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Abstract

Multimodal language models that process both
text and speech have a potential for applica-
tions in spoken dialogue systems. However,
current models face two major challenges in
response generation latency: (1) generating
a spoken response requires the prior genera-
tion of a written response, and (2) speech se-
quences are significantly longer than text se-
quences. This study addresses these issues by
extending the input and output sequences of the
language model to support the parallel gener-
ation of text and speech. Our experiments on
spoken question answering tasks demonstrate
that our approach improves latency while main-
taining the quality of response content. Ad-
ditionally, we show that latency can be fur-
ther reduced by generating speech in multi-
ple sequences. Demo samples are available
at https://rinnakk.github.io/research/
publications/PSLM.

1 Introduction

Spoken dialogue systems have been developed for
many years to achieve natural human-computer
interaction (McTear, 2002; Jokinen and McTear,
2009; Chen et al., 2017). Traditionally, these sys-
tems consist of several components: Automatic
Speech Recognition (ASR), Response Generation
(RG), and Text-to-Speech (TTS). Various meth-
ods for RG have been proposed with the advance-
ments in Large Language Models (LLMs) (Wang
et al., 2023a; Yi et al., 2024). More recently, the
application of LLMs to ASR (e.g., Wang et al.
2023b; Hono et al. 2024; Fathullah et al. 2024) and
TTS (Wang et al., 2023b; Hao et al., 2023) has at-
tracted much attention, leading to the development
of multimodal LLLMs capable of end-to-end spo-
ken language communication (Zhang et al., 2023;
Nachmani et al., 2024).

Zhang et al. (2023) proposed SpeechGPT, an
LLM that receives speech questions (SQ) as speech
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Figure 1: (a) Chain-of-Modality prompting necessitates
generating text questions (TQ) and text answers (TA)
from speech questions (SQ) before producing speech
answers (SA). (b) Our Parallel Speech Language Model
(PSLM) enables the parallel decoding of TA and SA, re-
ducing overall latency. (c) Introducing multiple speech
streams further accelerates the generation of SA.

tokens, which are discrete representations extracted
from raw waveforms, and sequentially generates
text questions (TQ), text answers (TA), and speech
answers (SA). Figure 1 (a) illustrates their approach
called Chain-of-Modality (CoM) prompting. Spec-
tron (Nachmani et al., 2024) follows this prompting
style but directly handles speech spectrograms. Al-
though these methods can generate high-quality
responses, they face two major challenges in terms
of response latency. First, generating SA requires
the prior generation of TQ and TA. Second, speech
sequences are much longer than text sequences’.
In this study, we propose Parallel Speech Lan-
guage Model (PSLM), an LLM with multiple input-
output sequences to handle both text and speech
tokens, enabling their parallel generation. To em-
phasize their parallel processing capabilities, we
will refer to these sequences as “streams”. As de-
scribed in Figure 1 (b), PSLM begins to gener-
ate SA immediately after the end of SQ tokens,

! Actual sequence lengths are provided in Appendix A.
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which can reduce overall latency. This leads to
our first research question (RQ1): Can PSLM im-
prove latency while maintaining the response qual-
ity achieved by CoM prompting? Additionally,
we address the second challenge by introducing
multiple speech streams to decode multiple speech
tokens in a single step, as described in Figure 1
(c). This brings us to the second research question
(RQ2): Do multiple speech streams sacrifice the
response quality? Addressing these questions will
pave the way for more advanced and responsive
applications of spoken dialogue systems.

2 PSLM

2.1 Speech Discretization

Speech Tokenization Extracting discrete speech
tokens from raw waveforms enables language mod-
els to handle speech in the same manner as text
tokens. Self-supervised learning has been widely
used for speech tokenization due to its ability to
extract spoken content from raw waveforms (e.g.,
Rubenstein et al. 2023; Chou et al. 2023; Hassid
et al. 2023). Following Zhang et al. (2023), we
employ Hidden-Unit BERT (HuBERT) (Hsu et al.,
2021) for speech tokenization.

Speech Detokenization In contrast to text tok-
enization, which is uniquely recoverable, speech
tokenization largely discards the information of
raw waveforms. Two major approaches have been
proposed to solve this problem. The first approach
uses a neural vocoder for directly reconstructing
raw waveforms from speech tokens (e.g., Zhang
et al. 2023; Chou et al. 2023; Hassid et al. 2023).
The second approach uses a pretrained neural audio
codec, which requires an additional module to pre-
dict the codec’s tokens (e.g., Rubenstein et al. 2023;
Zhang et al. 2024). We adopt the first approach
to reduce overall latency using HiFi-GAN (Kong
et al., 2020), a non-autoregressive neural vocoder
that efficiently generates high-fidelity waveforms.

2.2 Integrating LMs with a Speech Stream

PSLM is built on top of a pretrained decoder-only
Transformer (Vaswani et al., 2017). An overview
of the PSLM architecture is provided in Figure 2.
We add new input embedding and output projec-
tion layers to process speech tokens, while the
structure of the intermediate Transformer layers
remains unchanged. The embeddings of text and
speech tokens are summed before being fed to the
Transformer layers. The hidden features from the
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Figure 2: Architecture of PSLM.

final Transformer layer are passed to two output
projection layers to calculate the logits of the next
text and speech tokens. We randomly initialize the
weights of new embedding and projection layers.

A challenge of joint text-speech modeling lies
in the mismatch in their lengths. In this study,
we simply right-pad TQ and TA sequences with
special [TEXT-PAD] tokens to align their lengths
with those of the SQ and SA sequences, respec-
tively. In a preliminary experiment on the CoM-
based architecture, we attempted to generate text
tokens and their corresponding speech tokens al-
ternatively in a similar manner to ELLA-V (Song
et al., 2024); however, this approach led to frequent
mispronunciation. This is mainly because, in our
case, the text is represented by tokens rather than
phonemes; in some languages, the pronunciation of
a character often changes according to subsequent
characters, and a certain amount of lookahead is
necessary to achieve accurate pronunciation. In
contrast, our alignment strategy allows the model
to focus on text token generation initially and then
refer to the generated text when producing the ma-
jority of speech tokens, leading to more accurate
pronunciation.

Our PSLM is trained by minimizing the sum
of cross entropy losses for each stream. We in-
clude prompt tokens, comprising TQ and SQ, in
the loss calculation. During inference, PSLM re-
ceives these prompt tokens and generates TA and
SA in parallel. Text and speech tokens are sampled
independently from their respective distributions.

2.3 Introducing Multiple Speech Streams

For further acceleration, we introduce multiple
speech streams to PSLM. Assume that PSLM has
1+ S streams, one for text tokens and .S for speech
tokens. Given the original speech token sequence
of length NV, the s-th speech stream consists of the
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speech tokens with indices s, s 4+ S, s + 25, ..., s +
MS, wheres € {1,...,S}and M = |[N/S| — 1.
Compared to simply increasing the batch size,
where the system’s throughput improves but the la-
tency for each instance remains unchanged, our ap-
proach reduces the sequence length handled by the
Transformer layers to 1/.5, leading to an approx-
imate S-fold speedup even in the single-instance
scenario.

During training, simply summing the cross en-
tropy losses for each stream makes the loss of text
tokens less dominant, leading to poor text genera-
tion quality. Therefore, we introduce a weighted
loss, where we multiply the loss for speech streams
by 1/S to balance the weight of losses for text and
speech streams.

2.4 Streaming Inference with HiFi-GAN

Following Chen et al. (2022), we use HiFi-GAN
for streaming inference; specifically, we provide
partial speech tokens to generate waveform frag-
ments. In this study, we use non-causal convolu-
tion to maintain high speech quality. Therefore,
the first speech fragment can be generated once
Nottset = |R/2] + 1 tokens are decoded, where
R denotes the receptive field of HiFi-GAN. Imple-
mentation details can be found in Appendix B.

2.5 Overall Latency

We define latency as the delay between the end
of the user’s utterance and the system’s initial re-
sponse. The latency of conventional CoM-based
systems Lcom can be represented as follows:

d
Lcom = Dspe + Dsq + Pec + Dps (1)
Ndec = NTQ + NTA + Noffset (2)

where Dgy, Dsq, and Dy denote the delays of
speech tokenization, the prefill phase in LMs, and
speech detokenization, respectively; Ntq and Nta
denote the number of tokens in TQ and TA, respec-
tively; and P denotes the tokens per second (TPS)
during the decode phase in LMs.

Our PSLM eliminates the need for generating
TQ and TA beforehand, although it requires to
run external ASR to obtain TQ. Hence, its latency
Lpsi m can be represented as follows:

N,
Lpsim = Dasr + Dsq + PLfgg +Dps  (3)

where Dasr denotes the ASR delay. Here Dy, is
omitted because speech tokenization can be per-
formed in parallel with ASR.

3 Experimental Setup
3.1 Dataset

We used an internal dataset comprising 1.8M writ-
ten QA pairs for training all models. Since some
of these samples, which were primarily crawled
from the internet, were deemed unsuitable for
evaluation, we used a publicly available Japanese
dataset (Hayashibe, 2023) for evaluation. This
dataset was manually reviewed and consists of 669
diverse written QA pairs. We further filtered the
evaluation set by excluding samples whose TQ or
TA exceeded 140 characters, the maximum number
of characters observed in the training set. The final
evaluation set contained 396 samples. For both
the training and evaluation sets, we constructed a
spoken question answering (SQA) dataset by syn-
thesizing SQ and SA using a well-trained single-
speaker TTS system based on VITS (Kim et al.,
2021).

3.2 Configuration

Tokenization and Detokenization For text to-
kenization, we used the tokenizer with a vocabu-
lary size of 151,936 from rinna/nekomata-7b?. For
speech tokenization, we applied k-means cluster-
ing with £k = 512 to 12-th layer features from
rinna/japanese-hubert-base® (Sawada et al., 2024),
obtaining 50 speech tokens per second. For speech
detokenization, we trained discrete unit-based HiFi-
GAN (Polyak et al., 2021) using pairs of synthe-
sized speech waveforms of SQ and SA and their
corresponding speech tokens. For ASR, Whisper
large-v3 (Radford et al., 2023) with faster-whisper®
was used throughout our experiments.

Language Modeling We used rinna/nekomata-
7b, a 32-layer 4096-hidden-size Transformer LM
that was continuously pretrained from Qwen-
7B (Bai et al., 2023) on Japanese text, as the
backbone of our models. We implemented our
models using the GPT-NeoX library (Andonian
et al., 2023). Unless otherwise noted, models
were trained for 50k steps with a batch size of
16 on 8 NVIDIA A100 GPUs using an Adam opti-
mizer (Kingma and Ba, 2015) with a peak learning
rate set to 1e-5. During inference, we set the tem-
perature to 0.8 and applied top-k and top-p sam-
pling with k£ = 60 and p = 0.8.
Zhttps://huggingface.co/rinna/nekomata-7b
3https://huggingface.co/rinna/

japanese-hubert-base
*https://github.com/SYSTRAN/faster-whisper
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3.3 Baselines

We involved three CoM-based baselines, which
share the model weights but differ in their prompts
during decoding: (1) CoM-SQ receives only SQ,
(2) CoM-ASR receives SQ and transcribed TQ, and
(3) CoM receives SQ and gold TQ. In our prelimi-
nary experiments, the three-stage training (Zhang
et al., 2023) was not effective in our configuration;
thus, we trained the model using the same configu-
ration as described in Section 3.2.

3.4 Evaluation Metrics

ChatGPT Scores We used OpenAl’s GPT-3.5
Turbo API to evaluate response quality on a 5-point
scale from 1 (bad) to 5 (excellent). The prompt is
described in Appendix C. We report the scores for
TA and the transcription of SA as T-score and S-
score, respectively.

Character Error Rate (CER) We calculated the
character error rate between the generated TA and
the transcription of SA to assess their alignment.

Failure Rate (FR) We counted failure cases such
as (1) no [EOS] token was generated before the
total sequence length reached 2048, or (2) tokens
were generated in the wrong modality, i.e., speech
tokens in TQ and TA, or text tokens in SA.

Latency We simulated latency according to
Equations 2 and 3 for each sample in the eval-
uation set, and reported the median values. We
set Dy = 0.05, DSQ = 0.05, Dasg = 0.2, and
Dys = 0.01 based on measurements taken on a
single NVIDIA A100 GPU. For the TPS value P,
the actual TPS varies depending on computing re-
sources and optimization; 70 TPS was achieved
with vVLLM (Kwon et al., 2023) optimization, and
25 TPS without it. Meanwhile, for streaming in-
ference with HiFi-GAN, LMs need to generate 50
speech tokens per second. Therefore, we set P to
50 in our simulations to match this requirement.

Human Rating We also conducted two subjec-
tive evaluations: one for text and the other for
speech. In the text evaluation, we presented pairs
of gold TQ and generated TA, and raters evaluated
the naturalness of TA based on the same criteria
used in the ChatGPT-based evaluation (Text Nat-
uralness). In the speech evaluation, we presented
gold SQ and generated SA successively, along with
their TQ and TA, and asked the raters to evalu-
ate (1) how natural the SA is as the speech of the

TA (Speech Naturalness), and (2) whether the re-
sponse is fast enough (Speed Score). For better
reproducibility, we provide the actual instruction
used for speech evaluation in Appendix D. The
duration of silence between SQ and SA was simu-
lated in the manner described in Section 2.5, except
for the Ground Truth where the silence duration
was set to 200ms, the average turn-taking gap in
human conversation (Levinson and Torreira, 2015).
Scores were rated on a 5-point scale. Fifty sam-
ples were randomly chosen from the evaluation set,
and twenty in-house workers rated twenty samples
each.

4 Results and Discussion

4.1 Automatic Evaluation

Comparison with Baselines To answer RQ1, we
compared the proposed method in two conditions,
PSLM and PSLM-ASR, with the baselines de-
scribed in Section 3.3. PSLM receives SQ and gold
TQ, while PSLM-ASR receives SQ and transcribed
TQ. Table 1 summarizes the results. When gold
TQ was given, PSLM achieved comparable scores
to CoM and significantly improved latency. A sim-
ilar trend was observed under more practical con-
ditions where gold TQ was not available (PSLM-
ASR vs. CoM-ASR). However, their scores were
lower than those with gold TQ, and CoM-SQ faced
greater degradation. These results suggest that
ASR performance is crucial for response quality,
and CoM-SQ seems to have produced more ASR
errors than Whisper. Nevertheless, we conclude
that PSLM maintains the response quality of CoM
(RQ1). We also found that PSLM-based methods
achieved lower FRs than CoM-based ones. Each
stream of PSLM is dedicated to a single modality,
which could have reduced the failures in genera-
tion. Furthermore, methods other than CoM-SQ
marked lower CERs than Ground Truth. From this
result, we confirmed that both CoM and PSLM can
generate appropriate SA corresponding to TA.

Multiple Speech Streams To answer RQ2, we
trained PSLM variants with two (-2x) or three (-3x)
speech streams>. PSLM-2x achieved comparable
scores to PSLM, whereas PSLM-3x demonstrated
significant degradation. From these results, we
conclude that speech tokens can be decoded in up
to two streams without quality degradation (RQ2).
An ablation study can be found in Appendix E.

SPSLM-3x was trained with a batch size of 4 due to the
increased number of parameters.
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Table 1: Automatic evaluation results. T-score and S-score represent the ChatGPT-based score for TA and transcribed
SA, respectively. FR denotes the failure rate. Latency values in parentheses represent inputs involving gold TQ.

Method | Input modality | Output Modality | T-scoref S-score? FR| CER| Latency [s]}
Ground Truth | — | — | 4.004+0.02 3.5840.06 — 7.35 —
CoM SQ — TQ (Gold) | TA — SA 3.504+0.09 3.27+0.09 12.12  6.28 (0.67)
PSLM SQ, TQ (Gold) TA, SA 3.504+0.08 3.22+0.09 5.05 5.25 (0.34)
CoM-SQ SQ TQ — TA — SA | 3.124+0.11 2.94+0.10 1591 7.83 1.03
CoM-ASR SQ —- TQ (ASR) | TA — SA 3.2740.10 3.07+0.09 13.13 6.18 0.92
PSLM-ASR SQ, TQ (ASR) TA, SA 3.3440.09 3.05+0.10 6.31 6.05 0.54
PSLM-2x SQ, TQ (Gold) TA, SA 3.504+0.08 3.20+0.09 4.29 6.39 (0.20)
PSLM-3x SQ, TQ (Gold) TA, SA 3.2840.10 2.99+0.10 7.07 6.09 (0.15)

Table 2: Human evaluation results.

Method |  Textt Speech? Speed?

Ground Truth | 4.084+0.26 3.74+0.19 4.73£0.11
CoM-SQ 2444029 4.04+0.20 4.071+0.23
CoM-ASR 2.904+0.30 3.94+0.20 4.17+0.22
PSLM-ASR 3.084+0.27 4.08+0.20 4.57+0.13

4.2 Human Evaluation

Considering practical applicability to SQA, we
manually evaluated three methods: CoM-SQ, CoM-
ASR, and PSLM-ASR, which do not rely on gold
TQ, along with Ground-Truth. Table 2 shows the
results. The text response naturalness of PSLM-
ASR was comparable to CoM-ASR and higher
than CoM-SQ, which is consistent with the auto-
matic evaluation results. For speech naturalness, all
methods achieved higher scores than Ground-Truth.
This result can be attributed to two reasons: (1) SA
of Ground-Truth are synthetic speech, which may
include errors in pronunciation, intonation, and
pauses, and (2) SA of Ground-Truth are typically
longer than those of other methods, incurring that
one or two unnatural parts lowered the entire score.
Nevertheless, we confirmed that our approach can
generate natural and faithful speech responses. For
response speed evaluation, PSLM-ASR achieved
a significantly higher score than CoM-ASR and
CoM-SQ. This finding verifies that the proposed
method reduces latency both numerically and per-
ceptibly. Detailed analysis can be found in the next
subsection.

4.3 Detailed Latency Analysis

The sequence length of TA, or Nrta, is the most
influential factor in overall latency of CoM-based
systems, as TA must be generated before SA. Thus,
we investigated the overall latency by varying Nta.
Figure 3 shows the results. Due to the need for
prior generation of TA, the latency of CoM-SQ
and CoM-ASR increases linearly as TA length in-

Latency vs. TA Length

****** Ground Truth

—— COM-SQ (50 TPS)

'''' COM-SQ (100 TPS)
COM-ASR (50 TPS)
COM-ASR (100 TPS)
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————— PSLM-ASR (100 TPS) A
————— PSLM-2X-ASR (100 TPS)
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Figure 3: Latency vs. TA length for different methods
and tokens per second (TPS). PSLM-2x-ASR (50 TPS)
is omitted because its latency is identical to PSLM-ASR
(100 TPS).

creases. In contrast, the latency of PSLM-ASR
is constant because Equation 3 does not include
Nta, and PSLM-2x-ASR further reduces the la-
tency. The gap between CoM-based and PSLM-
based systems is remarkable when generating long
TA, highlighting the effectiveness of generating
text and speech tokens in parallel.

5 Conclusion

In this study, we proposed the Parallel Speech Lan-
guage Model (PSLM), an LLM capable of gener-
ating text and speech tokens in parallel with mul-
tiple input-output streams, and investigated its im-
pact on response quality and overall latency. The
experimental evaluations on spoken question an-
swering demonstrated that the proposed method
significantly reduces latency compared to existing
methods while maintaining response quality. Fu-
ture work includes verifying the effectiveness of
the proposed method on larger datasets and real
speech data. Additionally, extending the proposed
method to multi-turn dialogues is an important re-
search direction.
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6 Limitations

We recognize several limitations of this study. First,
PSLM sacrifices ASR capability for faster response,
requiring an external ASR module to serve as a spo-
ken dialogue system. Although this dependency
can complicate the system structure, it does not
degrade the system’s performance, provided that
an appropriate ASR module is selected. This is
supported by the fact that CoM-ASR outperformed
CoM-SQ, as described in Section 4.1. Neverthe-
less, enabling ASR with the PSLM architecture
can be an interesting research direction. Second,
we used single-speaker synthetic speech for SQ
and SA, which lacks diversity in several aspects of
speech such as accent, rhythm, emotion, and tim-
bre. Practical applications may require to accept
voices of arbitrary speakers, which we will address
in future work. Finally, multi-turn dialogue settings
were not investigated in our experiments. While
SpeechGPT (Zhang et al., 2023) was not applied
to multi-turn dialogue due to sequence length limi-
tations, our models with multiple speech streams
have the potential to perform multi-turn dialogue.
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A Sequence Length Distributions

We calculated the sequence length distributions of
SQ, TQ, TA, and SA in the training set. The results
are listed in Table 3. On average, CoM prompting
requires to generate 36.5 (TQ) + 33.8 (TA) ~ 70
text tokens before generating SA. Eliminating the
need for generating these tokens can greatly reduce
overall latency. In addition, speech tokens are more
than 11 times longer than text tokens, highlighting
the need for efficient generation of speech tokens.

B Implementation Details of HiFi-GAN

The HiFi-GAN generator comprises convolution
layers. Therefore, a waveform fragment corre-
sponding to the i-th token depends only on tokens
with indices [i — | R/2]|,i + [ R/2]]. This allows
waveform generation to start before the entire SA
is generated. As described in Figure 4, HiFi-GAN
first generates a waveform fragment once the LM
generates Nogrset = | R/2| + 1 tokens, then gener-
ates subsequent fragments by shifting input tokens
one by one.

In our experiments, we trained HiFi-GAN to
generate 24 kHz waveform from 50Hz tokens,
which results in R = 26. Following Polyak et al.
(2021), we embedded input speech tokens into 256-
dimensional features and fed them to HiFi-GAN.
We modified the upsampling rates to [8, 6,5, 2],
the number of total iterations to 300k, and kept
the other configuration the same as the original
work (Kong et al., 2020).

C ChatGPT Evaluation Prompt

We used the prompt in Figure 5 for ChatGPT-based
evaluation. The original prompt was written in
Japanese, but a translated version is presented here.

D Speech Evaluation Instruction

We used the instruction in Figure 6 for speech
evaluation. The original instruction was written
in Japanese, but a translated version is presented
here.

E Ablation Study

We trained three PSLM variants, one from scratch
(-no-pretrain), one without TQ (-no-TQ), and one
without SQ (-no-SQ). In addition, we trained
PSLM-2x and PSLM-3x without weighted loss (-
no-WL). Table 4 shows the automatic evaluation
results. PSLM-no-pretrain exhibited significant

Table 3: Sequence length distributions in the training
set (in tokens).

| SQ TQ TA SA
Mean | 406.6 365 338 386.5
Min 34 2 1 27
25% | 214 19 15 179

50% 354 32 29 340
75% 577 51 50 563

Max 1861 148 147 1697
foapenr
c C
C
c C
( HiFi-GAN
t
( PSLM )
s | sA

Figure 4: Streaming inference using HiFi-GAN with
receptive field size R = 5 and SA length Ngp = 6.
Waveform generation begins once Nogrer = |R/2] +
1 = 3 tokens are generated. Text tokens are omitted.

degradation in all metrics, indicating the neces-
sity of pretrained LM’s text capability. PSLM-no-
TQ also showed large degradation, highlighting
the importance of TQ in response quality. In con-
trast, PSLM-no-SQ achieved comparable scores to
PSLM. This result implies that the speech-specific
information such as intonation, rhythm, and emo-
tion is not essential in the current SQA task due
to the use of synthetic speech. We also found
that PSLM-2x-no-WL achieved almost compara-
ble scores to PSLM, whereas PSLM-3x-no-WL
showed significant degradation. From these results,
we conclude that the weighted loss is especially ef-
fective as the number of speech streams increases.
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A conversation between two individuals will be provided. The conversation follows a format
where one asks a question and the other responds. Based on the following evaluation criteria,
rate the response quality on a scale from 1 (bad) to 5 (excellent).

[Evaluation Criteria]

1. Bad - The response is completely off-topic and difficult to understand.

2. Poor - The response is somewhat related to the question but contains grammatical or
semantic errors, making it somewhat difficult to understand.

3. Fair - The response mostly aligns with the question, with few grammatical or semantic
errors, and provides somewhat adequate information.

4. Good - The response aligns with the question, contains few grammatical or semantic
errors, and provides adequate information.

5. Excellent - The response aligns with the question, contains almost no grammatical or
semantic errors, provides adequate and appropriate information.

Output the evaluation score in the following format:
[Example Evaluation 1]

Question: Can you recommend an easy-to-write pen?
Answer: | recommend Mitsubishi Pencil Jetstream Standard.
Score: 5

[Example Evaluation 2]

Question: What is the highest mountain in the world?
Answer: | guess 3141010059.

Score: 1

[Evaluation Target]

Question: {Question}

Answer: {Answer}

Ccore: /

Figure 5: Prompt for ChatGPT evaluation.

4 N\
At the top of the screen, you will see the "Reference Text," and at the bottom of the screen, you
will hear the audio of a conversation between two people. The conversation is in a QA format,
with one person asking questions and the other responds. Please listen to the audio file with a
headphone and evaluate it on a scale of 1 (poor) to 5 (good) based on the following two
criteria:

(1) How natural is the system's response audio as a reading of the response text
(the part after "A:" in the reference text)?
(2) Is the system's response speed sufficiently fast?
Please do not include the naturalness of the text content or the naturalness of the question
audio in the score.

Figure 6: Instruction for speech evaluation.

Table 4: Ablation study. The suffix no-WL denotes weighted loss was not applied.

Method | Input modality | Output Modality | T-scoref S-score? FR| CER|
PSLM SQ, TQ (Gold) | TA, SA 3.504+0.08 3.22+0.09 5.05 5.25
PSLM-2x SQ, TQ (Gold) | TA, SA 3.504+0.08 3.20+0.09 4.29 6.39
PSLM-3x SQ, TQ (Gold) TA, SA 3.2840.10 2.9940.10  7.07 6.09
PSLM-no-pretrain | SQ, TQ (Gold) TA, SA 2.2240.07 2.124+0.07 18.18 10.13
PSLM-no-TQ SQ TA, SA 2.344+0.09 2.1940.09 8.84 6.38
PSLM-no-SQ TQ (Gold) TA, SA 3.544+0.08 3.17+0.09 6.31 8.99
PSLM-2x-no-WL | SQ, TQ (Gold) | TA, SA 3.424+0.08 3.174+0.08 8.84 4.99
PSLM-3x-no-WL | SQ, TQ (Gold) TA, SA 2.67+£0.10 2.464+0.10 11.36 6.94
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