
featuring a time gating mechanism to impose con-
straints on each sub-module (i.e., a gating spatial
attention, a gating temporal attention, and a gat-
ing MLP) of the TG module. These gating sub-
modules allow our TG to focus dynamically on
relevant information in both spatial and temporal
aspects, enhancing the temporal modeling ability
of Video LLM.

Unlike previous research works (Sung et al.,
2022; Liu et al., 2024c) that utilize gating mecha-
nism conditioned solely on a trainable but module-
agnostic scalar (e.g., a € R!) or vector (e.g.,
b € RPV), the gating function Gating(-) in our
TG is module-specific and conditioned on both the
input and output of the sub-module. Specifically,
gating spatial attention is implemented as:

Y§ = MSA(LN(VY))
Y§ = Gating(V§, Y§)) + V§ (7)
= o(Cat(V§, Y5 Ws) © Y + Vi

where o(-) is a sigmoid function, Cat(-) denotes
concatenate operation, Wg € RZPvXDV ig a linear
projection, and © denotes element-wise product.
Similarly, gating temporal attention and gating
MLP are implemented as follows:

Y§ = MSA(LN(VY))

. . )]
Y§ = o(Cat(VE, YO Wr) © YE + Vi

Y{, = MLP(LN(Vy,))
Yi; = o(Cat(Vig, Yi) Wwm) © Yiy + Vi

where W € RZPVDV and Wy € R2ZPvxDv,

®

3.3 Time Gating Video LLM

By inserting the N-layer TG module between the
frozen vision encoder and the frozen QFormer,
we propose TG-Vid, a Time Gating Video LLM.
The output video embeddings of the pretrained
QFormer are flattened as Vo € RT"LaXDv where
Lq denotes the length of query tokens for each
frame. Subsequently, Vq is projected into the text
embedding space and concatenated with the text
embedding T as follows:

VT = [VoWyr, T) (10)

where Wy € RPVXDT g a trainable linear pro-
jection, and VT e RT"LatLlr)xDr is the input
into the LLM. Same as previous Video LLMs, our
TG-Vid model is trained on next token prediction.
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Otter-V mPLUG-Owl Video-ChatGPT Video-LLaMA VideoChat VideoChat2 HawkEye ST-LLM

Model | 15 o(al,20232) (Yeetal,2023b) (Maazetal,2023) (Zhangetal,2023) (Lietal.2023b) (Lietal.2023c) (Wangetal.2024b) (Liuetal, 2024d) | 10-Vid TG-Vid
LLM LLaMA-7B LLaMA-7B Vi-7B Vi-7B Vi-7B Vi-7B Vi-7B Vi-7B Vi-7B Vi-7B
#IT - - - - - 1.9M 22M 220K 197K 220K
Avg | 26.8 29.7 327 34.1 35.5 51.1 476 549 | 560 56.4

Table 1: MVBench benchmark experiments. Comprehensive results are provided in the Appendix Tab. 9. #IT
denotes instruction tuning samples. “Vi-” denotes “Vicuna-". Bold/underline denotes the best/second-best result.

Model V-LLaVA LLaMA-VID mPLUG-Owl PandaGPT Valley VideoChat2 V-ChatGPT V-LLaMA ST-LLM* TG-Vid  TG-Vid
(Linetal.,2023) (Lietal,2023d) (Yeetal,2023b) (Suetal,2023) (Luoetal,2023) (Lietal,2023c) (Maazetal,2023) (Zhangetal,2023) (Liuetal,2024d)
LLM Vi-7B Vi-7B LLaMA-7B Vi-13B StableVi-7B Vi-7B Vi-7B Vi-13B Vi-7B Vi-7B Vi-7B
#IT - - - - - 1.9M - - 220K 197K 220K
Avg(Caption Matching) 63.7 53.6 493 513 22.0 55.6 51.8 535 64.8 67.6 67.5
Avg(Yes/No QA) 56.4 53.0 54.4 518 535 58.0 50.7 537 54.0 58.1 56.8
Avg(Multi-Choice QA) 44.7 353 40.0 311 31.8 51.1 352 339 537 529 54.4
Avg(ALL) ‘ 54.9 47.3 47.9 44.7 35.8 54.9 45.9 47.0 575 ‘ 59.5 59.6

Table 2: TempCompass benchmark experiments. Comprehensive results are provided in the Appendix Tab. 10.
#IT denotes instruction tuning samples. “V-" denotes “Video-" and “Vi-” denotes “Vicuna-". Avg(ALL) is the
overall average result, calculated as the average of Avg(Caption Matching), Avg(Yes/No QA), and Avg(Multi-Choice
QA). Bold/underline denotes the best/second-best average result. d: We reproduce the training and inference.

. NEXT-QA ATP-hard NEXT-QA Val

4 EXpeI‘lmentS Model ‘ AT | Acc@C Acc@T Acc@All | Acc@C Acc@T Acc@D  Acc@All
VEC* (Yang et al., 2021) - 322 30.0 314 49.6 51.5 63.2 523
ATP (Buch et al., 2022) - 384 36.5 38.8 53.1 50.2 66.8 543
. . . . GF (Bai et al., 2024) - 487 50.3 493 56.9 57.1 70.5 58.8
Compared with eXIStlng Video LLMS, we evaluate SeViT (Kim et al., 2023) S| 433 465 . 540 sal 713 567
. .. . HiTeA (Ye et al., 2023a) - 47.8 48.6 - 62.4 583 75.6 63.1
_ _ _ VideoAgent® (Wang et al., 2024a) | - 57.8 58.8 584 727 64.5 81.1 713
our TG-Vid on three temporal-sensitive video un Videohgent® (Wang oo S esomsosme | mrows s T
. . . VideoChat2 (Li et al., 2023¢) 1.9M - - - 68.7 64.7 76.1 68.6
derstanding benchmarks (i.e., MVBench (Li et al., HaukEye (Wang et 41, 2024b) | 22M : : oo 619
. ST-LLM* (Liu et al., 2024d) 220k 65.5 61.9 64.0 743 70.0 81.3 74.0
2023c), TempCompass (Liu et al., 2024e), and Tovid O | @4 665 o8 | 74 s ms 7
TG-Vid 220K 68.5 65.2 67.2 713 735 843 772

NExT-QA (Xiao et al., 2021; Buch et al., 2022)).
More details of datasets, implementation, experi-  Table 3: Experiments on NExT-QA ATP-hard subset
ment results and visualization are provided in the =~ and NExT-QA validation dataset. C, T, and D are
Appendix. causal, temporal, and descriptive subsets, respectively.

Bold/underline denotes the best/second-best result. é:

We reproduce the training and inference. #: Zero-shot.
4.1 Main Results P g u

Tab. 1, Tab. 2, and Tab. 3 show our main results

TG Components Gating MYVBench
on MVBench, TempCompass, and NExT-QA, re- Spatial Temporal MLP | Mechanism | 1% Avg
spectively. Our TG-Vid model achieves the best X P X P 9K | 53.0
performance and surpasses previous methods by a v v v X 197K | 545
large margin across all benchmarks. For example, 4 4 4 4 197K | 560
compared with the closest competitor ST-LLM, our ‘); '; ; :; ;g;i gig
TG-Vid-220K achieves +1.5 on MVBench, +2.1 on v v X v/ 197K 55.7

TempCompass, +3.2 on NExT-QA ATP-hard, and
+3.2 on NEXT-QA Val. These impressive results Table 4: Ablation studies on TG module.
demonstrate a consistent finding that our TG-Vid
model can capture temporal information more ef-

fectively, attributed to the TG designs. Time Gating Mechanism. Row 3 significantly
surpasses row 2 (+1.5), underscoring the crucial
4.2 Ablation Studies role of the time gating mechanism in enhancing

) ] video temporal modeling.
Given the comparable performance of TG-Vid-

220K and TG-Vid-197K, the ablation studies are

based on the latter for efficiency consideration. TG Components. The results in Tab. 4 indicate
that each sub-module of TG module contributes to

TG Module. In Tab. 4, row 3 significantly out-  performance improvement. Notably, the proposed

performs row 1 by a large margin (+3.0), demon-  gating temporal attention provides the most sig-

strating the effectiveness of our TG module in em-  nificant enhancement (from 54.7 to 56.0), further

powering temporal-aware video understanding. validating the necessity of temporal modeling.
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5 Conclusion

In this paper, we focus on developing a Video LLM,
TG-Vid, to overcome the struggles of the existing
Video LLMs in temporal-aware video understand-
ing. Specifically, we propose a novel Time Gating
module (TG) with a time gating mechanism, to
enhance the temporal modeling ability of TG-Vid.
Comprehensive experiments and ablation studies
conducted on three temporal-sensitive benchmarks
(i.e., MVBench, TempCompas, and NExT-QA) in-
dicate that TG-Vid outperforms the existing Video
LLMs by a large margin. These results demonstrate
the effectiveness of our TG design in enhancing
temporal modeling, thereby empowering our TG-
Vid with a strong ability of temporal-aware video
understanding.

Limitations. Our proposed TG-Vid model has
achieved strong performance on the temporal-
sensitive video understanding benchmarks. How-
ever, there are still some limitations: (1) Despite
that our TG module can significantly enhance the
temporal modeling of the Video LLM, integrating
it into Video LLM requires additional computation;
(2) Similar to the existing Video LLMs, our TG-
Vid model has the potential to inherit the undesired
biases from the training dataset and the pretrained
LLMs; (3) The focus of this work is on temporal
modeling. Whether the proposed TG-Vid model
and the TG module can be generalized to other
video-and-language tasks, such as long video un-
derstanding, is worth exploring in future research.
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Appendix

In the appendix, we provide more details of: (1)
the statistics of the training dataset; (2) the imple-
mentation details and hyper-parameters for train-
ing; (3) additional ablation study on the number of
layers of the proposed TG module; (4) additional
ablation study on the training output format; (5) ad-
ditional ablation study on the designs of TG mod-
ule; (6) the comprehensive results of MVBench
(comprising twenty sub-tasks) and TempCompass
(comprising three sub-tasks); (7) the visualization
of time gating.

A Training Dataset Statistics

To ensure a fair comparison with the state-of-the-art
Video LLM, ST-LLM (Liu et al., 2024d), our TG-
Vid-220K model utilizes the same training dataset
as ST-LLM, as detailed in Tab. 5. For the train-
ing dataset of our TG-Vid-197K model, we filter
out the Conversation-VideoChatGPT and VQA-
WebVidQA datasets to improve training efficiency.

Moreover, the training dataset with 220K video-
text pairs is also a subset of the training dataset of
VideoChat2 (Li et al., 2023c), which contains 1.9M
video-text pairs.

B Implementation Details

Following ST-LLM, we adopt the Vicuna-7B-
v1.1 (Chiang et al., 2023) as our pretrained LLM
and the EVA-ViT-g (Sun et al., 2023) as our pre-
trained vision encoder. The QFormer is also initial-
ized from the pretrained InstructBLIP (Dai et al.,
2023), while our TG module is randomly initialized.
Following the designs of LLaMA (Touvron et al.,
2023), the self-attention inside the TG module is
implemented as self-attention with rotary position
embeddings (RoPE) (Su et al., 2024). Similarly, the
activation function of MLP inside the TG module
is implemented as the SwiGLU activation function.
Our TG-Vid model is subsequently trained on the
video instruction tuning dataset, which is described
in Appendix A.

During training, the vision encoder and the
QFormer are frozen, while other modules of TG-
Vid are trainable. The training of TG-Vid-197K
costs about 7 hours and the training of TG-Vid-
220K costs about 13 hours. Both of these trainings
are conducted on 8 A100 GPUs (each GPU has
80G memory).

Category Training Dataset | #Video-Text Pairs
Conversation | VideoChatGPT® 13,303
Classification | Kinetics-710 40,000
Classification | SthSthV2 40,000
Reasoning NEXTQA 34,132
Reasoning CLEVRER_QA 40,000
Reasoning CLEVRER_MC 42,620
VQA WebVidQA® 10,000
Total - \ 220055

Table 5: The statistics of the training dataset with 220K
video-text pairs. <> denotes the datasets that are filtered
out in the training dataset with 197K video-text pairs.
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Figure 2: Ablation study on the number of layers of the
TG module based on TG-Vid-197K.

Moreover, TG-Vid-197K and TG-Vid-220K
share the same hyper-parameters for training,
which are listed in Tab. 6.

C Number of Layers of TG

As shown in Fig. 2, we ablate the depth of the TG
module. The results reveal that all of the models
with the TG module significantly surpass the model
without the TG module, demonstrating the effec-
tiveness of our proposed TG module in empower-
ing temporal-aware video understanding. More-
over, the results also indicate that the 3-layer TG
module achieve the best performance. Therefore,
we use N = 3 in Tab. 6 by default.

D Training Output Format

To improve the training efficiency for LLM decod-
ing, we explore modifying the training output for-
mat. The original output format form VideoChat2-
IT (Li et al., 2023c¢) is “(A) chase the dog.”, while
ours is modified as a direct output format: “A”. Fol-
lowing the instruction used in LLaVA1.5 (Liu et al.,
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Hyper-parameter TG-Vid Training

Number of Layers of TG N=3
Training Epochs 2
Btach Size 64
Input Frame 16
Input Resolution 224 x 224
Max Text Length 256
Max Model Length 1024
Optimizer AdamW
Optimizer Momentum b1, 82=0.9,0.999
Weight Decay 0.0
Learning Rate Schedule Cosine
Learning Rate 2e-5
Warmup Ratio 0.03
QFormer Query Token Length Ly =32

Table 6: Hyper-parameters for TG-Vid training.

Model ‘ Training Output Format ‘ MVBench Avg
TG-Vid-197K “(A) chase the dog.” 56.3
TG-Vid-197K “A” 56.0

Table 7: Experiments on different training output for-
mats.

Model | Self-Attention with RoPE | MLP with SwiGLU | MVBench Avg

TG-Vid-197K X v 56.3
TG-Vid-197K v X 56.0
TG-Vid-197K | v | v | 56.0

Table 8: Experiments on the designs borrowed from
LLMs.

2024a), we also add an instruction “Answer with
the option’s letter from the given choices directly.”
in the text input.

As shown in Tab. 7, the performance after modi-
fication is slightly decreased but the performance
is still comparable. Therefore, we utilize the di-
rect output format as our training output format for
efficiency consideration.

E Designs Borrowed from LLaMA

As mentioned in Appendix B, we borrow two de-
signs (i.e., ROPE and SwiGLU) from LLaMA into
the implementation of the TG module. In this sec-
tion, we ablate these designs, as shown in Tab. 8.
The results demonstrate that these designs can
slightly improve the model performance. There-
fore, we introduce these designs into the implemen-
tation of our TG module.

F Comprehensive Results of MVBench
and TempCompass.

Due to the space limitation of the main paper, we
present the comprehensive results of MVBench
(comprising twenty sub-tasks) and TempCom-
pass in (comprising three sub-tasks) in Tab. 9
and Tab. 10, respectively.

G Visualization of Time Gating.

To gain more insight into how time gating works,
we provide some visualizations in xx. To be spe-
cific, we visualize the heatmap of the gate values
produced by our time gating mechanism, based on
the following steps:

* Step 1: Randomly select an input sample
(with a T'-frame video).

 Step 2: For the input sample, obtain its gate
values of the gating temporal attention in the
first layer of TG (i.e., the result of the sigmoid
function in Equation (8)), denoted as G €
RLvXT-Dv " 1\, denotes the number of patch
embeddings in each frame and Dy denotes
the dimension of patch embeddings.

* Step 3: Visualize the gate values. Specifically,
reshape G as REV*T*DV and adopt average-
pooling along the Dy dimension to obtain

G e RLT. Finally, visualize G with a
heatmap visualization H.

To conduct a detailed analysis, we repeated steps
1-3 twice. Given two different input samples from
MVBench, SampleA (with a T'4-frame video) and
SampleB (with a Tz-frame video), we obtain G A
and Gg, and visualize the corresponding heatmaps
H 4 and Hp. Our observations are as follows:

 For videos with different durations (i.e., dif-
ferent numbers of frames), the shape of G
can adapt accordingly (Ga € RV*Ta gpd
GB e RIvxTB) Therefore, for different in-
put samples, the time gating mechanism can
adapt to the content of specific input and per-
forms temporal-sensitive control, thereby en-
hancing the temporal modeling ability of the
model.

* For all patch embeddings at the same time
(i.e., the same frame), the corresponding gate
values of G change dynamically, revealing
that the time gating mechanism can discern
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Model ‘ Otter-V mPLUG-Owl  Video-ChatGPT  Video-LLaMA  VideoChat VideoChat2 HawkEye ST-LLM ‘ TG-Vid TG-Vid

LLM LLaMA-7B LLaMA-7B Vi-7B Vi-7B Vi-7B Vi-7B Vi-7B Vi-7B Vi-7B Vi-7B
#IT - - - - - 1.9M 2.2M 220K 197K 220K
Action

Action Sequence 23.0 22.0 235 275 335 66.0 - 66.0 72.5 70.5
Action Prediction 23.0 28.0 26.0 25.5 26.5 47.5 - 53.5 57.0 54.5
Action Antonym 27.5 34.0 62.0 51.0 56.0 835 - 84.0 85.0 87.5
Fine-grained Action 27.0 29.0 225 29.0 335 49.5 - 44.0 45.0 46.0
Unexpected Action 29.5 29.0 26.5 39.0 40.5 60.0 - 58.5 535 57.5
Object

Object Existence 53.0 40.5 54.0 48.0 53.0 58.0 - 80.5 83.5 83.0
Object Interaction 28.0 27.0 28.0 40.5 40.5 715 - 73.5 74.5 74.0
Object Shuffle 33.0 315 40.0 38.0 30.0 2.5 - 38.5 36.0 36.5
Position

Moving Direction 245 27.0 23.0 225 25.5 23.0 - 4255 45.5 45.0
Action Localization 235 23.0 20.0 225 27.0 23.0 - 31.0 32.0 29.5
Scene

Scene Transition 275 29.0 31.0 43.0 48.5 88.5 - 86.5 82.0 855
Count

Action Count 26.0 315 30.5 34.0 35.0 39.0 - 36.5 325 36.0
Moving Count 28.5 27.0 25.5 225 20.5 42.0 - 56.5 68.5 66.5
Attribute

Moving Attribute 18.0 40.0 39.5 325 425 58.5 - 78.5 82.0 85.0
State Change 38.5 44.0 48.5 45.5 46.0 44.0 - 43.0 40.5 46.0
Pose

Fine-grained Pose 22.0 24.0 29.0 325 26.5 49.0 - 44.5 47.5 42.0
Character

Character Order 22.0 31.0 33.0 40.0 41.0 36.5 - 46.5 475 47.0
Cognition

Egocentric Navigation 235 26.0 29.5 30.0 23.5 35.0 - 345 33.0 37.0
Episodic Reasoning 19.0 20.5 26.0 21.0 235 40.5 - 41.5 41.5 40.0
Counterfactual Inference 19.5 29.5 355 37.0 36.0 65.5 - 58.5 60.0 58.0
Avg | 26.8 29.7 327 34.1 355 51.1 47.6 549 | 560 56.4

Table 9: Comprehensive results on the MVBench benchmark. Experiments are conducted on 20 MVBench
sub-tasks. #IT denotes instruction tuning samples. “V-" in the Model names denotes “Video-" and “Vi-" in the LLM
names denotes “Vicuna-". Bold/underline denotes the best/second-best result.

the information at different spatial locations
and provides dynamic, fine-grained control.

* For all patch embeddings at the same spatial
location, the corresponding gate values of G
also change dynamically, which demonstrates
that the time gating mechanism can also dis-
tinguish the temporal dynamics and provide
fine-grained control.
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Model | V-LLaVA LLaMA-VID mPLUG-Owl PandaGPT Valley VideoChat2 ~ V-ChatGPT =~ V-LLaMA ST-LLM* | TG-Vid TG-Vid

LLM Vi-7B Vi-7B LLaMA-7B Vi-13B StableVi-7B Vi-7B Vi-7B Vi-13B Vi-7B Vi-7B Vi-7B
#IT - - - - - 1.9M - - 220K 197K 220K
Caption Matching | |

Action 88.2 72.7 56.9 56.6 15.5 65.0 64.6 73.1 93.9 96.0 95.3

Direction 53.8 45.6 453 514 214 53.8 48.6 474 59.3 54.7 554

Speed 61.9 522 46.4 443 22.0 52.6 47.8 47.1 54.3 57.0 58.1

Event Order 57.0 49.0 49.3 55.0 28.3 53.0 49.3 52.0 55.0 65.3 62.0

Attribute Change 58.3 49.0 49.0 49.0 229 53.8 48.6 483 61.5 64.9 66.7

Avg ‘ 63.7 53.6 49.3 51.3 22.0 55.6 51.8 53.5 64.8 ‘ 67.6 67.5
Yes/No QA | |

Action 74.3 63.0 64.4 53.0 58.1 72.8 52.5 68.1 68.1 714 76.5

Direction 51.8 48.8 50.6 49.6 52.0 53.8 50.0 46.0 50.6 51.6 50.6

Speed 50.3 49.2 512 50.8 52.5 53.8 49.5 48.8 49.9 52.5 52.7

Event Order 49.2 484 513 53.7 50.3 51.3 51.0 51.8 50.0 55.0 50.0

Attribute Change 51.1 52.7 52.0 522 529 53.8 50.0 50.9 51.6 54.0 54.0

Avg 56.4 53.0 54.4 51.8 53.5 58.0 50.7 53.7 54.0 58.1 56.8

Multi-Choice QA

| |

\ \
Action 70.4 58.6 66.6 355 47.0 88.5 47.0 54.1 92.0 92.6 91.1
Direction 322 29.9 29.3 27.8 29.3 36.4 31.6 24.5 373 349 394
Speed 382 29.3 322 29.3 325 42.0 28.4 28.1 46.7 45.4 46.4
Event Order 41.4 30.5 34.8 31.8 18.9 40.7 37.1 32.8 42.7 41.1 43.0
Attribute Change 39.9 26.0 354 30.9 29.9 45.5 30.9 28.5 50.0 50.3 52.1
Avg | 447 353 40.0 31.1 31.8 51.1 352 339 537 | 529 54.4
Avg(ALL) | 549 47.3 479 44.7 35.8 54.9 459 47.0 57.5 | 595 59.6

Table 10: Comprehensive results on the TempCompass benchmark. Experiments are conducted on three
TempCompass tasks: Caption Matching, Yes/No QA, and Multi-Choice QA. #IT denotes instruction tuning samples.
“V-" in the Model names denotes “Video-" and “Vi-” in the LLM names denotes “Vicuna-". The overall average
result Avg(ALL) is calculated as the average of Avg(Caption Matching), Avg(Yes/No QA), and Avg(Multi-Choice
QA). Bold/underline denotes the best/second-best result. d: We reproduce the training and inference.
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Figure 3: Visualization of Time Gating.
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