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Abstract

As open-weight large language models (LLMs)
achieve ever more impressive performances
across a wide range of tasks in English, practi-
tioners aim to adapt these models to different
languages. However, such language adaptation
is often accompanied by catastrophic forget-
ting of the base model’s capabilities, severely
limiting the usefulness of the resulting model.
We address this issue by proposing Branch-
and-Merge (BAM), a new adaptation method
based on iteratively merging multiple models,
fine-tuned on a subset of the available train-
ing data. BAM is based on the insight that
this yields lower magnitude but higher qual-
ity weight changes, reducing forgetting of the
source domain while maintaining learning on
the target domain. We demonstrate in an exten-
sive empirical study on Bulgarian and German
that BAM can significantly reduce forgetting
while matching or even improving target do-
main performance compared to both standard
continued pretraining and instruction finetun-
ing across different model architectures.

1 Introduction

Large language models have shown remarkable
capabilities, particularly in English. However,
for less prevalent languages, performance can be
significantly lower, making additional adaptation
paramount (Zhao et al., 2024; Cui and Yao, 2024).

Catastrophic Forgetting Unfortunately, most
adaptation techniques come at the cost of catas-
trophic forgetting of the base model’s capabilities
(Zhai et al., 2023; Shi et al., 2024; Li and Lee, 2024;
Gogoulou et al., 2023). At the same time, retain-
ing these capabilities is often crucial for solving
downstream tasks in a new language. For example,
math and coding skills learned in English can be
extremely helpful for general problem-solving or
reasoning tasks in other languages.
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Figure 1: Illustration of Branch-and-Merge (BAM). We
first split the training data into N slices (blue ). We
then iteratively finetune the current base model on two
of these slices (green ) and merge the resulting models
to obtain the base model for the next iteration (purple ).
We repeat this until all N data slices have been used.

Experience Replay To mitigate such catas-
trophic forgetting, mixing in source language data
in the target language training set, so-called expe-
rience replay, has proven effective for both con-
tinued pretraining (Ibrahim et al., 2024) and in-
struction tuning (Scialom et al., 2022; Zhang et al.,
2023). However, experience replay alone can not
fully mitigate forgetting. Especially when the exact
source data is unknown (e.g. for state-of-the-art
language models), experience replay can only be
implemented approximately, reducing its effective-
ness and necessitating further regularization.

This Work: Mitigating Catastrophic Forget-
ting with Branch-and-Merge We build on ideas
from continual learning and introduce Branch-and-
Merge (BAM – illustrated in Fig. 1), a novel
method for adapting pretrained language models to
new languages, underrepresented in their unknown
training data, while minimizing the loss of previ-
ously learned capabilities. Concretely, BAM splits
the training data into N slices (blue in Fig. 1),
before iteratively training the current base model
on K (here two) such data slices in parallel (green
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) and finally merging them (purple ) to obtain
the initial model for the next iteration. This sig-
nificantly reduces the total weight change and as
a result, forgetting, while preserving most of the
learning from the parallel training steps. In par-
ticular, while target language perplexity is slightly
increased compared to standard continued train-
ing, the retained base model skills lead to higher
downstream performance on target language tasks.

Results We apply BAM to adapt MISTRAL-7B
(Jiang et al., 2023) and LLAMA-3-8B (AI@Meta,
2024b) from predominantly English to an alphabet-
sharing (German) and a non-alphabet-sharing (Bul-
garian) language, considering both continued pre-
training and instruction tuning.

We show that BAM consistently improves bench-
mark performance in both the target and source
language compared to standard training, while not
incurring additional computational or data costs.
For example, when applied to instruction tuning,
BAM significantly improves performance, allow-
ing our LLAMA-3-8B BAM-trained for Bulgarian
to outperform LLAMA-3-8B-Instruct not only in
Bulgarian (by 10.9%) but also in English (by 1.3%)
by inducing smaller magnitude but more efficient
weight changes. In particular, we show that BAM
induces more favorable trade-offs between learn-
ing and forgetting than prior techniques such as
reduced learning rates (Winata et al., 2023) and
LORA (Biderman et al., 2024).

Key Contributions Our main contributions are:

• We propose Branch-and-Merge (BAM), a
training technique for language adaptation,
improving learning while mitigating forget-
ting (Section 3).

• We develop a high-quality data mix for ap-
proximate experience replay significantly im-
proving language transfer (Section 4).

• We conduct an extensive empirical investiga-
tion demonstrating the effectiveness of BAM
across two target languages (Section 6).

2 Model Merging

A wide range of model merging methods have been
proposed (Matena and Raffel, 2022; Yadav et al.,
2023; Stoica et al., 2023; Yu et al., 2023; Wortsman
et al., 2022). We experiment with LINEAR (Worts-
man et al., 2022), SLERP (Goddard et al., 2024;

Shoemake, 1985) and MODEL STOCK (Jang et al.,
2024) merging, focusing on the first two, explained
below. Let us consider the pretrained base model,
fθ, parameterized by θ which was finetuned on two
different datasets X1 and X2, yielding fθ1 and fθ2 ,
respectively. We call the changes in weight due
to this finetuning the task vectors τi = θi − θ. To
obtain a single model combining the learning from
both datasets, we now merge these models.

LINEAR model merging interpolates task vec-
tors or equivalently parameterizations linearly so to
obtain θ′ := LINEAR(θ1, θ2, c) = (1− c) θ1+ c θ2.

SLERP first represents task vectors in polar co-
ordinates before interpolating to obtain the new
parameterization θ′ = τ ′ + θ

ϑ =arccos
τ1 · τ2
|τ1| · |τ2|

τ ′ =
sin((1− c)ϑ)

sin(ϑ)
τ1 +

sin(c ϑ)

sin(ϑ)
τ2

where ϑ is the angle between the two parameter-
izations and c is the interpolation coefficient. By
slight abuse of notation, we write SLERP(θ1, θ2, c)
for both the resulting parameters θ′ and the corre-
sponding model fθ′ .

3 Branch-and-Merge for Mitigating
Forgetting in Language Transfer

To adapt a model fθ pretrained on a typically un-
known data distribution Xpre to a new task (lan-
guage) without suffering from catastrophic forget-
ting, we propose the Branch-and-Merge (BAM)
method, visualized in Fig. 1. BAM is based on first
splitting the available training data into N slices
(blue in Fig. 1), and then iteratively training K
models in parallel on one slice each (green ) be-
fore merging the resulting models to obtain the
base model for the next training iteration (purple

). We first provide the intuition behind BAM be-
fore describing it in more detail.

Intuition There are two key ideas underlying
BAM. First, lower magnitude weight changes τi,
called task vectors, lead to less forgetting but also
less learning. Second, the randomness in finetuning
leads to task vectors τi = τ∗ + ϵi with an unbiased
error ϵi around the locally optimal task vector τ∗

(Jang et al., 2024). We can thus reduce forgetting
by reducing the task vector magnitude while offset-
ting the reduced learning by increasing task vector
quality, i.e., reducing the error ϵ. If this error is
unbiased and empirically Gaussian ϵi ∼ N (0, σ2)
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Figure 2: Illustration of BAM in the loss surface over
parameter space. Both θ1 and θ2 land in poor local
minima but their merge θ′1,2 lies in the valley of a better
minimum. Training from there, θ3 and θ4 land at the
boundary of that minimum due to noise in the training
process and limited data. Their merge θ′3,4 cancels these
errors and lies in the better minimum.

(Jang et al., 2024), merging, i.e., averaging, K
noisy task vectors to obtain τ ′ = 1

K

∑K
i=1 τi re-

duces the corresponding expected error magnitude
with ||ϵ′||2 ∝ 1√

K
, as τ ′ ∼ N (τ∗, 1

Kσ2). At the
same time, increasing K in BAM reduces the num-
ber of consecutive training iterations (as more data
slices are used per iteration) and thus the expected
total weight magnitude which in turn reduces both
learning and forgetting. This allows BAM to trade
off learning and forgetting.

We visualize this in Fig. 2 for K = 2. There, the
first two task vectors τ1 and τ2 land in the basins
of poor local minima, with their merge θ′1,2 falling
into the basin of a better minimum, highlighting the
importance of BAM’s iterative merging approach.
Training θ′1,2 on two more data slices yields noisy
task vectors τ3 and τ4 at the edge of this loss basin
with their merge θ′3,4 falling right in the middle. In
contrast, simply reducing the learning rate can also
reduce task vector magnitude but does not improve
task vector quality. We note that the same intuitions
apply to SLERP and MODEL STOCK merging.

Implementation In more detail, we first partition
the training data Xtrain into N not necessarily i.i.d.
or equal-sized data slices Xi. Then, we choose a
parallelism factor K (K=2 for most experiments
and the visualizations in Figs. 1 and 2) and train our
current base model fθ independently on K of these
data slices yielding fθi to fθi+K−1

. We merge the
resulting models to obtain the base model for the
next iteration fθ′ = MERGE({fθj}i+K−1

j=i , c). We
typically choose the merging coefficient c = 0.5
but note that we can easily perform a 1-d line search
over the resulting models. We then set the merged
model fθ′ to be the base model fθ ← fθ′ for the

Algorithm 1 Branch-and-Merge (BAM)

Require: K: parallelism factor, fθ: base model,
{Xi}Ni=1: data slices, c: merging coefficient

1: Θ← {}
2: for i ∈ [N ] do
3: fθi ← train(fθ,Xi)
4: Θ← Θ ∪ {θi}
5: if i modK = 0 || i = N then
6: θ ← MERGE(Θ, c)
7: Θ← {}
8: return fθ: finetuned model

next training iteration and repeat this process until
we have used all data slices. We formalize this
approach in Algorithm 1.

4 Data Mixtures for Mitigating
Forgetting in Language Transfer

Here we describe the data we use for continued pre-
training of predominantly English base language
models in order to adapt them to other languages.
Outside of training methodology, we find in agree-
ment with prior work that high-quality dataset mix-
tures are paramount for both effective language
adaptation and reducing forgetting. We distinguish
between experience replay of source language data
and target language training data.

4.1 Approximate Experience Replay of
Source Domain Data

While experience replay is crucial to alleviate for-
getting (Rolnick et al., 2019; Ibrahim et al., 2024),
the training data of most state-of-the-art models
remains undisclosed. We, therefore, rely on ap-
proximate experience replay, constructing our ap-
proximate source data based on prior work (Penedo
et al., 2023; Together.ai, 2023; Touvron et al., 2023;
Groeneveld et al., 2024).

In more detail, we create a dataset consisting of
OpenWebText (Gokaslan et al., 2019) - an open-
source recreation of WebText (Radford et al., 2019),
English Wikipedia, GitHub repositories, and a
range of instruction finetuning datasets with a total
of 15.1B unique tokens (see Table 1). We repeat the
smaller IFT datasets 4 times to obtain an effective
dataset size of 17.1B tokens. We note that while
pretraining datasets commonly contain some in-
struction/response pairs, for example from Reddit,
our experience replay mix most likely contains a
higher portion of instruction data than the unknown
source distribution.
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Table 1: Composition of the approximate experience
replay dataset. We report the number of unique tokens,
how often a dataset is repeated (Rep.), and the resulting
sampling probability (Prob.).

Dataset Domain #Tokens Rep. Prob. [%]

OpenWebText Web 8.5B 1 49.8
Wikipedia-EN Wiki 4.6B 1 26.9
GitHub repos Code 1.35B 1 7.9
OpenHermes-2.5 IFT 357M 4 8.4
SlimOrca IFT 197M 4 4.6
MetaMathQA IFT 85M 4 2.0
CodeInstructions IFT 20M 4 0.47

4.2 Minimal Experience Replay of Source
Domain Data

To explore the significance of high-quality data
for experience replay, we contrast the aforemen-
tioned approximate experience replay with what we
call minimal experience replay. In minimal expe-
rience replay, we exclusively utilize samples from
OpenWebText (Gokaslan et al., 2019), instead of a
carefully curated data distribution. While minimal
experience replay still incorporates source domain
data during continuous pertaining, we anticipate
it to cause a greater distribution shift than approx-
imate experience replay. We chose the minimal
experience replay to comprise roughly one-eighth
of the training data (5B tokens for German and 10B
for Bulgarian).

4.3 Constructing Target Language Data
While designing an optimal training data mix is
still an open research problem (Xie et al., 2023;
Tirumala et al., 2023; Shen et al., 2023), some key
components have been identified that we adhere
to for our target domain data. In particular, it has
been shown that a small portion of code can no-
tably improve the resulting reasoning capabilities
and should thus be included (Liang et al., 2022; Ma
et al., 2023; Fu and Khot, 2022). Furthermore, the
importance of reasoning and instruction-following
capabilities for end tasks suggests that instruction
data would benefit the continued pretraining data
mix. This agrees well with Jiang et al. (2024) sug-
gesting a pre-instruction tuning phase to improve
learning from new documents in continued pre-
training. We discuss the exact data mixes we use
in Section 5.2.

Bulgarian Training Data We adapt the RedPa-
jama v2 pipeline (Together.ai, 2023) for Bulgar-
ian/Cyrillic to annotate 84 Common Crawl * snap-

*https://commoncrawl.org/

Table 2: Composition of the Bulgarian target domain
dataset. We report the number of unique tokens, how
often a dataset is repeated (Rep.), and the resulting sam-
pling probability (Prob.).

Dataset Domain #Tokens Rep. Prob. [%]

RPv2-BG Web 70B 1 85.3
Legal docs Legal 4.3B 1 5.2
Books Literature 2.4B 2 5.9
Eur-Lex-BG Legal 337M 2 0.82
Wikipedia-BG Wiki 251M 4 1.2
OrcaMath-BG IFT 100M 4 0.49
Bulgarian Law Legal 58M 4 0.28
Parlamint-BG Transcripts 52M 3 0.19
Curlicat Mixed 40M 2 0.10
SlimOrca-BG IFT 36M 4 0.18
CodeInstructions-BG IFT 26M 4 0.13
Europarl-BG Transcripts 24M 3 0.09
MetaMath-BG IFT 15M 4 0.07
Open-Platypus-BG IFT 13M 4 0.06

shots with a total of 30T tokens. After aggressive
quality filtering and near-deduplication, we obtain
a dataset of 50 to 80B Bulgarian tokens, depending
on tokenization. We augment this dataset using the
Bulgarian split of publicly available multilingual
high-quality datasets such as Wikipedia, Eur-lex
(Baisa et al., 2016), Europarl (Koehn, 2005), Par-
lamint (Erjavec et al., 2023), books, and a selection
of private datasets containing news articles, legal
texts, and literature. We further include selected
machine-translated instruction data. See Table 2
for a full list of datasets. This yields a total of
77.7B unique tokens (using the original LLAMA-
3 tokenizer) which we boost to 82.1B tokens by
repeating the smaller and particularly high-quality
datasets between 2 and 4 times.

German Training Data German is significantly
more abundant than Bulgarian in the quantity of
text available from public datasets. We thus sub-
sample roughly 10% of the German subset from the
curated web text dataset CulturaX (Nguyen et al.,
2024) equal to 41B LLAMA-3 tokens and include
three German IFT datasets. For more details, see
Table 15.

5 Experimental Setup

We now describe the experimental setup used to
validate BAM’s effectiveness for language adapta-
tion. In particular, we discuss the target languages
(Bulgarian and German), evaluation benchmarks
(Section 5.1), training data (Section 5.2), and train-
ing setup (Section 5.3). We experiment with both
continued pretraining of base models and instruc-
tion tuning of the resulting models.
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5.1 Target Languages and Benchmarks
To evaluate the effectiveness of BAM we conduct
experiments on the transfer from general purpose,
predominantly English models, to an alphabet-
sharing (German) and a non-alphabet-sharing (Bul-
garian) language, evaluating the resulting models
on both the target and source languages.

While there is a large and growing number of
high-quality datasets for evaluating LLMs in En-
glish and to a lesser extent German, these are much
sparser for low-resource languages such as Bulgar-
ian. We therefore first provide a brief overview of
the English and German benchmarks we use before
discussing the construction of a holistic evaluation
suite for Bulgarian.

English Benchmarks We consider the follow-
ing domains and benchmarks in English: common-
sense reasoning (HellaSwag (Zellers et al., 2019),
Winogrande (Sakaguchi et al., 2021), ARC-Easy,
ARC-Challenge (Clark et al., 2018)), multitask ca-
pabilities (MMLU (Hendrycks et al., 2021)), math
(GSM8K (Cobbe et al., 2021), MathQA (Amini
et al., 2019)), and reading comprehension (Bele-
bele English (Bandarkar et al., 2023), TriviaQA
(Joshi et al., 2017)). We provide a detailed descrip-
tion of these benchmarks in Appendix B.1.

German Benchmarks We use the German
benchmarks available in the Language Model Eval-
uation Harness (Gao et al., 2023). Some of these
benchmarks are translated from English using GPT
3.5 (Plüster, 2023a) (TruthfulQA-DE, HellaSwag-
DE, MMLU-DE, ARC-DE). We further consider
human curated or translated benchmarks for math
(MGSM-DE (Shi et al., 2023)), paraphrasing
(PAWS-X (Yang et al., 2019)) and reading com-
prehension (BeleBele German (Bandarkar et al.,
2023)). A detailed description of these benchmarks
can be found in Appendix B.1.

Bulgarian Benchmarks As the number of pub-
licly available Bulgarian benchmarks is limited, we
translate all of the above English benchmarks using
a combination of machine translation and over 600
hours of professional translators’ work. We denote
the translated benchmarks by appending ‘-BG’ to
their name and make them publicly available. In
addition, we use the following Bulgarian bench-
marks: natural language inference (XNLI (Con-
neau et al., 2018)) and high-school exams (EXAMS
(Hardalov et al., 2020), MON-Tests). From these,
XNLI was constructed through a professional trans-

lation of English examples by Conneau et al. and
the other two are natively Bulgarian. We provide
more details on the construction of the translation
process and the novel MON-Tests benchmark in
Appendix B.2.

Evaluation Metrics We aim to measure both
learning, i.e., language adaptation, and forgetting.
To this end, we consider benchmark scores and
perplexity in the source and target language. Since
our approximate experience replay data contains
instruction tuning examples which can lead to im-
proved English benchmark scores compared to the
base model, we focus on held-out English docu-
ment perplexity as a measure of forgetting. We use
both benchmark performance (normalized accu-
racy) and held-out document perplexity as a mea-
sure of learning in the target language (see Ap-
pendix C for more details).

For both English and Bulgarian, we evalu-
ate MMLU, TriviaQA, and EXAMS in a 5-shot,
GSM8K in an 8-shot, and all other benchmarks in
a zero-shot setting. All German benchmarks are
run in a 5-shot setting.

5.2 Training Data

Below, we discuss the training data used for lan-
guage adaptation.

Continued Pretraining Data For German, we
subsample the training data including the approxi-
mate (17B tokens) and minimal experience replay
(5B tokens) to 50B and 40B tokens respectively
and divide it into N = 4 i.i.d. slices of 12.5B and
10B tokens each. For Bulgarian, we split the full
82B tokens of Bulgarian data plus 17B tokens of
approximate or 10B tokens of minimal experience
replay into N = 8 slices either i.i.d. or via a cur-
riculum where the even-numbered slices contain
significantly more experience replay data than the
odd ones (see Table 17 in Appendix C).

Instruction Finetuning Data We investigate the
effectiveness of BAM for instruction finetuning
after continued pretraining. We collect 928K sam-
ples of English finetuning data and mix it with Ger-
man or Bulgarian data. For Bulgarian, we generate
78K samples by using a mix of machine transla-
tion and professional translators to translate En-
glish samples to Bulgarian. For German, we use a
mix of available, translated German IFT datasets.
Please see Tables 13 to 15, as well as Appendix C
for details on the resulting dataset.
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5.3 Training Setup

Base models We chose MISTRAL-7B (Jiang
et al., 2023) and LLAMA-3-8B (AI@Meta, 2024b)
as base models due to their exceptional perfor-
mance for their size and permissive licenses.

Details We implement BAM in PyTorch (Paszke
et al., 2019) using HuggingFace’s transformers li-
brary (Wolf et al., 2019) and DeepSpeed (Rasley
et al., 2020; Rajbhandari et al., 2020a). We train
each model on 64 NVIDIA H100s. Based on
prior work and initial experiments, we find that
10−5 is the best maximum learning rate for con-
tinued pretraining on the models that we are us-
ing together with a batch size of 512 for contin-
ued pretraining and 256 for supervised finetun-
ing. We use cosine decay to 0.1 · max_lr with
max(100, 0.01 · total_steps) linear warmup.

6 Experimental Evaluation

We now evaluate BAM empirically for both con-
tinued pretraining (CPT) and instruction finetuning
(IFT) before conducting extensive ablations and
providing further results in Appendix A.

6.1 BAM for Continued Pretraining

Bulgarian CPT We use our data mix of Bulgar-
ian data and English experience replay to adapt
both LLAMA-3-8B and MISTRAL-7B to Bulgar-
ian, comparing standard CPT and BAM in Table 3.
We first demonstrate on MISTRAL that BAM with
i.i.d. data slices matches standard CPT in Bulgar-
ian (0.05% average score difference) while reduc-
ing forgetting significantly (20% less English NLL
increase), achieving a 1.7% higher average score
on English benchmarks and even outperforming
the base model. Using our curriculum slices (only
called BAM), we outperform standard CPT in 11
out of 12 Bulgarian benchmarks while retaining the
reduced forgetting. Similarly, BAM achieves both
a slightly higher average Bulgarian (0.3% better)
and a notably higher English score (1.4% better)
for LLAMA-3. We observed consistently across all
of these settings that while standard CPT achieves
a lower negative log-likelihood (NLL) in Bulgarian,
indicating it fits the Bulgarian language modeling
task better, the increased forgetting of base model
capabilities (higher English NLL) leads to worse
or equal benchmark performance.

German CPT We observe very similar trends
adapting LLAMA-3-8B to German (see Table 4)

with BAM outperforming standard CPT both in
terms of German (0.7%) and English (1.0%) scores
with minimal experience replay. Using our ap-
proximate experience replay and injecting German
IFT data, further improves performance (3.5% in
German and 4% in English), surpassing the base
LLAMA-3-8B model now in both German and En-
glish benchmarks.

6.2 BAM for Instruction Fine-Tuning

We investigate the effectiveness of BAM for instruc-
tion finetuning, reporting results in Tables 3 and 4.
We observe that BAM slightly improves learning
of both German and Bulgarian, while significantly
reducing forgetting. Considering a wider range
of settings in Table 5, we observe that BAM with
N = K = 2 and i.i.d. data slices not only strictly
outperforms standard IFT on the combined data
(IFT full) and an equal mix of Bulgarian and En-
glish data (IFT 50-50), but also IFT on just English
data (IFT EN). Slicing the data by language (BAM
BG | EN) results in even greater improvements
and outperforms LLAMA-3-8B-Instruct (AI@Meta,
2024a) in both Bulgarian (10.8%) and English
(1.3%). We hypothesize that merging the task vec-
tors of IFT on multiple languages removes a lot
of language-specific errors leaving a higher quality
instruction following task vector.

6.3 Ablations

Below, we investigate various components and de-
sign decisions underlying BAM using the domain
adaptation to Bulgarian.

0 7000 14000
Training steps

0.44

0.49

0.54
Avg BG Score

Minimal RP

Appx. RP

1.8

2.0

2.2
EN NLL

Figure 3: Comparing minimal and our approximate
experience replay on MISTRAL with respect to aver-
age Bulgarian benchmark scores (↑) and Negative Log-
Likelihood (NLL) on the English validation set (↓).

Approximate Experience Replay We compare
our approximate experience replay, described in
Section 4.1, to minimal experience replay, de-
scribed in Section 4.2, for continued pretraining in
Fig. 3. We observe that using minimal replay (solid
lines in Fig. 3), target language performance (Avg
BG Score – blue) first increases before dropping
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Table 3: Effect of BAM with N = 8 and K = 2 for the language transfer to Bulgarian. We report normalized
accuracies and their averages with full results on English benchmarks deferred to Table 8.

Model CPT IFT
Bulgarian Benchmarks

Avg BG Avg EN BG NLL EN NLL
WG HS ARC-c ARC-e MMLU MathQA GSM8K TrQA MON Bele XNLI EXAMS

L-8B

LLAMA-3-8B (Base) 61.48 52.19 34.89 53.32 50.81 35.37 36.99 27.19 40.91 45.77 45.46 45.75 44.18 63.85 1.695 2.042

Standard - 67.40 66.48 42.32 62.37 53.02 38.65 54.81 38.69 46.29 62.11 48.75 56.43 53.11 64.84 1.018 2.138
Half LR - 68.67 65.97 40.36 62.54 53.71 37.89 56.79 37.96 46.71 60.89 47.51 52.60 52.63 65.06 1.055 2.098
BAM - 69.92 66.14 42.66 63.17 54.29 37.48 59.43 38.53 46.92 59.66 48.03 52.60 53.40 66.24 1.061 2.097

LLAMA-3-8B-Instruct 58.64 48.91 34.47 50.88 49.71 33.63 55.80 26.79 40.65 64.00 44.74 45.48 46.14 68.72 1.950 2.307

BAM Standard 68.67 66.75 47.95 70.24 52.54 38.73 63.84 31.70 48.60 80.44 50.92 51.51 55.99 67.69 1.208 2.290
BAM BAM 68.98 68.01 49.57 69.07 54.04 38.56 65.05 36.17 49.94 79.22 51.45 53.42 56.96 69.97 1.148 2.193

M-7B

MISTRAL-7B (Base) 61.48 53.63 37.54 55.93 49.37 31.36 29.04 29.32 42.15 39.67 42.77 44.93 43.10 59.81 1.525 1.883

Standard - 68.19 67.20 41.13 57.95 52.41 33.87 65.73 42.08 46.85 51.44 45.10 53.97 52.16 62.03 1.408 1.967
BAM i.i.d. - 69.77 67.66 41.04 60.01 53.66 34.61 58.23 41.78 45.60 52.67 47.11 53.15 52.11 63.72 1.411 1.951
BAM - 70.24 67.45 43.26 61.62 52.63 35.58 59.97 42.24 46.98 52.78 48.23 54.79 52.98 63.53 1.426 1.950

Table 4: Effect of BAM with N = 4 and K = 2 for the language transfer of LLAMA-3-8B to German. We report
normalized accuracies and their averages with full results on English benchmarks deferred to Table 9.

CPT IFT
German Benchmarks

Avg DE Avg EN
ARC-c HellaSwag MMLU TruthfulQA MGSM-DE PAWS-DE BeleBele

LLAMA-3-8B (Base) - 46.62 62.03 55.18 46.51 42.00 36.15 81.22 52.82 63.85

Standard min. replay - 47.98 66.49 55.23 46.87 41.20 37.80 79.00 53.51 60.79
BAM min. replay - 47.21 65.78 55.62 47.25 44.40 39.80 79.44 54.22 61.75
BAM appx. replay - 51.92 65.97 55.73 54.33 58.80 35.35 81.67 57.68 65.79

BAM appx. replay Standard 53.12 65.51 54.60 55.20 66.00 39.75 86.44 60.09 67.90
BAM appx. replay BAM 52.95 67.53 55.80 54.28 65.60 40.40 85.89 60.35 70.14

Table 5: BAM for Bulgarian instruction tuning of our
BAM trained LLAMA-3-8B.

Method Avg BG Avg EN

Base (BAM trained) 53.40 66.24

IFT full 55.99 67.69
IFT full - double BS 56.33 68.88
IFT full - half LR 56.37 68.97
IFT 50-50 55.01 67.55
IFT EN 54.72 67.76
IFT BG 54.16 66.96
BAM i.i.d. 56.45 68.65
BAM BG | EN 56.96 69.97

LLAMA-3-Instruct 46.14 68.72

Table 6: Effect of approximate and minimal replay on
source and target domain performance. BAM is with
i.i.d. data slices.

Model Language Replay CPT Avg BG Avg DE Avg EN

LLAMA-3-8B DE
min

Standard - 53.51 60.80
BAM - 54.22 61.75

appx BAM - 57.68 65.79

MISTRAL-7B BG

min
Standard 43.71 - 51.44
BAM 46.23 - 54.52

appx
Standard 52.16 - 62.03
BAM 52.11 - 63.72

off as capabilities of the base model are forgotten
(increasing negative log-likelihood – green). In
contrast, using our approximate experience replay
(dashed line), we see a much stronger increase in
target domain performance and reduced forgetting
of the source domain. We confirm these findings
in German (see Table 6) and thus use approximate
experience replay for all other experiments.

BAM and Experience Replay We compare the
effectiveness of BAM in the presence of minimal
and approximate experience replay in Table 6 on

Bulgarian, German, and English benchmarks. We
observe that BAM is even more effective in the min-
imal replay setting, where the larger distribution
shift induces more forgetting. There, BAM can,
e.g., improve the performance in Bulgarian and En-
glish by 2.5% and 2.9%, respectively, compared to
0.0% and 1.7%, respectively, in the approximate
replay setting.

0 50 100 150
Weight Change Magnitude

0.44

0.49

0.54
AVG BG Score

CPT

BaM

2.0

2.1

2.2
EN NLL

Figure 4: Average Bulgarian benchmark score (↑) and
English NLL (↓) over L2 norm of weight change de-
pending on training method for LLAMA-3

0 12500 25000
Training steps

0

50

100

150
Weight Change Magnitude

CPT

CPT half lr

BAM

Figure 5: L2 norm of weight change depending on
training method for LLAMA-3

Forgetting and Weight Change Magnitude We
plot the average BG score as a measure of learning
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and English NLL as a measure of forgetting over
weight change magnitude in Fig. 4. We observe
that both forgetting and learning strongly correlated
with weight change magnitude and that BAM is
more efficient, i.e., yields more learning and less
forgetting at the same weight change, confirming
our intuition discussed in Section 3.

Comparing BAM to standard CPT with a halved
learning rate, we observe almost identical weight
change magnitudes (see Fig. 5) corresponding to
66% of the standard CPT weight change. While the
reduced learning rate CPT also reduces forgetting
(although slightly less than BAM), it comes at the
cost of severely reduced learning (see Table 3). We
observe a similar but stronger effect for LORA
which only shows minimal learning (see Table 12).

0 12500 25000
Training Steps

1.0

1.2

1.4
BG Validation Loss

CPT

CPT Half LR

BaM Odd

BaM Even

Figure 6: Bulgarian validation loss over training steps
for LLAMA-3 depending on training method. BAM Odd
(green) is trained on more Bulgarian and BAM Even
(red) on more approximate experience replay. We show
their merges as green dots.

Training Dynamics with BAM We compare the
training dynamics of BAM and standard CPT at
full and half learning rate in Fig. 6. We observe
that training on data slices with larger portions of
experience replay (even – red) cannot decrease Bul-
garian validation loss further after a short period.
However, after a merge, training on the Bulgarian-
focused slices (odd – green) converges significantly
faster than for CPT at a similar validation loss, high-
lighting the potential of merging to escape local
minima or flatter portions of the loss landscape.

Table 7: Effect of of slice count N , parallelism factor
K, and merging method on continued pertaining (CPT)
of LLAMA-3 on a reduced Bulgarian dataset.

Merging Method N K Avg BG Avg EN BG NLL EN NLL

- base 44.18 63.85 1.695 2.042

- 1 1 51.76 66.33 1.136 2.093

SLERP

2 2 52.01 67.00 1.194 2.077
4 2 51.88 66.80 1.186 2.078
4 4 51.25 66.76 1.233 2.068

LINEAR 4 2 51.98 66.65 1.186 2.078
MODEL STOCK 4 2 51.54 66.98 1.201 2.069

Effect of the Parallelism Factor We investigate
the effect of the parallelism factor K on a dataset
of 26 B tokens, obtained by combining the first
two data slices X1 and X2, reporting results in Ta-
ble 7 where all settings use the same data and
compute. We observe that training on all data
jointly (N = 1,K = 1) reduces Bulgarian NLL
the most but at the cost of increased forgetting
(highest English NLL) leading to worse benchmark
performance than BAM. Comparing BAM hyper-
parameters, we observe that increasing K reduces
both learning and forgetting as we reduce weight
change magnitude and improve task vector qual-
ity (N = 4,K = 4). The best trade-off leading
to the highest English and Bulgarian scores is at-
tained with a parallelism factor of K = 2 and data
slices of roughly 10B tokens (N = 2,K = 2). We
thus choose these settings for all other experiments
leading to N ∈ {4, 8} for the full data.

Effect of the Merging Method We compare
SLERP, LINEAR, and MODEL STOCK merging in
Table 7 and observe that SLERP and LINEAR merg-
ing achieve almost identical results, with MODEL

STOCK reducing forgetting at the cost of reduced
learning. As SLERP merging achieves slightly bet-
ter scores, we use it for all other experiments.

Sensitivity to Hyperparameters Varying batch
size, learning rate, and weight decay in the IFT
stage, we observe that the performance of standard
IFT is highly sensitive to these hyperparameter
choices. In contrast, BAM IFT is robust across
the same parameter ranges. In Table 5, we find
that doubling the batch size or halving the learning
rate for standard IFT may help reduce catastrophic
forgetting and even improve downstream perfor-
mance similar to BAM i.i.d. However, BAM does
not require an extensive and costly search for opti-
mal hyperparameters and still outperforms all other
approaches when splitting the data by language.

7 Related work

Catastrophic Forgetting Neural networks
trained on a specific task are known to catastrophi-
cally forget the previous task when adapted to a
new one (French, 1999; Goodfellow et al., 2014;
Kemker et al., 2018). While this becomes less
pronounced as model and pertaining data size grow
(Ramasesh et al., 2022), it remains a severe issue
even for modern LLMs (Zhai et al., 2023; Shi et al.,
2024; Li and Lee, 2024; Gogoulou et al., 2023).
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Mitigating Catastrophic Forgetting As LLMs
are frequently finetuned or continually pretrained
on new tasks, mitigating catastrophic forgetting
has become essential and a wide range of meth-
ods has been proposed. Lee et al. (2020) suggest
to randomly reset weights to their pretrained state.
Biderman et al. (2024) show that LORA reduces
forgetting at the cost of reduced learning. Huang
et al. (2024) suggest experience replay with syn-
thetic and Ibrahim et al. (2024) with original source
domain samples. Winata et al. (2023) propose to ex-
ponentially reduce the learning rate when learning
new tasks. Similar to us, Lin et al. (2024) sug-
gest to linearly merge the adapted with the original
model using block-wise parameters, focusing on
alignment tuning instead of language transfer.

Model Merging Model merging was originally
proposed in federated learning (McMahan et al.,
2017) to lower communication costs and success-
fully deployed (Stoica et al., 2023; Matena and
Raffel, 2022). As a way to combine multiple mod-
els without training, it has recently gained popular-
ity in the LLM community (Goddard et al., 2024).
Popular methods include LINEAR or TASK ARITH-
METIC (Ilharco et al., 2023), which perform linear
interpolation of task vectors, its extension MODEL

BREADCRUMBS (Davari and Belilovsky, 2023),
which discards large weight changes, TIES (Yadav
et al., 2023), which uses heuristics favoring large
weight changes, DARES (Yu et al., 2023), which
randomly drops weight changes before merging,
MODEL STOCK (Jang et al., 2024), which merge
weights layer-wise, to in expectation, minimize
distance to the center of the task vector distribu-
tion, and SLERP (Shoemake, 1985), which aver-
ages weights in polar coordinates.

Multiple works have shown that merging dur-
ing pretraining or finetuning, especially on non-IID
data, can match or improve the performance of
compound training. Wortsman et al. (2023) av-
erage models finetuned without any communica-
tion. Li et al. (2022) propose to iteratively branch
and merge models during training, however, they
assume the full data distribution is available for
pertaining and focus on building ensembles rather
than a single model. COLD FUSION (Don-Yehiya
et al., 2023) is most similar to our work but focuses
on training a base model that can then be easily
adapted to a new task, rather than this adaptation
itself. This objective is shared by Choshen et al.
(2022) which only merge once.

8 Conclusion

We proposed Branch-and-Merge (BAM) training
to mitigate forgetting while boosting learning in
language transfer by generating lower magnitude
but higher quality weight changes. We showed
that combining BAM with an effective approxi-
mate experience replay data mix significantly re-
duces forgetting. Finally, we demonstrated that
our approach can benefit both continuous pertain-
ing and instruction tuning in both alphabet-sharing
(German) and non-sharing (Bulgarian) languages.
For instance, we outperform LLAMA-3-8B-Instruct
with the same base model in both source (English,
1.3%) and target (Bulgarian, 10.8%) languages.

9 Limitations

Our study focuses on language transfer to two lan-
guages with different characteristics and considers
two models of up to 8 billion parameters. How-
ever, to establish the general applicability of our
approach, potentially even to general domain adap-
tation, further experiments across a broader set of
languages and tasks as well as model architectures
will be necessary.

We considered specific data mixes for the contin-
ued pretraining in both considered languages which
we observe to yield good performance — it is possi-
ble that the success of Branch-and-Merge depends
on the composition of these datasets. While infeasi-
ble when adapting state-of-the-art pretrained mod-
els with unknown training set distribution, an eval-
uation of our method with exact experience replay
would provide further understanding of its perfor-
mance relative to the state-of-the-art in continuous
learning, including joint training on all data.

While we consider a broad range of up to 12
benchmarks per language, they are still limited in
their domain coverage. As BAM does not outper-
form standard training across all benchmarks, this
benchmark composition can affect the resulting
conclusions.

While we originally optimized hyperparameters
for standard training and carried them over to BAM,
it is possible, although unlikely, that a more exten-
sive hyperparameter search would benefit standard
training more than BAM. Empirically, we find for
IFT that BAM is more robust to hyperparameter
changes than standard IFT.
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10 Ethical Considerations

We believe our work empowers practitioners to
more efficiently adapt strong pretrained models to
other potentially low-resource languages, thus con-
tributing to the democratization of large language
models. However, such models can of course also
be abused and in particular if our approach general-
izes beyond language to general domain adaptation,
malicious practitioners could more efficiently adapt
the models for nefarious tasks.
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A Extended Evaluation

Data Slice Order We evaluate the effect of data
slice order on LLAMA-3 in Table 10. We observe
that reversing the order of data slices for BAM
training has only a minimal effect on both forget-
ting and domain adaptation. Interestingly, merging
the two models obtained via these different orders
is strictly better than either, although at twice the
computational cost. This highlights again the effec-
tiveness of BAM at finding optimal task vectors by
merging out the error component.

Tokenizer Extension A common challenge with
LLM domain adaptation is that the LLM’s tok-
enizer may not be well suited for the target domain,
expressed in a higher fertility. This entails longer
training, slower inference, shorter effective context
length as well as potential performance degrada-
tion.

In our language transfer setting from En-
glish to Bulgarian, we also make use of tok-
enizer/vocabulary expansion for some of our exper-
iments to reduce the computational cost. In the case
of MISTRAL-7B, we find that Bulgarian tokeniza-
tion is subpar. To this end, we train a Sentence-
PieceBPE (Kudo and Richardson, 2018) tokenizer
with a vocabulary of 8k tokens on high-quality Bul-
garian text. We find that a mix of 75% RPv2 BG
and 25% Wikipedia, where the whole Bulgarian
Wikipedia comprises these 25% gave the lowest fer-
tility on a sample from mC4 (Xue et al., 2021). Af-
ter removing all tokens that do not include at least
one Cyrillic character or are already in the original
tokenizer, we are left with exactly 6000 new tokens,
which are then appended to the original Mistral to-
kenizer with their respective SentencePiece scores.
This whole procedure ensures that the English to-
kenization remains practically unchanged, which
is important to reduce Catastrophic Forgetting. We
initialize the new input and output embeddings with
their mean tokenization using the original tokenizer
and add them to the model’s vocabulary in the style
of VIPI (Mosin et al., 2023) and FVT (Gee et al.,
2022). We report results for MISTRAL-7B in Ta-
ble 11 and use an 8k (effectively 6k) tokenizer
extension for all further MISTRAL-7B experiments
due to the greatly increased training and inference
efficiency at very similar performance and retain
the original LLAMA-3-8B tokenizer due to its al-
ready huge vocabulary and lower fertility. Note:
Reducing or increasing the amount of Web data in
that tokenizer training mix resulted in higher fertil-

ity on the mC4 sample. The reason for this is not
fully clear and we intend on investigating this in
future work.

Low-Rank Adaptation LoRA has become
widely popular as a method for cheaper finetuning
of LLMs (Hu et al., 2022). Taking into consider-
ation the contribution of (Biderman et al., 2024),
which puts LoRA in the context of learning less but
also forgetting less we also show how LoRA fairs
in our Language Transfer setting. Due to limited
compute resources, we do not perform an extensive
hyperparameter sweep and instead copy what we
can from the Code CPT experiment in Biderman
et al. (2024). As far as we know the batch sizes
are not mentioned there and we decide to stick to
512, while deducting that the original may have
used 128. We also proportionately increase the
learning rate and find that 4e − 5 converges the
fastest. The comparison in Table 12 is in the re-
duced, 20B-token setting, same as in Table 7. We
indeed observe a better preservation of the English
Negative Log Likelihood but also a significant re-
duction in learned Bulgarian capabilities. It may
be the case that the Language Transfer adaptation
is not as low-rank as it is for Code and the referred
LoRA rank parameter should be set higher than
256.

B Benchmark Details

B.1 Benchmark Descriptions

Below we provide short descriptions of all datasets
and note the license they are published under. Ger-
man language benchmarks is run in a 5-shot setting.
For the other evaluations, we specify the number
of shots below, or use 0-shots when not specified.

HellaSwag (MIT License) (Zellers et al., 2019)
is a common sense reasoning benchmark asking an
LLM to select a logical continuation of a sentence.
Evaluated on the 10000 sample validation set.

Winogrande (Appache 2.0 License)(Sakaguchi
et al., 2021) is a common sense reasoning bench-
mark asking an LLM to fill in a blank from a choice
of two entities to logically complete a sentence.
Evaluated on the 1767 sample validation set of
winogrande_xl.

ARC-Easy and -Challenge (CC BY-SA Li-
cense) (Clark et al., 2018) is a dataset of sci-
ence exam questions. Evaluated on the 2590 hard
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Table 8: English Benchmark performance of LLAMA-3-8B continuously pretrained on Bulgarian

Training WG HS ARC-c ARC-e MMLU Bele MathQA GSM8K TrQA AVG

Base 73.00 79.12 53.32 77.65 65.16 66.77 40.00 47.99 71.62 63.85

CPT 74.43 80.00 50.34 71.59 61.84 71.33 38.29 71.95 63.79 64.84
BAM 74.58 80.12 52.81 75.54 63.25 71.11 41.07 69.97 67.65 66.23

Table 9: English Benchmark performance of LLAMA-3-8B continuously pretrained on German

Model WG HS ARC-c ARC-e MMLU Bele MathQA GSM8K TrQA AVG

Base 73.00 79.12 53.32 77.65 65.16 66.77 40.00 47.99 71.62 63.85

CPT 72.45 78.80 51.19 77.60 62.90 55.88 39.27 41.16 67.78 60.79
BAM 72.84 78.65 50.85 77.02 63.87 58.66 39.83 44.73 69.23 61.74

Table 10: Effect of data slice order on BAM.

Data Order Avg EN Avg BG BG NLL EN NLL

Base Model 63.85 44.18 1.695 2.042

Standard 66.23 53.06 1.061 2.097
Reversed 65.64 52.70 1.167 2.071

Merged 66.26 53.34 1.076 2.069

Table 11: Effect of tokenizer extension on performance
before and after continuous pertaining (CPT) of MIS-
TRAL-7B.

Training Extension Fertility Avg BG Avg EN

Base
None 2.37 44.50 63.50
8k 1.71 29.28 62.57

CPT
None 2.37 51.47 61.48
8k 1.71 50.93 60.96

sample (ARC-Challenge) and 5197 easy samples
(ARC-Easy).

MMLU (MIT License) (Hendrycks et al., 2021)
is a multitask language understanding benchmark
covering a wide range of 57 different tasks. Eval-
uated on 14079 test set samples. We evaluate
MMLU using 5-shots.

GSM8K (MIT License) (Cobbe et al., 2021) is a
mathematical reasoning benchmark consisting of
grade-school math questions for which free text
answers must be provided. Evaluated on 1.3k test
set samples. We run GSM8k with 8-shot chain-of-
thought generation.

MathQA (Apache 2.0 License) (Amini et al.,
2019) is a multiple choice mathematical reason-
ing benchmark. Evaluated on 4475 validation set
samples.

Table 12: Effect of LORA regularization compared to
BAM on LLAMA-3.

Training Avg BG Avg EN BG NLL EN NLL

Base 44.18 63.85 1.695 2.042

CPT 51.76 66.33 1.136 2.093
BAM 52.01 67.00 1.194 2.077
LORA 45.33 64.71 1.515 2.059

Belebele (CC-BY-NC 4.0 License) (Bandarkar
et al., 2023) is a multiple choice reading compre-
hension dataset. Evaluated on 900 samples per
language.

TriviaQA (Apache 2.0 License) (Joshi et al.,
2017)) is trivia question dataset. Evaluated on
17.9k validation set samples. We use 5-shot evalua-
tion.

XNLI (CC BY-NC 4.0 License) (Conneau et al.,
2018) is a language understanding dataset where
the task is to decide whether two statements con-
tradict one-another, are neutral, or one entails the
other. Evaluated on 2.5k validation samples.

EXAMS (CC BY-SA 4.0 License) (Hardalov
et al., 2020) is a high school exam question dataset
covering a range of subjects. Evaluated 1472 test
set samples in Bulgarian. We use 5-shot evaluation.

PAWS (Special License permitting "free use for
any purpose") (Yang et al., 2019) is a reading
comprehension dataset where the task is to decide
whether two benchmarks are paraphrases. Evalu-
ated on 1967 test set samples.

MGSM (CC BY 4.0 License) (Shi et al., 2023)
is mathematical reasoning benchmark manually
translated from GSM8k. Evaluated on 250 test set
samples.
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B.2 Bulgarian Benchmarks

Translation We use Google Translate to machine
translate the text of the benchmark problems and
answers. Additional, we identified a set of heuris-
tics for cases where the machine translation is of
low quality, such as inconsistent translations of the
same word and not following exact format in both
source and target sentences. In all such cases, we
gave the tasks to human translators with additional
instructions on possible problems we identified in
each benchmark. Overall human translators manu-
ally translated 2143 test set samples.

A notable example of a benchmark with signifi-
cant problems that we expect to repeat in many
other languages is Winogrande challenge (Sak-
aguchi et al., 2021). In this case, one of two words
have to be chosen based on world knowledge and
reasoning. However, with machine translation or
naïve human translation to non-English, the actual
answer can be revealed in a much easier way by the
means of having only one answer that is in gender
agreement with other words in the sentence. We
performed manual translations that used synonyms
that do not exhibit such behavior and as a result,
the translated benchmark is not easier than the orig-
inal. The translated versions of the benchmarks
with these fixes are made publicly available.

MON The MON dataset is obtained as private
data from the Bulgarian Ministry of Education.
This contains 10088 exam questions with 4 pos-
sible choices, only one of which is correct, span-
ning topics from 4th to 12th grade tests previously
given for external tests to schools in Bulgaria. The
questions span all subjects tested by the official
Bulgarian curriculum but exclude problems such as
geometry tasks that include images in their problem
definition or answers. The dataset is not publicly
available and as a result, we expect it to be less
likely to be in any of the training data in any form.

C Dataset Details

C.1 IFT Set Composition

We make note of the good performance and instruc-
tion following capabilities of the Intel Neural-Chat
models and decide to include SlimOrca (Lian et al.,
2023; Mukherjee et al., 2023; Longpre et al., 2023)
and MetaMathQA (Yu et al., 2024) in our English
IFT data mix. To fill in the gap of multi-turn con-
versation data we additionally include the Capy-
bara dataset (Daniele and Suphavadeeprasit, 2023),

Table 13: Composition of the Bulgarian IFT dataset.

Dataset Domain #Examples Repetitions Prob [%]

OpenHermes-2.5-BG Mixed Conversations 50, 000 1 64.10
Capybara-BG Mixed Conversations 16, 000 1 20.51
MetaMath-BG Math 10, 000 1 12.82
CodeAlpaca-BG Code 2, 000 1 2.56

Table 14: Composition of the English IFT dataset.

Dataset Domain #Examples Repetitions Prob [%]

SlimOrca Mixed Conversations 517, 982 1 55.76
MetaMathQA Math 395, 000 1 42.52
Capybara Mixed Conversations 16, 000 1 1.72

which we have observed from our experience boost
the models’ "chattiness" and overall response qual-
ity.

The fact that there are no publicly available gen-
eral Bulgarian IFT datasets, lead us to the transla-
tion of already existing ones. We use machine trans-
lation to produce 50K Bulgarian translated samples
from the OpenHermes-2.5 (Teknium, 2023) dataset,
10K samples from MetaMathQA (Yu et al., 2024)
and 2K samples of code with Bulgarian instruc-
tions from CodeAlpaca (Chaudhary, 2023). We
take special care in the translation of the Capybara
(Daniele and Suphavadeeprasit, 2023) and Open-
Hermes datasets. Through a combination of clas-
sification and manual inspection, we identify ex-
amples, where the machine translation is not good
enough to make a sensible training example, e.g.
instructions that require rhyming, as the words that
rhyme in English will most likely not rhyme in Bul-
garian. The identified 5% of the Capybara dataset
is then manually translated/adjusted to fit the Bul-
garian language. See Table 16 for full details and
licenses.

C.2 Validation Set Composition

Constructing validation datasets for language
model training, especially when such are trained on
web-crawl data, is a challenging task with respect
to avoiding data contamination. Our Bulgarian
validation set consists of a total of 40K examples,
30K of which are a held-out set of news articles
from a specific media outlet and the other 10K is
a mix of dialogs, questions and answers, literary
works and legal documents. The English validation
dataset is comprised of 25K random samples from
the FineWeb-Edu dataset (Lozhkov et al., 2024)
7K samples from arXiv scientific papers, 3K from
the PubMed dataset (Namata et al., 2012) and 5K
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Table 15: Composition of the German IFT dataset.

Dataset Domain #Examples Repetitions Prob [%]

evol-instruct-deutsch Mixed Conversations 59, 022 1 45.15
alpaca-gpt4-deutsch Mixed Conversations 50, 000 1 38.23
OpenSchnabeltier Mixed Single-turn 21, 749 1 16.62

Table 16: Sources and licenses of used datasets

Dataset Source License

RPv2 pipeline Together.ai (2023) Apache 2.0
OpenWebText Gokaslan et al. (2019) CC0-1.0
CulturaX Nguyen et al. (2024) CC0-1.0
FineWeb-Edu Lozhkov et al. (2024) ODC-BY
PubMed Namata et al. (2012) Unknown
Eur-Lex Baisa et al. (2016) CC-BY-NC-SA
Wikipedia Foundation CC-BY-SA-3.0
OrcaMath Mitra et al. (2024) MIT
Parlamint Erjavec et al. (2023) CC-BY
OpenHermes-2.5 Teknium (2023) Unknown
Capybara Daniele and Suphavadeeprasit (2023) Apache 2.0
Curlicat Váradi et al. (2022) CC-BY-SA-4.0
SlimOrca Lian et al. (2023); Mukherjee et al. (2023) MIT
CodeAlpaca Chaudhary (2023) CC-BY-4.0
Europarl Koehn (2005) Unknown
MetaMath Yu et al. (2024) MIT
Open-Platypus Lee et al. (2023) Apache 2.0
alpaca-gpt4-deutsch Chen et al. (2023) Apache 2.0
OpenSchnabeltier Plüster (2023b) Apache 2.0
evol-instruct-deutsch Chen et al. (2023) Apache 2.0

books from the Project Gutenberg†.

D Experimental Setup and Evaliation
Details

D.1 Training parameters

We use the same exact training hyperparameters for
both MISTRAL-7B and LLAMA-3-8B based mod-
els. We stick to the 8192 size context lengths and
train with sequence packing, without truncation.
Based on prior work and initial experiments, we
find that 1e− 5 is the best maximum learning rate
for continued pre-training in our settings with a
batch size of 512 for continued pre-training and
256 for supervised fine-tuning, effectively training
for 4M and 2M tokens respectively. The optimizer
in use is AdamW with β1 = 0.9 and β2 = 0.95
and 0.05 weight decay rate. We use a cosine de-
cay learning rate scheduler, that decays the LR to
0.1 · max_lr with max(100, 0.01 · total_steps) of
linear warmup.

For fine-tuning, we have found that training for
more than 2 epochs on a given IFT dataset with
the aforementioned hyperparameters is not benefi-
cial and exaggerates catastrophic forgetting. Ad-
ditionally, we add embedding vector noise during
training through NEFTune (Jain et al., 2024) with a
noise-α = 5. In this stage, we train only on the IFT
completions and not on the prompts. This is impor-
tant to prevent unwanted self-talking behavior in
live usage.

†https://www.gutenberg.org/

Since we train on 64 GPUs at once, we exploit
DeepSpeed ZeRO (Rasley et al., 2020; Rajbhandari
et al., 2020b) stage 1 with mixed precision training
in bf16. Combining this with activation checkpoint-
ing and FlashAttention-2 (Dao, 2024) allows us to
use a batch size of 2 during training and evaluation.
For reference, our setup allows the models to train
with up to 7000 tokens per second per GPU.

D.2 Computational Budget
All model training and evaluations were conducted
on a cluster of 64 NVIDIA H100 GPUS (8 nodes x
8 GPUs) with InfiniBand and 224 available CPU
cores per node. The total computational cost of
the experiments included in this paper, including
exploratory ones not mentioned here, is around
80, 000 NVIDIA H100 GPU hours. The tokenizer
extension we perform on MISTRAL-7B (Base)
helps reduce the training and inference cost of our
Mistral-based models by roughly 30%.
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Table 17: Composition of the Bulgarian curriculum
splits.

Split # Total BG # Total Replay Dataset Repetitions Replay

X1 14.7B 850M

Wikipedia-BG 1 ✗

OpenWebText 0.1 ✓

Bulgarian Law 1 ✗

Eur-Lex-BG 1 ✗

IFT-BG 1 ✗

RPv2-BG 0.2 ✗

X2 8.3B 3.3B

Wikipedia-EN 0.25 ✓

OpenWebText 0.15 ✓

GitHub repos 0.2 ✓

IFT-EN 1 ✓

RPv2-BG 0.12 ✗

X3 11.4B 850M

Wikipedia-BG 1 ✗

OpenWebText 0.1 ✓

Bulgarian Law 1 ✗

Eur-Lex-BG 1 ✗

IFT-BG 1 ✗

RPv2-BG 0.12 ✗

Parlamint-BG 1 ✗

Europarl-BG 1 ✗

Legal docs 0.4 ✗

X4 8.3B 3.3B

Wikipedia-EN 0.25 ✓

OpenWebText 0.15 ✓

GitHub repos 0.2 ✓

IFT-EN 1 ✓

RPv2-BG 0.12 ✗

X5 12.4B 850M

Wikipedia-BG 1 ✗

OpenWebText 0.1 ✓

Bulgarian Law 1 ✗

Books 1 ✗

IFT-BG 1 ✗

RPv2-BG 0.1 ✗

Parlamint-BG 1 ✗

Europarl-BG 1 ✗

Legal docs 0.4 ✗

X6 8.3B 3.3B

Wikipedia-EN 0.25 ✓

OpenWebText 0.15 ✓

GitHub repos 0.2 ✓

IFT-EN 1 ✓

RPv2-BG 0.12 ✗

X7 10.3B 850M

Wikipedia-BG 1 ✗

OpenWebText 0.1 ✓

Bulgarian Law 1 ✗

Books 1 ✗

IFT-BG 1 ✗

RPv2-BG 0.1 ✗

Parlamint-BG 1 ✗

Europarl-BG 1 ✗

Legal docs 0.2 ✗

X8 8.3B 3.7B

Wikipedia-EN 0.25 ✓

OpenWebText 0.15 ✓

GitHub repos 0.4 ✓

IFT-EN 1 ✓

RPv2-BG 0.12 ✗
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