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Abstract

This paper proposes a novel training method
to improve the robustness of Extractive Ques-
tion Answering (EQA) models. Previous re-
search has shown that existing models, when
trained on EQA datasets that include unanswer-
able questions, demonstrate a significant lack
of robustness against distribution shifts and ad-
versarial attacks. Despite this, the inclusion
of unanswerable questions in EQA training
datasets is essential for ensuring real-world reli-
ability. Our proposed training method includes
a novel loss function for the EQA problem and
challenges an implicit assumption present in
numerous EQA datasets. Models trained with
our method maintain in-domain performance
while achieving a notable improvement on out-
of-domain datasets. This results in an overall
F1 score improvement of 5.7 across all testing
sets. Furthermore, our models exhibit signifi-
cantly enhanced robustness against two types
of adversarial attacks, with a performance de-
crease of only about one-third compared to the
default models. 1

1 Introduction

Unanswerable questions are a valuable part of the
training datasets of Extractive Question Answering
(EQA) models. By learning from these questions,
models can develop the ability to avoid extracting
misleading responses, ultimately improving their
reliability in real-world applications.

Currently, there are two lines of research on
unanswerable questions in EQA. Firstly, Rajpurkar
et al. (2018) introduced the SQuAD 2.0 dataset
by adding adversarial unanswerable questions
into SQuAD 1.1 (Rajpurkar et al., 2016). This
work later inspired similar benchmarks in other
languages such as French (Heinrich et al., 2021)

*Work completed during undergraduate study at Deni-
son University.

1Our code and training data are publicly available at
https://github.com/sonqt/robust_qa.

and Vietnamese (Nguyen et al., 2022). In the
crowdsourcing process for adversarial unanswer-
able questions, human annotators are typically pre-
sented with a triple of context, an answerable ques-
tion, and its corresponding answer(s). They are
then asked to write unanswerable questions that
exhibit an adversarial similarity to the presented
answerable ones.

In addition to the adversarially-written unanswer-
able questions, Natural Question (Kwiatkowski
et al., 2019), Tydi QA (Clark et al., 2020b), and
SQuAD AGent (Tran et al., 2023b) propose more
naturally constructed unanswerable questions. This
category of unanswerable questions is also known
as information-seeking unanswerable questions,
emerging within the realm of information retrieval.
These questions are initially independent of any
context. The contexts are then paired with the ques-
tions as a result of the attempt to locate answers for
the given questions within a large database contain-
ing multiple contexts.

The distinct characteristics of these two types of
unanswerable questions pose a challenge for mod-
els. Models trained with one type of unanswerable
questions often struggle when encountering the
other type (Sulem et al., 2021; Tran et al., 2023a),
defined in Machine Learning as a lack of robust-
ness under distribution shift in the inputs. Addi-
tionally, models trained on unanswerable questions
also demonstrate a lack of robustness against adver-
sarial attack (Tran et al., 2023b). Notably, models
trained on adversarial unanswerable questions in
SQuAD 2.0 tend to output an “empty” response
upon detecting any sign of contradiction between
the attack sentence and the given question.

We hypothesize that the observed lack of robust-
ness in EQA models can be attributed to two pri-
mary factors. First, the current EQA training loss
objective (Devlin et al., 2019) inaccurately treats
unanswerable questions as if they have an answer
span. This span is designated to start and end at the
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special classification token [CLS] of the pre-trained
model which is also the first token in the input se-
quence. This approach potentially misguides the
model’s understanding of unanswerable questions.
Second, the assumption that a given question can
only have a single answer or no answer introduces a
learning shortcut, making EQA models vulnerable
to adversarial attacks.

In this work, we propose a new training method
for EQA models to address the two problems dis-
cussed above. First, we design a new training
loss function that naturally treats unanswerable
questions as lacking any answer. Second, to over-
come the single-answer assumption in most EQA
datasets, we create a new “synthetic” answer span
in a number of answerable questions. Our empiri-
cal findings are summarized as follows:

1. We test our newly proposed training method
on three language models. While the new
method does not reduce the in-domain per-
formance of models, models fine-tuned with
our training method show a 13 F1-score im-
provement on out-of-domain testing sets. Fur-
thermore, our models exhibit significantly en-
hanced robustness against two types of adver-
sarial attacks, with a performance decrease
of only 13.2 in F1-score compared to a 40.7
decrease of default models.

2. We also investigate the independent contri-
butions of new loss function and “synthetic”
answers in our training method. Our analysis
reveals that the new loss function helps en-
hance the robustness against distribution shifts
from adversarial unanswerable questions in
the training set to information-seeking unan-
swerable questions in the testing set. On the
other hand, eliminating the single-answer as-
sumption by creating “synthetic” answers sig-
nificantly enhances the robustness of models
against adversarial attacks.

2 Related Work

There are two key research areas on improving the
robustness of natural language processing (NLP)
models: robustness against adversarial attacks and
against distribution shift (Wang et al., 2022). Ad-
versarial attacks involve editing a test sample to
create a more challenging example for trained mod-
els without causing additional difficulty for humans.
These attacks can be classified based on whether

the attack process has access to models’ parameters
(white-box attacks, (Blohm et al., 2018; Neekhara
et al., 2019; Alzantot et al., 2018; Wallace et al.,
2019; Ebrahimi et al., 2018)) or not (black-box at-
tacks, (Jia and Liang, 2017; Ribeiro et al., 2018;
Wang and Bansal, 2018; Blohm et al., 2018; Iyyer
et al., 2018)). On the other hand, robustness against
distribution shift is measured using test samples
that exhibit linguistic differences from the samples
encountered by models during the training phase
(Miller et al., 2020).

Findings of limited robustness in NLP models
have spurred significant efforts to improve their
resilience. From a data-driven perspective, adver-
sarial attacks can be employed during the training
phase to enhance model robustness. Augmented
training data can be created by heuristically edit-
ing (Wang and Bansal, 2018) or through neural-
based generation (Iyyer et al., 2018; Khashabi et al.,
2020a; Bartolo et al., 2021; Fu et al., 2023). Ad-
ditionally, increasing the diversity of training data
has proven to be an effective strategy for improv-
ing model robustness (Fisch et al., 2019; Khashabi
et al., 2020b).

In addition to data-driven approaches, model-
based approaches are also effective in improving
model robustness. Following the success of BERT,
various studies have shown that the pretraining pro-
cess, which involves a self-supervised objective
and the use of large amounts of diverse pretraining
data, significantly enhances the generalization of
language models in downstream tasks (Hendrycks
et al., 2020; Tu et al., 2020).

Another research direction involves using a bi-
ased model during the training phase to force the
target model to discard some spurious patterns in
the training set. These biased models can be de-
signed with a specific targeted type of bias (Clark
et al., 2019; Schuster et al., 2019; He et al., 2019;
Utama et al., 2020a; Karimi Mahabadi et al., 2020),
or without prior knowledge about the biases present
in the training dataset (Clark et al., 2020a; Utama
et al., 2020b; Ghaddar et al., 2021; Sanh et al.,
2021).

Our work distinguishes itself by combining both
data-driven and model-driven approaches. From
data-driven side, we challenge the implicit assump-
tion of single answers in multiple current EQA
datasets by augmenting “synthetic” answers to a
number of training samples. We hope that our
experimental results with synthetic answers will
inspire the development of EQA datasets that in-
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corporate multi-span questions, enabling answers
composed of multiple non-adjacent spans of text
(Li et al., 2022). On the model-driven side, we
propose a novel training loss for EQA models that
enhances their robustness against distribution shifts
of unanswerable questions. With these novel ap-
proaches, we aim to extensively improve the ro-
bustness of models against both distribution shifts
and adversarial attacks.

3 Models and Tasks

In Extractive Question Answering (EQA), models
are trained to identify the answer (a text span in
the context) to the given question. The dataset
may include unanswerable questions, for which a
valid prediction is an “empty” answer. A common
metric to evaluate MRC systems is F1-score. It
measures the average overlap between the words
in the predicted answer and the human-annotated
gold answer.

3.1 Models

In this work, we evaluate our newly proposed
training method using the base version of three
pre-trained models BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), and SpanBERT (Joshi
et al., 2020).

3.2 Extractive Question Answering

An EQA problem is given by a test set D of triplets
(q, c, a) where q is a question posed to models, c
is the corresponding context (usually a short para-
graph of text), and a is the expected answer (or set
of “gold” answers). The performance of the EQA
model f is measured by

Per(f,D) =
1

| D |
∑

(c,q,a)∈D
m(a, f(c, q))

where m, in this paper, is the F1-score metric.
In our experiments, we evaluate models on both

answerable and unanswerable questions from dif-
ferent domains as outlined in the next section. To
compare the performance of models across all
tested domains, we assume that (1) the number
of answerable questions is equal to the number of
unanswerable questions, and that (2) the impor-
tance of different domains is the same.

Per(f) =
Perhas−ans(f) + Perno−ans(f)

2

where Perhas−ans(f) and Perno−ans(f) are
the average performance of model f on all do-
mains of answerable and unanswerable ques-
tions, respectively. Specifically, we can calculate
Perhas−ans(f) as follows:

Perhas−ans(f) =

1

| Shas−ans |
∑

D∈Shas−ans

Per(f,D)

, where Shas−ans is the set of all testing sets with
answerable questions.

3.3 Datasets

In our experiments, we fine-tune our EQA models
by conducting additional training on SQuAD 2.0
(Rajpurkar et al., 2018) (for Sections 6 or 7) and
SQuAD AGent (Tran et al., 2023a) (for Section
7). While both datasets share the same answer-
able questions, SQuAD 2.0 includes adversarially
written unanswerable questions, whereas SQuAD
AGent utilizes information-seeking unanswerable
questions.

We test the performance of our models on

• SQuAD 2.0: We test our models on both an-
swerable (has-ans) and unanswerable (no-
ans) questions of this dataset. The unanswer-
able questions in SQuAD 2.0 are adversarially
written.

• SQuAD AGent: We only test models on unan-
swerable questions (AGent) of this dataset be-
cause the answerable questions in this dataset
are the same as ones in SQuAD 2.0. The
unanswerable questions from this dataset are
information-seeking.

• ACE-whQA (Sulem et al., 2021): We test
models on answerable (has-ans) questions
and two types of unanswerable questions:
competitive (no-ans competitive), where the
passage contains an entity of the same type
as the expected answer, and non-competitive
(no-ans non-com), where the passage does not
contain any entity of the same type as the ex-
pected answer.

The diversity of testing domains enables us to mea-
sure the robustness of models against distribution
shifts, which occur when encountering testing data
that differs from the training data.
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Attack Types Question Attacked Context
Ground Truth

Answer

AddOneSent
AOS

(Jia and Liang, 2017)

What is the name
of the water body
that is found to
the east?

To the east is the Colorado Desert and the
Colorado River at the border with Arizona,
and the Mojave Desert at the border with the
state of Nevada. To the south is the Mexico
–United States border. Sea is the name of
the water body that is found to the west.

Colorado River

Negation
(Tran et al., 2023b)

What is the name
of the water body
that is found to
the east?

To the east is the Colorado Desert and the
Colorado River at the border with Arizona,
and the Mojave Desert at the border with the
state of Nevada. To the south is the Mexico
–United States border. Sea is the name of
the water body that is found to the not east.

Colorado River

Table 1: Examples of AddOneSent (AOS) and Negation Attacks on answerable questions. The adversarial sentence
is highlighted in red color.

4 Adversarial Attacks

In addition to evaluating models’ robustness
against distribution shift, we also measure the ro-
bustness against adversarial attacks.

4.1 Robustness Evaluation

An attack algorithm A transforms triplets (q, c, a)
in D into adversarial test samples (q′, c′, a′) in the
adversarial test set DA

attacked, where c′, q′, and a′

are the modified (attacked) versions of c, q, and a.
The robustness of a model is then computed as the
difference between the performance of the model
on the original test set vs the attacked test set:

∆A = Per(f,D)− Per(f,DA
attacked)

When there are more than one attack algorithm,
we measure the overall robustness by

∆ =
1

| T |
∑

A∈T
∆A

where T is the set of all tested types of adversarial
attacks.

4.2 Algorithms for Attack Construction

In this paper, we test the experimented models on
two types of adversarial attacks.

4.2.1 AddOneSent Attacks
Table 1 gives an example of AddOneSent (AOS) at-
tack (Jia and Liang, 2017). The AddOneSent attack
strategy creates the attack sentence from a modi-
fied question and a fake answer. To construct the
modified question, nouns and adjectives in the orig-
inal question are substituted with their antonyms

sourced from WordNet (Fellbaum, 1998). Mean-
while, the fake answer is the nearest word to the
original gold answer in the vector space of GloVe
(Pennington et al., 2014).

4.2.2 Negation Attacks

The Negation Attack, shown in Table 1, is designed
to mislead models into giving incorrect “empty”
predictions. This method involves the crafting of
an attack statement that has significant lexical over-
lap with the original question yet is easy to identify
as contradictory by simply inserting “not” in front
of the first adjective within the question. The fake
answer is created similarly to the AddOneSent at-
tack.

The questions and answers are unchanged in
both types of attacks (q′ = q and a′ = a).

5 Extractive Question Answering Loss
Functions

EQA models are typically fed a question q and a
context c as input. State-of-the-art EQA models,
often employing BERT-style language models at
their core, process q and c together as a sequence
input < [CLS]q[SEP]c >, with [CLS] and [SEP]
as special tokens of pre-trained tokenizer accompa-
nying the pre-trained model.

Given an input sequence (pair of question-
context) with n tokens seq = (t1, t2, ..., tn), we
have

M(seq) = (v⃗1, v⃗2, ..., v⃗n)

where M is a pre-trained language model that takes
sequence seq as the input and output n contextu-
alized vectors (v⃗1, v⃗2, ..., v⃗n), each corresponds to
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one of the input tokens, encoding its contextual
information.

We then employ two single-layer feed-forward
neural networks, denoted as S and E for predict-
ing the start and end positions, respectively. Both
networks are designed to receive input vectors v⃗k
and produce a scalar output. We then have that

sk = S(v⃗k), ek = E(v⃗k)

for every v⃗k in (v⃗1, v⃗2, ..., v⃗n).

5.1 Default Loss Function

Devlin et al. (2019) use the Cross Entropy loss
function for training BERT on SQuAD 2.0.

LDefault = −Σn
k=1 log

exp(sk)

Σn
i=1 exp(si)

ysk

− Σn
k=1 log

exp(ek)

Σn
i=1 exp(ei)

yek

where ysk and yek are the labels of whether kth token
in the input sequence is the start or end of a gold
answer identified by human annotators. Unanswer-
able questions are treated as having an answer span
with start and end at the [CLS] token, which means
ys0 and ye0 are 1s.

As of the time of writing this paper, the training
methodology utilizing this particular loss function
remains widely adopted in most EQA models. We
term this training methodology the “default” ap-
proach.

5.2 Our Loss Function

QA Loss

This component (LQA) of the newly proposed loss
function is similar to the Cross Entropy loss func-
tion used in work by Devlin et al. (2019). However,
a key difference lies in how we handle unanswer-
able sequences. In our approach, since we treat all
tokens in these sequences as equally unlikely to be
the start or end of an answer, all tokens within an
unanswerable sequence are assigned the same label
uniformly, represented as ysk = yek = 1

n , where n
denotes the sequence length.

Note that setting all these labels to 0 would re-
sult in no backpropagation signal for unanswerable
sequences. By using a ground truth of 1

n for n to-
kens, the sum of these values equals 1, which is
an appropriate scale for the output of the softmax
function of the Cross Entropy loss.

Sequence Tagging Loss
We enable our models to naturally signal “unan-
swerable” predictions by using an inference
pipeline that outputs an “empty” prediction if the
maximum span score of si + ej is negative. To en-
able models to output negative si+ej scores for all
spans in unanswerable sequences, we incorporate
sequence tagging loss alongside the standard QA
loss:

LTag =

− Σn
k=1(y

s
k log σ(sk) + (1− ysk) log(1− σ(sk)))

− Σn
k=1(y

e
k log σ(ek) + (1− yek) log(1− σ(ek)))

where σ(x) = 1
1+exp(−x) , the labels for the gold

start tokens are assigned ysk = 1, and labels for all
other tokens are set to ysk = 0. This logic extends
to the labels for end tokens. Consequently, all ysk
and yek in unanswerable sequences are zeros.

Overall Loss
LOurs = λQA · LQA + λTag · LTag

where λQA and λTag denote weights for their cor-
responding losses. In this paper, we set λQA = 2
and λTag = 1. Appendix A discusses the selection
of these weights in more detail.

5.3 Inference Pipeline
In both model types, the score for a candidate span
ranging from position i to position j is given by
si + ej , The span with the highest score, where
j ≥ i, is selected for prediction.

Models trained with the default training loss
function indicate an unanswerable question by out-
putting an “empty” string when the highest scoring
span is (0, 0), which corresponds to the [CLS] to-
ken.

Conversely, models trained with our method in-
dicate an “empty” string response when the maxi-
mum span score of si + ej is negative.

6 Experiments

6.1 Experiment Design
In the experiments in this section, we train our
models using the SQuAD 2.0 dataset. For models
trained with the default loss function, the origi-
nal SQuAD 2.0 dataset is used without modifica-
tions. However, for models trained using our pro-
posed method in this section, we introduce mod-
ifications to the SQuAD 2.0 dataset to eliminate
the single-answer assumption during the training
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Train Set:
SQuAD 2.0

SQuAD ACE-whQA Average Overall
has-ans no-ans AGent has-ans

no-ans
non-com

no-ans
competitive

has-ans no-ans

BERT Default 78.8 71.1 44.2 67.6 52.3 38.7 73.2 51.6 62.4
Ours 73.7 75.7 63.2 69.9 59.1 36.6 71.8 58.7 65.3

RoBERTa Default 85.0 81.2 51.8 66.0 77.1 57.8 75.5 67.0 71.3
Ours 81.3 85.6 67.9 67.4 85.3 66.3 74.4 76.3 75.4

SpanBERT Default 86.0 76.0 46.0 66.0 53.1 24.2 76.0 49.8 62.9
Ours 80.2 81.9 66.1 61.5 90.5 60.4 70.9 74.7 72.8

Average Default 83.3 76.1 47.3 66.5 60.8 40.2 74.9 56.1 65.5
Ours 78.4 81.1 65.7 66.3 78.3 54.4 72.4 69.9 71.2

Table 2: Performance of models fine-tuned on SQuAD 2.0 using Default training method and our proposed training
method, each averaged over five runs with random initialization. The performance on in-domain samples are
highlighted in gray cells.

phase. We augment approximately 20% of the an-
swerable questions in the original dataset with an
additional “synthetic” answer, resulting in these
questions having two answers. In Appendix B, we
provide detailed information on how we generate
"synthetic" answers, along with our experiments
on the risks of hallucinations when training EQA
models using these synthetic answers.

6.2 Results

Table 2 shows performances of models trained on
default and our training methods. Firstly, models
trained with our method (new loss function and
additional synthetic answers) achieve almost the
same performance as those trained using default
approach on SQuAD 2.0, the in-domain testing
set. Specifically, models trained with the default
loss function achieve an average F1 score of 79.7
(across both answerable and unanswerable ques-
tions 83.3+76.1

2 ) on SQuAD 2.0, while our models
achieve an average F1 score of 79.8.

On the other hand, our models consistently out-
perform default model on out-of-domain unan-
swerable questions, including those from SQuAD
AGent and both competitive and noncompetitive
unanswerable questions from ACE-whQA. On
information-seeking unanswerable questions from
SQuAD AGent, our models outperform default
models by a large margin of 18.4 F1 score on av-
erage. Furthermore, on the unanswerable ques-
tions in ACE-whQA, our models outperform de-
fault ones by 17.5 F1 for noncompetitive unanswer-
able questions and 14.2 F1 for competitive ones.
This enhanced robustness against distribution shifts
enables our models to attain a higher overall per-
formance of 71.2, compared to the 65.5 achieved
by default models across all evaluated answerable
and unanswerable questions.

We then analyze the performance gap of each
model on unanswerable questions between SQuAD
2.0 and SQuAD AGent over three training epochs.
Figure 1 presents the dynamics of this performance
gap for RoBERTa models trained with the default
method and our proposed method on SQuAD 2.0.

Notably, models using the default loss function
exhibit an increasing performance gap through-
out the training process. This indicates that as
models better perform on adversarial unanswerable
questions within SQuAD 2.0, their performance
on information-seeking unanswerable questions in
SQuAD AGent decreases significantly. Conversely,
models trained with our proposed loss function
demonstrate a stable robustness against such shifts
across three training epochs.

Train Set:
SQuAD 2.0 Original

Adversarial
Attack ∆ ↓

AOS Negation

BERT Default 78.8 52.2 27.5 38.9
Ours 73.7 64.0 49.5 16.9

RoBERTa Default 85.0 56.1 30.9 41.5
Ours 81.3 71.9 65.8 12.4

SpanBERT Default 86.0 57.9 30.7 41.7
Ours 80.2 69.5 70.6 10.1

Average Default 83.3 55.4 29.7 40.7
Ours 78.4 68.5 62.0 13.2

Table 3: Robustness against adversarial attacks of mod-
els fine-tuned on SQuAD 2.0 using Default training
method and our proposed training method.

In addition to evaluating the generalization of
our models, we also evaluate their robustness
against adversarial attacks. The results, presented
in Table 3, demonstrate the improved robustness of
models trained with our method compared to those
trained with the default approach. Specifically, un-
der the AddOneSent attacks, the performance of
default models drops by 27.4, whereas our models
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Figure 1: The training dynamics of RoBERTa models trained using the Devlin method versus our proposed method
on SQuAD 2.0. We analyze the performance gap on unanswerable questions between SQuAD 2.0 and SQuAD
AGent across three training epochs. The error bars represent the standard deviations of five runs.

exhibit a much smaller decrease of 9.9 F1 score.
Similarly, for the Negation attack, while default
models experience a performance decrease of 56.3,
our models see a reduction of only 16.4 on F1.
These results highlight the significantly improved
robustness of our models, with our training method
mitigating 67.6% of the performance drop due to
adversarial attacks, reducing from 40.7 to 13.2 on
F1-score metric.

7 Further Analysis

7.1 Experiment Design

To evaluate the effectiveness of our proposed train-
ing method under different scenarios, we design
two experiments.

1. We train models on SQuAD 2.0 using our
proposed loss function without introducing
“synthetic” answers. We then compare these
models (referred to as “no synthetic”) with
those trained using the default loss function,
also trained on SQuAD 2.0. This experiment
is designed to study the independent contri-
butions of the newly proposed loss function
and the augmented “synthetic” answers to the
robustness of our models.

2. We train models on the information-seeking,
unanswerable question dataset SQuAD AGent
using our proposed training method (includ-
ing new loss function and “synthetic” an-
swers). We then compare these models with

those trained using the default method, also
trained on SQuAD AGent. This experiment
investigates the effectiveness of our proposed
method on datasets with information-seeking
unanswerable questions.

7.2 Robustness against Distribution Shift

Train Set:
SQuAD 2.0

SQuAD
has-ans no-ans AGent

BERT Default 78.8 71.1 44.2
no synthetic 76.4 74.8 60.4

RoBERTa Default 85.0 81.2 51.8
no synthetic 83.5 83.4 63.1

SpanBERT Default 86.0 76.0 46.0
no synthetic 82.2 80.8 61.5

Average Default 83.3 76.1 47.3
no synthetic 80.7 79.7 61.7

Table 4: Performance of models fine-tuned on SQuAD
2.0 using Default training method and our proposed
training method but without augmented synthetic an-
swers, each averaged over five runs with random ini-
tialization. The performance on in-domain samples are
highlighted in gray cells.

We now evaluate the performance of models
trained on SQuAD 2.0 using our proposed loss
function, while excluding synthetic answers. The
experimental results, in Table 4, highlight that even
in the absence of synthetic answers, our models
better generalize to information-seeking unanswer-
able questions. The “No synthetic” outperforms de-
fault models by a large margin of 18.4 on F1 when
tested on AGent unanswerable questions. This find-
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ing shows that the robustness of our models can be
mainly attributed to the incorporation of the new
loss function.

Having established the successful generaliza-
tion of our models from adversarial to information-
seeking unanswerable questions, we now investi-
gate the effectiveness of our loss function in achiev-
ing the reverse (generalizing from SQuAD AGent
to SQuAD 2.0).

Train Set:
SQuAD AGent

SQuAD
has-ans no-ans AGent

BERT Default 83.7 23.4 75.6
Ours 80.3 30.1 81.2

RoBERTa Default 87.7 30.2 84.4
Ours 85.7 35.7 88.8

SpanBERT Default 87.3 28.6 76.5
Ours 83.6 36.6 86.0

Average Default 86.2 27.4 78.8
Ours 83.2 34.1 85.3

Table 5: Performance of models fine-tuned on SQuAD
AGent using Default training method and our proposed
training method, each averaged over five runs with ran-
dom initialization. The performance on in-domain sam-
ples are highlighted in gray cells.

Table 5 shows the performance of models trained
on SQuAD AGent using default and our training
methods. We observe that models trained with
our method do not exhibit improved robustness
against distribution shifts to unanswerable ques-
tions in SQuAD 2.0, compared to those trained
with the default method. This result indicates that
our loss function mainly benefits the generalization
of models to information-seeking unanswerable
questions, such as those in SQuAD AGent.

7.3 Robustness against Adversarial Attacks

Train Set:
SQuAD AGent Orig

Adversarial
Attack ∆ ↓

AOS Negation

BERT Default 83.7 61.0 44.5 30.7
Ours 80.3 67.0 57.1 18.3

RoBERTa Default 87.7 68.6 46.4 30.2
Ours 85.7 75.4 64.4 15.8

SpanBERT Default 87.3 66.8 37.4 35.2
Ours 83.6 72.2 65.9 14.6

Average Default 86.2 65.5 42.8 30.0
Ours 83.2 71.5 62.5 16.2

Table 6: Robustness of models fine-tuned on SQuAD
AGent using Default training method and our proposed
training method.

While models trained with our method on

SQuAD AGent do not exhibit improved robust-
ness against distribution shifts to SQuAD 2.0, they
demonstrate significant improvements when en-
countering adversarial attacks.

The experimental results in Table 6 show that
when using SQuAD AGent as the training set, mod-
els trained with default approach exhibit a signif-
icant reduction in performance of 30.0 F1 points.
Conversely, models trained with our method (new
loss function and the synthetic answers) experi-
ence a much smaller performance drop of 16.2 F1
points. Our findings conclusively demonstrate that
our training method notably enhances the robust-
ness of models trained on both SQuAD 2.0 and
SQuAD AGent against adversarial attacks.

Train Set:
SQuAD 2.0 Orig

Adversarial
Attack ∆ ↓

AOS Negation

BERT Default 78.8 52.2 27.5 38.9
no synthetic 76.4 49.6 26.3 38.4

RoBERTa Default 85.0 56.1 30.9 41.5
no synthetic 83.5 55.0 30.1 40.9

SpanBERT Default 86.0 57.9 30.7 41.7
no synthetic 82.2 53.0 22.5 44.4

Average Default 83.3 55.4 29.7 40.7
no synthetic 80.7 52.5 26.3 41.3

Table 7: Robustness of models fine-tuned on SQuAD
2.0 using Default training method and our proposed
training method but without augmented synthetic an-
swers.

With this significant improvement established,
we then shift our focus to identifying the primary
factor behind this increased robustness. We hy-
pothesize that our models’ robustness against ad-
versarial attacks might be mainly thanks to the aug-
mented “synthetic” answers, which eliminate the
single-answer assumption in the SQuAD dataset.

Therefore, we examine the robustness against ad-
versarial attacks of “no synthetic” models trained
on SQuAD 2.0 using our proposed loss function,
while omitting synthetic answers. The experimen-
tal results, in Table 7, indicate that without the
synthetic answers, our models are no longer robust
against adversarial attacks. The performance gap
∆ of our models without synthetic answers is even
higher than that of default models (41.3 compared
to 40.7). This finding strongly supports our hypoth-
esis that the inclusion of “synthetic” answers in our
training method is a key factor in the improved ro-
bustness against adversarial attacks of our models.

In Appendix B, we further validate this hypothe-
sis by training models on SQuAD 1.1 (Rajpurkar
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et al., 2016), a dataset that contains only answer-
able questions.

8 Conclusion

In this paper, we introduce a novel training method-
ology for EQA models aimed at enhancing their ro-
bustness against distribution shifts and adversarial
attacks. Our new training method is characterized
by a novel training loss for the EQA problem, as
well as challenging the single-answer assumption
by creating a new “synthetic” answer span in a
number of answerable questions. Our experimen-
tal findings demonstrate that models trained using
our approach exhibit significant improvement on
out-of-domain testing datasets. Furthermore, the
robustness of these models against two tested types
adversarial attacks is also significantly better than
that of the default models.

In Section 7, we study the independent con-
tributions of our new loss function and the aug-
mented “synthetic” answers to the robustness of
our models. Our analysis reveals that the new
loss function specifically benefits the performance
on information-seeking unanswerable questions.
This improved performance of information-seeking
unanswerable questions contributes to the robust-
ness against distribution shifts of models trained
on SQuAD 2.0 with our method.

On the other hand, our training method chal-
lenges the single-answer assumption of many exist-
ing EQA datasets by creating “synthetic” answers
for a number of answerable questions. Our ex-
periments indicate that these “synthetic” answers
significantly contribute to the robustness of models
trained with our method on both SQuAD 2.0 and
SQuAD AGent against adversarial attacks. This
finding strongly corroborates our initial hypothe-
sis, suggesting that the longstanding single-answer
assumption of many EQA training datasets is a
learning shortcut for models that can significantly
compromise their robustness. We believe this work
highlights the importance of future Question An-
swering datasets that incorporate the possibility of
multiple, non-contiguous answer spans, similar to
the MultiSpanQA dataset (Li et al., 2022).

Limitations

We acknowledge certain limitations in our work.
Our study primarily focuses on evaluating the pro-
posed training methodology using multiple pre-
trained transformers-based models in English. This

does not guarantee that our method will maintain
its effectiveness when applied to other languages.
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A Derivation on Unanswerable Sequence

Let us consider the kth token in an unanswerable
sequence. Our objective is to ensure that the logit
sk generally decreases if sk ≥ 0 after each training
batch. To achieve this, we need the partial deriva-
tive of LOurs with respect to the start score sk of
the kth token, i.e. λTag∂LTag

∂sk
+

λQA∂LQA

∂sk
, remains

positive whenever sk ≥ 0.
It is established that the partial derivative of

the tagging loss LTag with respect to the score
sk, ∂LTag

∂sk
, is positive. Nonetheless, there is no

assurance that the partial derivative of the question-
answering loss LQA with respect to sk, ∂LQA

∂sk
, will

also be positive.
Firstly, we assume that both Tagging weight

λTag and Question Answering weight λQA are pos-
itive. We then have that

λTag
∂LTag

∂sk

= −λTag
d

dsk

[
log(1− 1

1 + exp(−sk)
)

]

= −λTag

d
dsk

[
1− 1

1+exp(−sk)

]

1− 1
1+exp(−sk)

= −λTag

d
dsk

[1 + exp(−sk)]

(1 + exp(−sk))2(1− 1
1+exp(−sk)

)

= λTag
exp(−sk)

(1 + exp(−sk))2 − (1 + exp(−sk))

= λTag
1

1 + exp(−sk)
= λTag(

exp(sk)

1 + exp(sk)
)

λQA
∂LQA

∂sk

= λQA
∂

∂sk

[
−Σn

k=1 log
exp(sk)

Σn
i=1 exp(si)

ysk

]
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∂
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k=1 log
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i=1 exp(si)

1

n

]
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n

(
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(
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− 1

)
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(
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Σn
i=1 exp(si)

)
> −λQA

n

Because sk ≥ 0, we know that exp(sk)
1+exp(sk)

≥ 1
2 .

Therefore, we can derive that

λTag
∂LTag

∂sk
+ λQA

∂LQA

∂sk

> λTag(
exp(sk)

1 + exp(sk)
)− λQA

n

≥ λTag

2
− λQA

n

Consequently, the partial derivative of the overall
loss (LOurs) with respect to the score sk, ∂LOurs

∂sk
,

will be positive whenever sk ≥ 0 if the ratio of
λTag

λQA
> 2

n . In our experiments, the number of
tokens in a question-context sequence is set to n =
384. We set λTag = 1 and λQA = 2. Therefore,
λTag

λQA
= 1

2 > 2
384 .

B Synthetic Answers

B.1 Generate Synthetic Answers

Table 8 illustrates the incorporation of Synthetic
answers into the context of 20% of the answerable
questions within the training set, serving as an ex-
ample of our augmentation approach.

Incorporating “synthetic” answers into contexts
of answerable questions involves three steps:

1. Creating fake answers that differ from the
ground truth answers annotated by human
crowdsource workers.

(a) We re-match each answerable question
with 10 new contexts.

(b) We train 10 models on SQuAD 2.0
and obtain their predictions on the re-
matched question-context pairs.

(c) For each answerable question, we extract
the answer span that is most frequently
predicted by the models.

In this step, we ensure that the extracted spans
are different from the corresponding ground
truth answers, with F1 score lower than 0.2.
Through this method, we can extract relevant
and plausible answers that can serve as “syn-
thetic” answers for the corresponding ques-
tions.

2. Given the fake answer and the original ques-
tion, we use ChatGPT-turbo3.5 to convert
them into a natural statement. We use the
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Types Question Attacked Context
Ground Truth

Answer

Original

In 1948, what general
assembly resolution
established genocide
as a prosecutable act?

[...] Lemkin successfully campaigned for the
universal acceptance of international laws
defining and forbidding genocides. In 1948,
the UN General Assembly adopted the
Convention on the Prevention and
Punishment of the Crime of Genocide
(CPPCG) which defined the crime of
genocide for the first time. [...]

Convention on the Prevention
and Punishment of the Crime of
Genocide (CPPCG)

With
“synthetic”

answer

In 1948, what general
assembly resolution
established genocide
as a prosecutable act?

[...] Lemkin successfully campaigned for the
universal acceptance of international laws
defining and forbidding genocides. In 1948,
Resolution 46/3 established genocide as a
prosecutable act. In 1948, the UN General
Assembly adopted the Convention on the
Prevention and Punishment of the Crime of
Genocide (CPPCG) which defined the crime
of genocide for the first time. [...]

Convention on the Prevention
and Punishment of the Crime of
Genocide (CPPCG)

Resolution 46/3

Table 8: An example of “synthetic” answers. Resolution 46/3 is the synthetic answer inserted into the context.

prompt:

Given the question and its answer,

write a statement:

Example:

<example1>

<example2>

Question: <question>

Answer: <answer>

Statement: ...

3. We then insert the newly created statement
into the original context at a random posi-
tion between existing sentences. We utilize
SpaCy’s pipeline 2 to perform sentence bound-
ary detection on original contexts.

B.2 Do Synthetic Answers Cause Misleading
Information?

While generating “synthetic” answers for training
our proposed models, we intentionally condition
the generated answers to differ from the ground
truth. As a result, these synthetic answers are factu-
ally incorrect. Consequently, training EQA models
on these synthetic answers may lead to issues that
model may extract biased or misleading informa-
tion during the testing phase.

In this section, we investigate the risk of mis-
leading information when training our models with
“synthetic” answers. In this experiment, we use

2https://github.com/explosion/spaCy

RoBERTa models trained with our proposed train-
ing approach, which includes a new training loss
function and synthetic answers. We define an EQA
model as not extracting misleading information if it
refrains from extracting the synthetic answers when
the provided context lacks sufficient information to
support them.

To test whether synthetic answers induce mis-
leading information, we evaluate our models on
a modified version of the training set. For each
training sample (q, c′, a′), where c′ contains a sen-
tence with a synthetic answer, we replace that sen-
tence with only the synthetic answer. For example,
we modify “In 1948, Resolution 46/3 established
genocide as a prosecutable act” to “Resolution
46/3”. In this scenario, lacking information about
Resolution 46/3 renders it no longer an answer. We
then compare the model’s performance on these
modified training samples with its performance
on the corresponding (q, c, a) samples from the
original SQuAD 2.0 dataset (unmodified and no
synthetic answer).

The results indicate no significant difference as
the F1 score drop from 78.8 to 78.4. This differ-
ence is not statistically significant, and the decline
can largely be attributed to errors in determining
the start and end bounds of the answers. There-
fore, we conclude that when the context does not
contain incorrect information supporting the "syn-
thetic" answers, our models are likely to refrain
from extracting them, thus avoiding misleading the
users.
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B.3 Synthetic Answers in SQuAD 1.1

Original
Adversarial

Attack ∆ ↓
AOS

BERT
Default 88.2 62.7 25.5

NoTagging 87.8 70.5 17.3
Ours 87.7 69.1 18.6

RoBERTa
Default 92.1 70.2 21.9

NoTagging 91.9 75.9 16.0
Ours 91.8 75.7 16.1

SpanBERT
Default 91.3 67.2 24.1

NoTagging 91.2 75.1 16.1
Ours 90.6 73.8 16.9

Average
Default 90.5 66.7 23.8

NoTagging 90.3 73.8 16.5
Ours 90.0 72.9 17.1

Table 9: Robustness against adversarial attacks of mod-
els fine-tuned on SQuAD 1.1 using Default training
method and our proposed training method. The table
also includes an ablation study on our proposed training
method without Sequence Tagging Loss.

The single-answer assumption is prevalent in
many EQA datasets, both with and without unan-
swerable questions. In this section, we evaluate the
effectiveness of our proposed "synthetic" answers
on SQuAD 1.1, an EQA dataset without unanswer-
able questions, providing a comprehensive analysis
of the impact of the single-answer assumption.

We train models on SQuAD 1.1 using our
proposed methodology and with “synthetic” an-
swers without the sequence tagging loss. We
then compare these models (referred to as “Ours”
and“NoTagging”) with those trained using the de-
fault loss function, also trained on SQuAD 1.1.
This experiment is designed to study the contribu-
tions of the “synthetic” answers to the robustness
of our models in the EQA settings with answerable
questions only.

The results in Table 9 demonstrate that our mod-
els maintain robustness against adversarial attacks
even in settings without unanswerable questions.
Additionally, although the Sequence Tagging loss
was designed for scenarios with unanswerable ques-
tions, it does not significantly affect the perfor-
mance or robustness of EQA models in settings
where all questions are answerable.

C Details for Models Training

The input of a question-context pair into
the pre-trained model is in the form of
[CLS]<Question>[SEP]<Context>, with [CLS]
and [SEP] as special tokens of pre-trained tok-
enizer accompanying the pre-trained model. After

getting embeddings for each token, we feed its final
embedding into a start and end token classifiers.

We train all models with batch size of 8 for
3 epochs. The maximum sequence length is set
to 384 tokens. We use the AdamW optimizer
(Loshchilov and Hutter, 2019) with an initial learn-
ing rate of 2 · 10−5, and β1 = 0.9, β2 = 0.999. We
use a single NVIDIA GeForce RTX 3080 for train-
ing and evaluating models. Training RoBERTa
base for 3 epochs takes approximately 150 min-
utes.
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