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Abstract

Tailoring outputs from large language models,
like ChatGPT, to implicit user preferences re-
mains a challenge despite their impressive gen-
erative capabilities. In this paper, we propose a
tri-agent generation pipeline comprising a gen-
erator, an instructor, and an editor to enhance
output personalization. The generator produces
an initial output, the instructor automatically
generates editing instructions based on user
preferences, and the editor refines the output
to align with those preferences. The inference-
only large language model (ChatGPT) serves
as both the generator and editor, with a smaller
model acting as the instructor to guide output
generation. We train the instructor using editor-
steered reinforcement learning, leveraging feed-
back from a large-scale editor model to opti-
mize instruction generation. Experimental re-
sults on two abstractive summarization datasets
demonstrate the effectiveness of our approach
in generating outputs that better meet user ex-
pectations. 1

1 Introduction

Large language models, exemplified by prominent
models such as InstructGPT (Ouyang et al., 2022)
and ChatGPT2, have emerged as essential resources
in the field of natural language processing (NLP).
These models have shown an extraordinary level of
proficiency across a broad spectrum of NLP tasks,
including machine translation, question answering,
and text summarization. In light of their potential
to drive further innovation in language-based tech-
nologies, the research community has exhibited
growing enthusiasm for exploring and advancing
large language models. However, despite the im-
pressive generation quality achieved by these mod-
els, a persistent challenge lies in tailoring their out-
puts to meet user’s preference (Liu et al., 2022b). In

1Code is available at https://github.com/
Wendy-Xiao/chatgpt_editing_summ

2https://openai.com/blog/chatgpt
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Figure 1: Comparison between different generation
paradigms. The left one is the general one-time gen-
eration process, the middle one is from Welleck et al.
(2022), which uses a trained corrector to make correc-
tions on the generated text, usually dealing with specific
issues, like eliminating hallucination or toxicity, and the
right one is the proposed tri-agent pipeline.

several scenarios, it has been observed that the out-
puts of language models do not consistently satisfy
users’ preferences or expectations (Bubeck et al.,
2023). A prevalent approach to addressing this lim-
itation involves the careful crafting of prompts to
steer the models in producing outputs that better
align with users’ objectives. Nonetheless, as noted
in existing research (Reid and Neubig, 2022), the
conventional one-time left-to-right generation pro-
cess of language models contrasts with the iterative
refinement and editing approach commonly em-
ployed by humans. Furthermore, prior works (Gu
et al., 2019; Reid and Zhong, 2021) have demon-
strated the efficacy of the generate-and-edit process
compared to one-time generation, even with a sin-
gle editing iteration. Motivated by these findings,
this paper explores the integration of large language
models (ChatGPT) into an automatic iterative edit-
ing pipeline.
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Who doesn’t love a hot cross bun at Easter? In Britain we so enjoy the spiced, sweet rolls with a cross on top, that
they used to be eaten all year round. That was until Queen Elizabeth I tried to ban them, possibly finding the cross a
little too Catholic. The move was greeted with uproar, so she compromised, saying they could only be sold on Good
Friday, at Christmas and for burials — and they have been prime Easter fare ever since. Nowadays supermarkets
bring out ever more permutations to tempt customers, from miniature sizes to new flavours like toffee fudge chunk
and apple and cinnamon. Here is best of the batch this Easter......
TL;DR: 

Harriet Arkell has tested the best hot cross buns on offer this Easter. The best include: M&S Toffee Fudge & Belgian
Chocolate Hot Cross Buns, Fortnum & Mason Sir Nigel’s Marmalade Hot Cross Buns, Betty’s of Harrogate Large
Chocolate & Orange Hot Cross Bun, Morrisons Chocolate Hot Cross Buns, Tesco Finest Double Belgian Chocolate &
Cornish Fudge Hot Cross Buns and Waitrose LOV

Rewrite the summary. Add content related to Queen Elizabeth I, and remove the content related to Tescost Belgian
Chocolate and Morrisons Cross B and M&S Toffee Fudge and ....
New summary:

Hot cross buns are a beloved Easter treat in Britain, with their spiced, sweet rolls and cross on top. Queen Elizabeth I
tried to ban them due to the religious connotations, but eventually compromised and allowed them to be sold on
Good Friday, at Christmas and for burials. This Easter, supermarkets have brought out a variety of flavours and sizes
to tempt customers. Harriet Arkell has tested out the best hot cross buns on offer this Easter.
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Figure 2: An illustration of the proposed tri-agent generation pipeline. When a query is given, the generator first
generates an initial answer, and the instructor provide an instruction on how to make the answer more tailored to
user’s preference, and finally the editor generates a personalized answer with the given instruction.

In contrast to the approach taken by Welleck
et al. (2022), where the generation process is de-
composed into a generator and a corrector, our
methodology involves a three-component decom-
position consisting of a generator, instructor, and
editor (refer to Figure 1). This structure allows
us to leverage inference-only large models for the
complex tasks of content generation and correc-
tion, while utilizing smaller models for the simpler
task of generating user-specific editing instructions.
The instructor is designed to provide targeted di-
rectives for editing and refining the initial outputs
of the generator. It is initialized by training on
human-authored, or oracle, instructions, which can
be obtained by the history of user’s behaviour. Fol-
lowing this, the model is then fine-tuned through
editor-steered reinforcement learning, wherein the
reward function directly quantifies the degree to
which the edited output by the editor align with
user preferences, which enhances the model’s com-
patibility with the editor.

We choose text summarization as the focal task
for evaluating this novel framework, which is to
generate concise and informative summary for the
given document(s). In this paper, we conduct exper-
imental evaluations on two summarization datasets
(DeFacto (Liu et al., 2022b) and CNNDM (Nal-
lapati et al., 2016)), focusing on user preference

related to factual consistency and coverage. We
employ ChatGPT as the generator and the editor
model. Our experiments indicate that with the in-
structions generated by the small instructor model,
the edited output is better aligned with user’s pref-
erence on both datasets. Further experiments on
the iterative editing shows that the output can better
meet user’s needs with more iterations of editing.

2 Overall Pipeline

In an effort to enhance the flexibility of the gener-
ation pipeline and optimize its compatibility with
powerful large language models, we propose a
novel decomposition of the generation process into
three distinct components, as illustrated in Figure 2.
These components include: (1) a generator, re-
sponsible for producing the initial output; (2) an in-
structor, tasked with generating natural language
instructions that guide the editing of the initial out-
put toward the direction of user preference; and
(3) an editor, which refines the initial output in
accordance with the provided instructions.

Since it has been demonstrated that large lan-
guage models can act as both a generator and an ed-
itor model, we have chosen to utilize an inference-
only large language model, specifically ChatGPT,
as our generator and editor. While it is possible
to further fine-tune these large language models
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Figure 3: Editor-steered Reinforcement Learning for the instructor. We fine-tune the instructor using editor-steered
reinforcement learning to maximize the expected performance of the editor (e.g., ChatGPT).

to serve as instructors, practical limitations such
as computational resources (Touvron et al., 2023)
and access restrictions (Ouyang et al., 2022) may
prevent direct fine-tuning, as has been done in pre-
vious works (Welleck et al., 2022; Liu et al., 2022a).
Therefore we propose to train a smaller model with
editor-steered reinforcement learning to function
as a user-specific instructor (as introduced in Sec-
tion 3), which guides the editor in revising the ini-
tial output to achieve better alignment with human
expectations.

3 Editor-steered Instructor

As introduced above, the central objective of the
proposed instructor is to produce precise and ac-
tionable instructions that can guide a large language
model in correcting the original summary to align
more closely with the user’s preference. To achieve
this, we employ a two-phase training process that
is designed to enable the instructor to work syner-
gistically with large language models.

Specifically, given the document D, an initial
summary, denoted as Sinit, is generated using a
generator (either a summarization model or a large
language model). The objective of the instructor is
to take D and Sinit as inputs and generate a set of in-
structions I = {i1, i2, ..., ik}, aiming to guide the
editor model in generating an edited summary that
is more closely aligned with the user’s preference.
Finally, the editor takes D, Sinit, and I as input and
generates a revised summary Sedit according to the
given instructions.

3.1 Step 1: Supervised Learning

During the initial training phase, we generate a set
of oracle instructions tailored to the user’s histor-
ical preferences for summary correction.3 These
oracle instructions serve as ideal examples of the
instructions that our instructor should produce. We
then train the instructor model in a supervised man-
ner, with negative log likelihood loss, i.e.,

L =
∑

k

P (i1, i2, ..., ik|D,Sinit).

The goal of this phase is to establish a solid foun-
dation for the instructor to generate instructions
that align with user expectations, by enabling it
to learn the relationship between the input (source
documents and initial summaries) and the desired
output (oracle instructions).

3.2 Step 2: Editor-steered Reinforcement
Learning

In the second phase, we further fine-tune the in-
structor model using editor-steered reinforcement
learning techniques (see Figure 3), specifically
using the NLPO algorithm (Ramamurthy et al.,
2023).

A key aspect of this phase is the design of the
reward function, which serves as the guiding sig-
nal for the RL-based fine-tuning process. To en-
sure that the generated instructions are compatible

3These oracle instructions are constructed by simulating
the user’s preferences using human-written summaries as ref-
erences, which reflect the distinct summarization preferences
of each source. For instance, CNN and DailyMail may exhibit
specific tendencies in the summaries it generates for news
articles.
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with the editor model and lead to meaningful sum-
mary corrections, the reward function is formulated
based on the edited summary, which is generated
by the editor model using prompts that include the
source documents, initial summaries, and editing
instructions provided by the instructor model (see
the example prompt shown at right-bottom of Fig-
ure 3).

To quantify the quality of the edited summary,
we employ a scoring function f(·) that measures
the extent to which the summary fulfills the user’s
preference. As we focus on the coverage and fac-
tual consistency of the generated summaries as the
user’s requirements, the scoring function f(·) is
then set as the sum of ROUGE score and knowl-
edge coverage, which measures the similarity of the
entity level coverage with the reference summaries,

f(S) = αROUGE(S, Sref) + βCov(S, Sref).

The reward signal itself is defined as the difference
in scores between the initial and edited summary,
which is designed to capture improvements in sum-
mary quality, with higher rewards corresponding
to more substantial improvements,

Reward = f(Sedit)− f(Sinit).

This phase aims to enhance the model’s ability to
generate instructions that not only adhere to user
requirements, but also effectively guide the large
language model to produce improved summaries.

4 Experiments

We conduct experiments on two distinct datasets,
each capturing different facets of user preferences.

4.1 Scenario 1: Factual Consistency on
DeFacto

In the initial experimental scenario, we opt to em-
phasize factual consistency as the primary crite-
rion for users’ summary preferences.4 We employ
the DeFacto dataset (Liu et al., 2022b), a resource
specifically curated to enhance the factual consis-
tency of machine-generated summaries through the
inclusion of human-annotated demonstrations and
feedback. The dataset consists of 701/341/779

4While factual consistency may serve as a typical criterion
for summarizers in general, we leverage the instructor to ac-
quire the ability to craft specific instructions that enhance the
factual consistency of the summaries.

data examples in train/validation/test set respec-
tively.5 Each data entry in the DeFacto dataset
comprises a source document and an initial sum-
mary generated by PEGASUS (Zhang et al., 2020).
Annotators are tasked with providing an instruction
that guides the modification of the initial summary
to enhance factual consistency. Additionally, an-
notators generate a revised summary that adheres
to the provided instructions and exhibits improved
factual consistency.

To evaluate the alignment between the system-
generated instructions and the human-written in-
structions, we employ the ROUGE score as our
evaluation metric. Additionally, we assess the qual-
ity of the generated summaries with respect to hu-
man expectations and factual accuracy using a com-
bination of metrics, including ROUGE scores and
factualness scores. Specifically, we utilize the DAE
(Dependency Arc Entailment) metric (Goyal and
Durrett, 2021) and the QFE (Question-answering
for Factual Evaluation) metric (Fabbri et al., 2022)
to quantify the factualness of the generated sum-
maries. These metrics provide a comprehensive
assessment of summary quality in terms of both
alignment with human expectations and adherence
to factual correctness.

Settings We use FlanT5-large (700M) (Chung
et al., 2022) as the backbone model for the instruc-
tor. The training process for the instructor is exe-
cuted in two phases, as detailed in Section 3.

Results First of all, we assess the potential of
ChatGPT to serve as an editor model, capable
of revising summaries in accordance with human-
provided instructions. The results of this assess-
ment, presented in Table 1, indicate that ChatGPT
performs comparably to a supervised model when
supplied with source documents, initial summaries,
and human-written editing instructions as input,
as demonstrated by comparable ROUGE scores
and factualness scores. These findings affirm that
ChatGPT is effective as a summary editor when
appropriate editing instructions are provided.

Then, we evaluate the system-generated instruc-
tions in comparison to human-authored instruc-
tions. Our objective is to determine the extent to
which ChatGPT and trained instructors can accu-
rately discern user requirements and subsequently
produce corresponding instructions. The results

5Following the original paper, all the experiments are con-
ducted on the examples labeled with errors.
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Editor DAE QFE R1 R2 RL

Initial Summary 0.699 1.837 76.03 66.34 74.11
Human Editor 0.906 2.717 100 100 100

T0PP-D+S+I (Sup) 0.904 2.470 88.74 83.16 87.48
ChatGPT (10-shot) 0.884 2.568 88.48 81.41 86.17

Table 1: The ROUGE score and factual consistency scores of edited summaries with human-written instructions
on DeFacto, in comparison with the human-edited summaries. T0PP-D+S+I (Sup) is a supervised model with the
source Documents, initial Summary and Instruction as the input (Liu et al., 2022b).

Model R1 R2 RL

ChatGPT (Zero-shot) 36.05 22.98 30.66
ChatGPT (10-shot) 37.35 24.94 32.94

FlanT5 (Sup) 49.04 34.37 47.07
FlanT5 (RL) 48.05 32.94 46.23

Table 2: ROUGE score between generated instructions
and human-written instructions on DeFacto.

of this evaluation are presented in Table 2. No-
tably, we observe that the instructions generated by
ChatGPT do not effectively match human-written
instructions, as evidenced by suboptimal perfor-
mance in both zero-shot and few-shot settings.
Although the instructor model we used is much
smaller than ChatGPT (700M v.s. 175B), it shows
the ability to generate instructions better aligned
with the user’s needs.

In the final set of experiments, presented in Ta-
ble 3, we evaluate the performance of the editing
model (ChatGPT) with the trained and RL fine-
tuned instructors, as well as the instructions gener-
ated by ChatGPT in few-shot settings. The results
demonstrate that summaries edited by ChatGPT,
when utilizing a 10-shot prompt and instructions
from the trained instructor, exhibit large improve-
ments in factualness(as measured by DAE/QFE)
compared to the original summaries . The imple-
mentation of reinforcement learning, incorporating
ChatGPT-derived rewards, leads to additional en-
hancements in summary quality. Furthermore, we
conduct experiments utilizing instructions gener-
ated by ChatGPT. While these instructions demon-
strate suboptimal alignment with human-authored
instructions, they yield unexpectedly high scores
in terms of factualness, particularly as measured
by the QFE metric. However, a notable decrease
in ROUGE scores is observed in comparison to
other methods. These findings suggest that Chat-
GPT possesses the capacity to generate instructions
that target a specific and well-defined aspect (e.g.,
addressing factual inconsistencies), but may strug-

gle to accurately discern and fulfill broader human
expectations.

4.2 Scenario 2: Coverage on CNNDM

ChatGPT has demonstrated its capacity to pro-
duce fluent and informative summaries of news
articles (Goyal et al., 2022). Despite its proficiency
in generating coherent summaries, it may not al-
ways achieve the desired coverage of key topics, as
expected by the user. In response to this challenge,
we conduct an experiment to train and evaluate
an instructor model specifically designed to guide
the editing of summaries for improved knowledge
coverage based on user’s history. The instructor
predicts the keywords to be added to or removed
from the current summary, thereby providing ac-
tionable instructions to align the summary more
closely with user preference. In practice, we as-
sess knowledge coverage based on the extent to
which the generated summaries match reference
summaries in terms of keyword content.

We employ the CNNDM dataset (Nallapati et al.,
2016) as our benchmark for this experiment, which
contains pairs of articles and reference summaries,
with the original reference summary serving as the
target representation of user preference on the cov-
erage. We acknowledge that, according to recent
studies (Goyal et al., 2022), the reference sum-
maries in the CNNDM dataset may exhibit some
quality limitations, such as poor coherence. How-
ever, our primary focus in this experiment is on
knowledge coverage rather than summary quality.
We are interested in assessing the extent to which
the generated summaries capture the key entities in
the reference.

To measure knowledge coverage, we introduce
an entity-level matching metric Knlg F1. Let Egen
be the entities mentioned in the generated sum-
maries and Eref be those in the reference sum-
maries. We quantify the degree of overlap between
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Instructor DAE QFE R1 R2 RL

Initial Summary 0.699 1.837 76.03 66.34 74.11

FLAN T5 (Sup) 0.772 2.093 72.60 61.96 71.21
FLAN T5 (RL) 0.803 2.198 74.77 64.73 73.44

ChatGPT (10-shot) 0.834 2.583 56.54 41.29 53.06

Table 3: The ROUGE score and factual consistency scores of edited summaries with instructions generated by
different instructors on DeFacto. We use ChatGPT (10-shot) as the editor model for all the results shown in the
table.

Instructor Knlg F1 R1 R2 RL

Initial Summary 44.15 40.28 16.65 33.23

FLAN T5 (Sup) 47.44 41.04 16.72 33.63
FLAN T5 (RL) 47.99 41.21 16.80 33.90
ChatGPT (5-shot)* 43.43 39.46 15.43 32.40

Oracle 60.80 43.08 18.37 35.24

Table 4: Knowledge coverage and ROUGE scores of
edited summaries with instructions generated by differ-
ent instructors on CNNDM. We use ChatGPT (zero-
shot) as the generator model (to produce Initial Sum-
mary) and editor model. * We reduce the number of
examples in the prompt if it exceeds the length limit (4k
tokens).

the two by

Knlg F1 =
2Knlgp × Knlgr

Knlgp + Knlgr
, where

Knlgp =
|Eref ∩ Egen|

|Egen|
, Knlgr =

|Eref ∩ Egen|
|Eref|

.

By maximizing this overlap, the instructor aims to
produce summaries that effectively cover pertinent
information as indicated by the reference.

Settings: We use the summaries generated by
ChatGPT as the initial summaries.6. And we em-
ploy FlanT5-large (700M) as the instructor model
for predicting keywords, using both the origi-
nal document and the initial summaries gener-
ated by ChatGPT as input. Supervised training
is performed using oracle keyword lists specifying
which keywords to add and remove. Subsequently,
the model undergoes editor-steered reinforcement
learning fine-tuning, as detailed in Section 3, us-
ing a subset of 10,000 training examples from the
dataset for efficiency.

Results: The results of our experiments, pre-
sented in Table 4, demonstrate the effectiveness

6The dataset is released, and can be found in the Github
repo.

Model Knlg F1 R1 R2 RL

Initial Summary 44.15 40.28 16.65 33.23

Edit Iter 1 47.99 41.21 16.80 33.90
Edit Iter 2 48.65 41.18 16.69 33.88
Edit Iter 3 48.99 41.14 16.63 33.83

Edit Iter 1 (1&2) 48.08 41.25 16.91 33.94
Edit Iter 2 (1&2) 48.87 40.62 16.60 33.45
Edit Iter 3 (1&2) 49.20 41.15 16.87 33.86

Table 5: Iterative editing on CNNDM. The second block
shows the results of the model fine-tuned on the data
in the first iteration only, and the bottom block shows
that of the model fine-tuned on the data in the first and
second iterations.

of our instructor model in enhancing knowledge
coverage, indicated by both entity matching and
ROUGE scores. In a zero-shot setting, ChatGPT
exhibits strong performance as a summarizer. Im-
portantly, when provided with Oracle instructions,
ChatGPT also demonstrates a robust capacity to
correct and refine initial summaries in accordance
with the specified instructions.

The integration of instructions generated by our
trained instructor model leads to remarkable im-
provements in knowledge coverage, indicating that
the summaries better align with user preference
(comparing FLAN T5 (Sup) with Initial Summary).
Moreover, we observe that the reinforcement learn-
ing fine-tuning process(FLAN T5 (RL))further im-
proves the model’s performance, resulting in mod-
erate but meaningful gains in the evaluated metrics.

In contrast, when we explore a few-shot setting
in which ChatGPT directly generates instructions
without the use of the trained instructor(ChatGPT
(5-shot)), the edited summaries exhibit a decline
in performance. Specifically, both Knlg F1 and
ROUGE scores are lower than those of the initial
summaries, suggesting limitations in ChatGPT’s
ability to generate effective instructions for sum-
mary editing to better align with users’ preference.

Overall, these findings underscore the value of
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Initial Summary A former corrections officer was punched by a young man on a plane after he asked him
to stop using foul language. The former officer then took the young man down and held
him until police arrived. Source: Daily Mail

Oracle Instruction <Add> Chad Hurst <remove> Daily Mail
Human-written Reference Chad Hurst of Salt Lake City, Utah was sucker punched by a plane passenger when

they landed in the city Sunday . This after Hurst asked the young man to stop using
foul language following their flight . Hurst, a former corrections officer, then took down
the man and pinned his arms behind his back while waiting for law enforcement . The
young man, who has still not been named by police, was charged with assault and public
intoxication .

Predicted Instruction <Add> Chad Hurst <remove> Daily Mail
ChatGPT-edited Summary Chad Hurst, a former corrections officer from Salt Lake City, Utah, was punched by a

young man on a plane after he asked him to stop using foul language. Hurst calmly took
the young man down and held him until police arrived. The young man was charged with
assault and public intoxication. Hurst’s training as a former corrections officer taught him
to never punch back but to control the situation and take the person down.

Table 6: An example from the CNNDM dataset.

our instructor as a powerful intermediary for guid-
ing large language models such as ChatGPT in
editing summaries to more closely adhere to user
preference.

5 Discussion

5.1 Iterative Editing

In addition to performing one-step editing, we con-
ducted experiments to explore the effectiveness
of iterative editing on the CNNDM dataset7. The
results of the iterative editing experiments are pre-
sented in Table 5. Utilizing reinforcement learning
(RL) training based solely on data from the first iter-
ation, we observed an improvement in the coverage
of the edited summaries over the iterative editing
process. We further fine-tuned the model using
a mixture of data from both the first and second
iterations, which leads to improved performance,
as evidenced by enhanced knowledge F1 in the
iteratively edited summaries.

5.2 Qualitative Examples

We show examples from the CNNDM dataset in
Table 6. The instructor model can correctly detect
the user’s expectation and produce the editing in-
struction. ChatGPT is capable to edit the initial
summary based on the given instruction, serving as
an editor. 8

7We did not conduct similar experiments on the DeFacto
dataset because, for the majority of data examples, only one
editing step is required to transition from the initial summary
to the human-edited summary

8Examples from DeFacto are shown in the appendix.

6 Related Work

6.1 Text Editing

Post-editing techniques have been extensively stud-
ied in various NLP tasks, including sentence fu-
sion (Malmi et al., 2019), style transfer (Reid and
Zhong, 2021), and wiki-editing (Reid and Neubig,
2022; Faltings et al., 2021). These methods in-
volve micro-defined operations such as insertion,
deletion, and replacement. However, they often
require a substantial amount of human-labeled data
or complex editing chains. In contrast, our work
focuses on abstract-level text editing using natural
language instructions, leveraging the capabilities
of large language models like ChatGPT. Similarly,
Liu et al. (2022b) propose an approach involving a
critic model for feedback generation and an editor
model for revising initial summaries. We extend
this approach by formalizing it as an iterative edit-
ing pipeline and enhancing it with inference-only
language models and an editor-steered instructor.

Recently, (Liu et al., 2022a) introduced a novel
training paradigm that aligns generated text with
human values through a dynamic programming-
derived chain-of-edits. However, this method re-
quires additional fine-tuning of the language model,
which may be impractical for models with limited
resources and accessibility.

In another line of work, Welleck et al. (2022)
proposed a framework that decomposes the origi-
nal generation process into generator and corrector
components, where the corrector is trained through
online training to iteratively refine imperfect gener-
ations. Our work differs from them by decompos-
ing the generation process into three components:
the generator, the instructor, and the editor. This
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decomposition allows us to utilize large models
for complex generation and correction tasks, while
employing smaller models to predict user-specific
editing instructions.

In parallel to our research, Madaan et al. (2023)
propose a similar generation pipeline aimed at it-
eratively refining the generated output. However,
their approach differs in that they utilize the same
large language model (with varying prompts) for
generating the initial output, providing feedback,
and editing the output based on the received feed-
back, without considering any user-specific feed-
back. In contrast, our focus in this paper is on
aligning the generated output more closely with
user needs, guided by a trained instructor.

6.2 Large Language Models

The field of natural language processing has wit-
nessed significant advancements in the realm
of large language models (LLMs) (Chowdhery
et al., 2022; Zhang et al., 2022; Thoppilan et al.,
2022), leading to the creation of models that ex-
hibit extraordinary language processing capabili-
ties. Among these models, the GPT family (Brown
et al., 2020) stands as a prominent example, earn-
ing widespread recognition for its versatile perfor-
mance across different language-related tasks.

The introduction of instruction tuning (Wei et al.,
2021) has further catalyzed the enhancement of
language models, particularly when trained with
human instructions (Sanh et al., 2021). Notably,
this approach has resulted in substantial improve-
ments, especially within the context of zero-shot
and few-shot learning. InstructGPT (Ouyang et al.,
2022), which employs the Reinforcement Learning
from Human Feedback (RLHF) training paradigm,
exemplifies this trend, enabling models to effec-
tively follow human instructions and providing a
foundational basis for our current work.

The recent release of LLAMA (Touvron et al.,
2023) has further expanded opportunities for ex-
ploration in this area, as researchers have begun
to train or fine-tune models using task-augmented
datasets by GPT models (Wang et al., 2022).

Distinct from the aforementioned research ef-
forts, our work introduces the tri-agent pipeline,
a novel paradigm that capitalizes on the capabili-
ties of large language models for downstream tasks.
Uniquely, our approach is designed to optimize
performance while minimizing computational re-
source demands and accommodating limited access

to large language models (e.g., API-only access).

6.3 Summarization with LLM

Before the advent of LLMs, a prevalent approach to
the text summarization task involved pre-training
models on a substantial corpus using task-focused
objectives, followed by fine-tuning on task-specific
datasets. This paradigm demonstrated effective-
ness in text summarization and was adopted by
models such as PEGASUS (Zhang et al., 2020),
Primera (Xiao et al., 2021), and Z-Code++ (He
et al., 2022). However, recent studies (Goyal et al.,
2022; Zhang et al., 2023) have revealed that the
application of GPT-3 (Brown et al., 2020) and In-
structGPT (Ouyang et al., 2022) to news summa-
rization tasks in zero-shot settings yields results
that are not only preferred by human evaluators
over those of supervised models, but are also more
favorable than the reference summaries themselves.

These findings suggest a direction for the text
summarization task. Rather than training super-
vised summarizers on potentially suboptimal refer-
ence summaries, it may be more efficient to lever-
age LLMs, and focus on editing their outputs to
align with user requirements, which is also in-line
with the tri-agent pipeline proposed in this work.

7 Conclusion and Future Work

In this paper, we introduce a novel generation
paradigm that decomposes the generation process
into three distinct components: the generator, the
instructor, and the editor. Our approach is specifi-
cally designed to harness the capabilities of large
language models, while accounting for constraints
such as limited access and computational resources,
and to facilitate the customization of generated
content to align with user preference. Through
a series of pilot experiments on the task of text
summarization, we find that large language mod-
els, exemplified by ChatGPT, can effectively serve
as editors, achieving performance levels compara-
ble to supervised editing models when provided
with human-written instructions. Nevertheless, it
is still challenging for the large language models
to generate instructions that are well-aligned with
human-authored instructions.

To address this challenge, we employ a smaller
model as the instructor, which is trained with editor-
steered reinforcement learning (RL) with rewards
based on the quality of the edited summaries. Our
experimental results demonstrate the efficacy of
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this approach in guiding the editor (ChatGPT) to
produce summaries that are more closely aligned
with user expectations.

Looking ahead, future work will involve ex-
tending our experiments to other tasks, such
as wiki-editing (Reid and Neubig, 2022), news-
editing (Spangher et al., 2022), and mathematical
problem synthesis (Welleck et al., 2022). Addition-
ally, we may generate more instruction data using
the self-instruct technique (Wang et al., 2022) to
train a better instructor.

Limitations

While our proposed generation pipeline aims to im-
prove the alignment of large language model out-
puts with user preference, we acknowledge the lim-
itation of resource constraints in our study. As a re-
sult, we focus our experiments solely on ChatGPT,
which has demonstrated top performance across a
range of tasks. However, future work should ex-
plore its applicability and performance with other
large language models as well. Furthermore, it
is important to note that, like all large language
models, our system’s output may still exhibit is-
sues such as hallucination and bias. While our
pipeline partially addresses these concerns, we can-
not guarantee that the results are completely free
from hallucination and bias.
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A Prompts

We show the prompts used for summary editing
and instruction generation in Table 7 and Table 8,
respectively.

CNNDM

Summary: [initial summary]
Document: [article]
Rewrite the summary for the document, [instruction]
New summary:

DeFacto

Document: [article]
Summary: [initial summary]
Instructions: [instruction]
Edit the summary only following the instructions and
only output the corrected summary.
New summary:

Table 7: Prompts used for summary editing.

B Qualitative Examples

We show examples from the DeFacto dataset in
Table 6. The instructor model can correctly detect
the user’s expectation and produce the editing in-
struction. ChatGPT is capable to edit the initial
summary based on the given instruction, serving as
an editor.

CNNDM

few-shot prompts ×N , up to the length limit
Document: [article]i
Summary: [initial summary]i
Instructions: [instruction]i

Document: [article]
Summary: [initial summary]
The summary may not cover the salient content, gener-
ate instructions to make the summary focus on salient
content. The instructions should be chosen from the
following formats:
Delete content related to __.
Add content related to __.
No operation is needed.
Only output the instructions without the corrected sum-
maries, and make the instruction conservatively.
Instructions:

DeFacto

few-shot prompts ×10
Document: [article]i
Summary: [initial summary]i
The summary may contain some factual errors, generate
the instructions to correct the summary.
Instructions:

Document: [article]
Summary: [initial summary]
The summary may contain some factual errors, generate
the instructions to correct the summary.
The instructions should be chosen from the following
formats:
Remove the information about __ from the summary.
Add the information about __ to the summary.
Replace the information about __ with the in-formation
about __.
Modify the information about __ in the summary.
Rewrite the summary entirely by __.
Only output the instructions without the corrected sum-
maries, and make the instruction conservatively.
Instructions:

Table 8: Prompts used for instruction generation
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Initial Summary The controversial Kudankalum nuclear power station in India’s Tamil Nadu state has
started generating electricity.

Human-written Instruction Remove the information about the location of India’s Tamil Nadu state from the summary.
Human-edited Summary The controversial Kudankalum nuclear power station has started generating electricity.
Predicted Instruction Remove the information about Tamil Nadu from the summary.
ChatGPT-edited Summary The controversial Kudankalum nuclear power station has started generating electricity.

Initial Summary Gunfire has been heard in Ivory Coast’s second city of Bouaké, a day after soldiers
mutinied over pay

Human-written Instruction Remove the information about second from the summary.
Human-edited Summary Gunfire has been heard in Ivory Coast city of Bouaké, a day after soldiers mutinied over

pay.
Predicted Instruction Remove the information about second from the summary.
ChatGPT-edited Summary Gunfire has been heard in Ivory Coast’s city of Bouak, a day after soldiers mutinied over

pay.

Table 9: Examples from the DeFacto dataset.

C Software and Licenses

Our code is licensed under Apache License 2.0.
Our framework dependencies are:

• HuggingFace Datasets9, Apache 2.0

• NLTK 10, Apache 2.0

• Numpy11, BSD 3-Clause "New" or "Revised"

• Transformers12, Apache 2.0

• Pytorch13, Misc

• ROUGE 14, Apache 2.0

• Flan T5 15, Apache 2.0

• ChatGPT 16, Proprietary

9https://github.com/huggingface/datasets/blob/
master/LICENSE

10https://github.com/nltk/nltk
11https://github.com/numpy/numpy/blob/main/

LICENSE.txt
12https://github.com/huggingface/transformers/

blob/master/LICENSE
13https://github.com/pytorch/pytorch/blob/

master/LICENSE
14https://github.com/google-research/

google-research/tree/master/rouge
15https://huggingface.co/google/flan-t5-large
16https://openai.com/chatgpt
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