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Abstract

In this paper, we propose a simple, tricky
method to improve sentence representation of
unsupervised contrastive learning. Even though
contrastive learning has achieved great perfor-
mances in both visual representation learning
(VRL) and sentence representation learning
(SRL) fields, we focus on the fact that there is a
gap between the characteristics and training dy-
namics of VRL and SRL. We first examine the
role of temperature to bridge the gap between
VRL and SRL, and find some temperature-
dependent elements in SRL; i.e., a higher tem-
perature causes overfitting of the uniformity
while improving the alignment in the earlier
phase of training. Then, we design a tempera-
ture cool-down technique based on this observa-
tion, which helps PLMs to be more suitable for
contrastive learning via the preparation of uni-
form representation space. Our experimental
results on widely-utilized benchmarks demon-
strate the effectiveness and an extensibility of
our method. Our code is publicly available at
https://github.com/myngsooo/Cooldown.

1 Introduction

One of the most important breakthroughs in unsu-
pervised representation learning is the introduction
of contrastive learning into the field of deep learn-
ing (Chen et al., 2020; He et al., 2020). In the
past few years, a number of studies have sought
to analyze the success of contrastive learning. For
example, optimizing contrastive learning can sat-
isfy two different properties of representations on
the hypersphere, which are asymptotically quan-
tified by the uniformity and alignment loss (the
former leads to a uniformly distributed representa-
tion space and the latter makes a positive instance
closer to an anchor (Wang and Isola, 2020)). These
approaches have also been widely adopted in the
SRL (sentence representation learning) literature,
where SimCSE (Gao et al., 2021) successfully im-
plemented the framework for unsupervised con-

trastive learning by constructing a straightforward
dropout-based positive pair.

There has been a steady increase of interest in
the role of a temperature (τ ) used in NT-Xent loss
(normalized temperature cross-entropy loss) (Chen
et al., 2020). For example, a temperature is
inversely proportional to uniformity by control-
ling the strength of the penalty on negative sam-
ples (Wang and Liu, 2021). Also, a higher temper-
ature can lead to a collapse (Zhang et al., 2021a),
i.e., degeneration solution of representation learn-
ing (Chen et al., 2020; Chen and He, 2021). How-
ever, most studies have focused only on VRL (vi-
sual representation learning), and little information
is known about the role of temperature especially
for SRL. In addition, there are several differences
between the two fields; i.e., the number of batch
size (smaller in SRL), the usage of PLMs (pre-
trained language models)), and a temperature value
(relatively lower in SRL).

In our study, we first investigate the role of tem-
perature in SimCSE. Interestingly, we find that the
higher temperature in the earlier phase of train-
ing shows lower alignment and higher uniformity
loss, indicating that higher temperature alleviates
the excessive repelling of negative instances that
are too close to the anchor due to the anisotropic
space of PLMs; i.e., feature vectors form a narrow
cone-like representation space (Ethayarajh, 2019;
Wang et al., 2019; Li et al., 2020). Theoretically,
NT-Xent loss with higher temperature will degen-
erate to the vanilla contrastive loss, which repels
every negative sample with equal strength (Zhang
et al., 2021a). We assume that this can be effective
for SRL different from typical VRL works whose
models’ parameters are initialized by normal distri-
bution1 and trained from scratch.

Based on the above motivation, we propose tem-
perature cool-down, a simple technique specially

1Thus, their representation spaces are uniformly distributed
at the beginning.
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Figure 1: PCA visualization of the representation space
during contrastive learning with/without temperature
cool-down. (a): Following the literature, BERT-base
shows the anisotropic representation space. (b): A
model trained with temperature cool-down pulls dis-
tant instances (colored pink) more uniformly. (c): A
representation space built by temperature cool-down
leads to a more uniform unit hypersphere.

designed for unsupervised SRL. We set a higher
temperature in the first few steps of earlier training,
and then cool down the temperature to the origi-
nal value. The higher temperature can mitigate the
phenomenon where, due to the anisotropic nature
of PLMs’ representation spaces, a smaller temper-
ature in the early phase of training leads to unin-
tended pulling and pushing of instances because of
their excessive proximity to the anchor. In this way,
temperature cool-down makes the PLMs’ represen-
tation spaces better suited for dropout-noise based
contrastive learning. Empirically, our temperature
cool-down improves SimCSE’s performance on the
unsupervised sentence representation benchmarks.
It also has the extensibility to be used in different
SRL methods based on SimCSE.

2 Proposed Method

2.1 Preliminary and Motivation

Unsupervised Sentence Representation Learn-
ing Previous studies in the field of SRL have
focused on the computation of continuous and
static word representations based on the idea of

word2vec (Mikolov et al., 2013; Hill et al., 2016;
Logeswaran and Lee, 2018). Since the success-
ful introduction of PLMs (Devlin et al., 2018; Liu
et al., 2019), several methods using PLMs to gen-
erate sentence representations have been reported,
but PLMs suffered from some problems such as an
anisotropic space (Ethayarajh, 2019).

In line with VRL, previous attempts to apply
contrastive learning to SRL have focused on con-
structing well-crafted pairs to learn a better sen-
tence representation (Sun et al., 2020; Zhang et al.,
2020, 2021b; Giorgi et al., 2021; Kim et al., 2021;
Yan et al., 2021). Recently, many works have fol-
lowed the typical SimCSE baseline (Gao et al.,
2021), which uses dropout-noise based augmenta-
tion. SimCSE utilized NT-Xent loss:

li = −log
esim(zi,z′i)/τ

∑N
j=1 e

sim(zi,z′j)/τ
, (1)

where sim(), zi, z′i, and z′j(i ̸= j) denote a similar-
ity function, a hidden representation of the anchor,
a positive instance, and a negative instance.

Role of Temperature According to the gradi-
ent of contrastive loss, one of the roles of tem-
perature is to control the distribution of negative
gradients (Wang and Liu, 2021). Since the gra-
dients with respect to both positive and negative
similarity are proportional to the inverse of the tem-
perature ( 1τ ), the contrastive loss is the hardness-
aware function by which temperature determines
the strength of repelling negative samples. For ex-
ample, a lower temperature boosts the gradient of
instances close to the anchor and thus improves the
uniformity (Robinson et al., 2021). In contrast, a
higher temperature leads to a balanced weight of
gradients and may suffer both performance degra-
dation and collapse of the representation (Zhang
et al., 2021a).

We assume that there are temperature-dependent
factors in SRL due to the nature of PLMs. If there
is a strong relationship, a subtle change in the tem-
perature value may lead to an improvement in rep-
resentational power. This assumption raises the
question regarding an inconclusive reason for the
lower temperature value used in SimCSE.

2.2 Observation
In this section, we examine the effect of tempera-
ture in terms of the representation space − i.e., the
uniformity and alignment loss −, and the quantita-
tive evaluation results. As shown in Figure 2, the
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Figure 2: Uniformity and alignment of BERT-base
trained by SimCSE with different temperature (τ ).

PLMs τ Avg.STS PLMs τ Avg.STS
BERT 0.05 76.95 RoBERTa 0.05 76.64
(base) 0.06 76.96 (base) 0.06 76.61

0.07 76.37 0.07 75.57
0.08 75.08 0.08 74.86
0.09 73.26 0.09 73.73
0.10 71.92 0.10 72.36

Table 1: Results of SimCSE with different temperature
on the STS evaluation tasks. An underlined temperature
indicates the original SimCSE’s hyperparameter.

uniformity is proportional to the temperature while
the alignment is inversely proportional, which is
consistent with previous results. Also, a higher
temperature leads to worse performance (Table 1),
which is similar to the finding of Zhang et al.,
2021a. At the same time, we observe that there
are unprecedented results; a higher temperature
not only leads to overfitting of the uniformity (it
gets worse2 in the evaluation datasets), but also
improves the alignment. This tendency is more
pronounced in the early stages of training.

2.3 Temperature Cool-down
Motivated by the previous findings and our obser-
vations, we design a simple yet effective technique
for contrastive learning in SRL, named temperature
cool-down. Its logic is similar to the widely-used
warm-up technique in learning rate schedulers (He
et al., 2016, 2019). We start by setting an initial
temperature (τi) value that is larger than the orig-
inal temperature (τ ) in earlier training steps. Af-
ter a certain ratio of steps (rs), we cool down the
temperature to the original one. There are many
possible ways to implement an effective cool-down
process. In this paper, we explore two candidates:
Temperature Cool-down with Constant (TCC) and
with Step function (TCS), each formulated by:

τTCC,t =

{
τi, if t ∈ [1, rs · s)
τ. otherwise

(2)

2Both smaller uniformity and alignment are better.

τTCS,t =





τi, if t ∈ [1, 0.5 · rs · s)
τi+τ
2 , if t ∈ [0.5 · rs · s, rs · s)

τ. otherwise

(3)

where t, τ , τi, s, and rs denote a current training
step, original temperature, initial temperature, total
training steps, and step ratio, respectively. TCS
uses a simple median of the temperature between
τi and τ in the middle of the cool-down steps. We
simply divide the TCS steps by 1

2 .
Since the representation spaces of PLMs are

anisotropic, lower temperature in the early stages
of training can lead to unintended pulling/pushing
of instances due to excessive closeness towards the
anchor (see Figure 1). This can be mitigated by
higher temperature, whose role is to pull/push in-
stances regardless of their closeness equally. In
this respect, temperature cool-down prepares the
representation spaces of PLMs to be more suitable
for dropout-noise-based contrastive learning.

3 Experiments

3.1 Implementation Details

Training Setups We conduct grid search to de-
termine the optimal hyperparameters; initial tem-
perature (τi) ∈ [0.05, 0.014], step ratio (rs) ∈ [0.01,
0.03], and batch size ∈ {64, 512}. We train our
models for 1 epoch and evaluate the model every
250 steps on the STS-B development set, following
the literature. Also, we train SimCSE based on the
paper’s hyperparameters configuration.
Network Implementation We train SimCSE
with temperature cool-down using the pre-trained
checkpoints of BERT (Devlin et al., 2018) and
RoBERTa (Liu et al., 2019) downloaded from hug-
gingface (Wolf et al., 2019). Following SimCSE,
we also consider a [CLS] hidden representation as
the sentence representation (Gao et al., 2021).

3.2 Unsupervised STS Tasks

Benchmark We train all models on randomly
sampled datasets from English Wikipedia (106),
which is the same as the baseline (Gao et al., 2021).
We evaluate them on typical sentence representa-
tion benchmark: STS 2012-2016 (Agirre et al.,
2012, 2013, 2014, 2015, 2016), STS Benchmark
(STS-B) (Cer et al., 2017) and SICK Relatedness
(SICK-R) (Marelli et al., 2014). These datasets
consist of pairs of sentences of which the similarity
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PLMs Method STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.
BERTbase first-last ♣ 39.70 59.38 49.67 66.03 66.19 53.87 62.06 56.70

SimCSE 71.64 82.68 75.81 82.25 78.60 78.93 68.76 76.95
+ TCC 72.52 83.83 76.60 83.29 79.60 79.60 71.26 78.10
+ TCS 72.37 83.79 76.65 83.37 79.42 79.60 71.13 78.05

BERTlarge SimCSE 70.80 85.58 77.34 84.27 79.31 79.07 72.82 78.46
+ TCC 71.50 85.25 77.09 84.43 79.12 80.21 74.45 78.86
+ TCS 71.23 85.19 77.43 84.12 79.39 80.26 73.85 78.78

RoBERTabase first-last ♣ 40.88 58.74 49.07 65.63 61.48 58.55 61.63 56.57
SimCSE 68.65 81.70 73.44 82.30 81.09 80.51 68.76 76.64
+ TCC 69.79 82.69 74.70 82.63 81.19 82.13 69.91 77.58
+ TCS 70.01 82.56 74.43 82.66 81.63 81.56 69.38 77.46

RoBERTalarge SimCSE 70.85 83.67 75.83 84.24 80.27 82.42 72.41 78.53
+ TCC 71.08 84.60 76.56 84.97 80.37 83.18 71.72 78.93
+ TCS 70.40 83.65 75.19 84.95 80.37 81.80 73.40 78.54

Table 2: Performance of different unsupervised contrastive learning methods on the STS tasks (Spearman’s
correlation). Each bold number and underlined number indicates the best and second best performance within the
PLMs, respectively. ♣: Results from Gao et al., 2021.

score range is from 0 to 5. We utilize SentEval
(Conneau and Kiela, 2018) for evaluation.
Results Table 2 shows the experimental results.
Applying temperature cool-down boosts the per-
formances; both TCC and TCS show better per-
formance in most cases compared with the origi-
nal SimCSE: nearly 1.5% on BERT-base, 1.4% on
RoBERTa-base, 0.5% on BERT-large, and 0.5% on
RoBERTa-large.
Applying to ArcCSE Here, we applied our tem-
perature cool-down to ArcCSE (Zhang et al., 2022),
which is one of the promising baselines extended
from SimCSE. It proposed an angular margin con-
trastive loss (ArcConLoss), which introduces an
angular margin term in the similarity function. It
also proposed the extra Triplet loss, which requires
additional preprocessed data. However, since the
data is not accessible, we cannot reproduce the ex-
tra Triplet loss. We therefore report the results of
ArcCSE without the Triplet loss in Table 4. We
follow ArcCSE’s default configuration along with
our parameters; τi is 0.01 and rs ∈ [0.011, 0.02]
with a step size of 0.001. We observe that applying
temperature cool-down improves the performance,
and even shows better performance than the orig-
inal ArcCSE with the Triplet loss in BERT-base.
This result is noteworthy because the extra Triplet
loss requires much more computational resources,
while our cool-down technique does not.

3.3 Robustness of Temperature Cool-down

Since there has been a reported issue of SimCSE’s
vulnerability to random seeds, we perform addi-
tional experiments of temperature cool-down with
3 different random seeds. As shown in Table 3,
temperature cool-down improves the performance

PLMs Method Avg.Score
BERTbase SimCSE 75.83 ± 0.71

+ TCC 77.42 ± 0.61

+ TCS 76.46 ± 1.41

BERTlarge SimCSE 77.14 ± 1.45

+ TCC 78.52 ± 0.29

+ TCS 78.28 ± 0.46

RoBERTabase SimCSE 76.77 ± 0.06

+ TCC 77.18 ± 0.78

+ TCS 77.06 ± 0.65

RoBERTalarge SimCSE 78.04 ± 0.64

+ TCC 78.47 ± 0.43

+ TCS 78.04 ± 0.44

Table 3: Averaged results of 3 different random seed
experiments on the STS evaluation tasks.

of SimCSE performance with better robustness.

3.4 Uniformity and Alignment
We track the change of uniformity and alignment
loss in STS-B development sets. Figure 3 visu-
alizes 3 different methods on BERT-base (more
results are in Appendix F), easing the uniformity
and improving the alignment in earlier phase by
temperature cool-down (steps < 1k) leads to more
stable uniformity dynamics (smaller standard devi-
ation). Also, the uniformity and alignment loss for
the best checkpoint are better than vanilla SimCSE
(see Appendix F).

4 Conclusion
We explore a simple, yet tricky, technique to control
the temperature value of vanilla contrastive loss,
which is widely used in the SRL literature. Moti-
vated by previous studies in VRL and our empirical
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Figure 3: Uniformity and alignment on BERT-base us-
ing temperature cool-down.

PLMs Method Avg.STS
BERTbase ArcCSE w/o Triplet loss 77.76

+ TCC 78.20
+ TCS 78.09
ArcCSE ♡ 78.11

BERTlarge ArcCSE w/o Triplet loss 78.93
+ TCC 79.11
+ TCS 79.23
ArcCSE ♡ 79.37

Table 4: Results of ArcConLoss with temperature cool-
down. ♡: Results from Zhang et al., 2022.

observations, we design a temperature cool-down
that accelerates a higher temperature in earlier train-
ing steps and then cools down to the original, lower
temperature. It shows performance improvement
on various STS tasks, and also has many possibili-
ties for plugging into other contrastive frameworks
and designing effective variants.

Limitation

Although there can be a lot of possibilities for tem-
perature cool-down variants, this paper suggests a
few of simple functions. Similar to the learning rate
warm-up, there may be effective candidates such
as the exponential decay function or cosine func-
tion. In addition, there is a lack of mathematical
grounding for the proposed approach. Nonetheless,
we think that further experiments for gradient anal-
ysis can back up the success of our temperature
cool-down. We leave exploration towards these
researches in the future work.

The results reported in Table 2 may be in-
terpreted as marginal, especially in terms of
RoBERTa. As mentioned before, temperature cool-
down is a simple technique for well-preparing
PLMs’ representation spaces, assuming they ini-
tially look like narrow-cone. Thus, we measure
the uniformity losses of untrained PLMs using in-
batch samples (equally 64 for 4 models). Interest-
ingly, we find that the initial uniformity losses of
RoBERTa based models (RoBERTa-base:-0.1095,
RoBERTa-large:-0.2503) are much smaller than
BERT based models (BERT-base : -1.3086, BERT-
large : -1.8705). We then visualize the represen-

tation spaces of RoBERTa models, which are not
included in the main paper, and find that they al-
ready look similar to cool-down setups (see Fig-
ure 1(b)) though those visualizations are limited
to 2d manifold representation space. Still uncer-
tain, but we believe this may be the reason for the
marginal performance improvement.

More experimental results, which are not in-
cluded in the main paper due to limited space, can
be found in the Appendix. These include the robust-
ness toward different random seeds experiments
(Appendix 3.3), evaluation on transfer tasks (Ap-
pendix D), and detailed results of the uniformity
and alignment (Appendix F).

Ethical Consideration

We use datasets and pre-trained models in hug-
gingface for only scholar purpose. Following the
literature, reported negative biases from training
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there are not any other ethical problems.
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A Dataset Details

Dataset train valid test
STS12 - - 3108
STS13 - - 1500
STS14 - - 3750
STS15 - - 3000
STS16 - - 1186
STS-B 5749 1500 1379

SICK-R 4500 500 4927

Table 5: Detailed configuration of 7 STS datasets.

Dataset train valid test
MR 10662 - -
CR 3775 - -

SUBJ 10000 - -
MPQA 10606 - -
SST-2 67349 872 1821
TREC 5452 - 500
MPRC 4076 - 1725

Table 6: Detailed configuration of 7 transfer datasets.

We report the statistics of the training, validation,
and test sets of the 7 STS evaluation tasks, as well
as the 7 transfer tasks which are utilized in Sec-
tion D: MR (Pang and Lee, 2005), CR (Hu and Liu,
2004), SUBJ (Pang and Lee, 2004), MPQA (Wiebe
et al., 2005), SST-2 (Socher et al., 2013), TREC
(Voorhees and Tice, 2000) and MRPC (Dolan and
Brockett, 2005). The detailed configuration of the
datasets for each evaluation scenario can be found
in Table 5 and Table 6, respectively. Following
the literature, we use test sets for Table 2 results
without using any additional validation sets.

B Detailed Implementation

Following the literature, we use the [CLS] token as
the sentence representation for training, and save
the best model checkpoint by using the validation
score on the development set of STS-B. We con-
duct all SimCSE experiments based on the original
paper’s configuration. We choose a learning rate
between [1e-5, 3e-5], batch size between [64, 512],
and temperature = 0.05. In the case of the initial
temperature and cool-down step ratio, we carry
out grid search of the initial temperature between
[0.06, 0.12], and step ratio between [0.01, 0.03] by
increasing each value by 0.01. We do not change

the original temperature value (τ=0.05, chosen by
SimCSE). Detailed settings of the hyperparameters
can be found in Table 7.

C Detailed Results of ArcConLoss
Experiments

In this section, we report detailed results of the Arc-
ConLoss experiments shown in Table 4 of the main
paper. As shown in Table 9, applying our tempera-
ture cool-down shows a performance improvement
that is comparable to the baseline, without any ad-
ditional pre-processing or loss function.
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Figure 4: Uniformity and alignment on BERT-large,
RoBERTa-base, and RoBERTa-large using temperature
cool-down.

D Transfer Tasks

We also evaluate 7 transfer tasks using the SentEval
toolkit. As we can see in Table 10, the results of the
transfer tasks show slightly lower or comparable
performance to the baseline. This is consistent
with the intuition that transfer tasks rarely target
sentence representation tasks (Gao et al., 2021).

E Toward the Possibility of Variant for
Temperature Cool-down

In addition to the two methods (TCC and TCS)
introduced in the main paper, there will be many
different ways to design variants of temperature
cool-down, similar to learning rate scheduling. For
instance, one of the most commonly used learn-
ing rate schedules is linear warm-up (Goyal et al.,
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TCC batch_size learning_rate temp (τ ) init_temp (τi) steps_ratio (rs)
BERTbase 64 3e-5 0.05 0.10 0.014
BERTlarge 64 1e-5 0.05 0.10 0.015
RoBERTabase 128 1e-5 0.05 0.07 0.013
RoBERTalarge 256 3e-5 0.05 0.06 0.013
TCS batch_size learning_rate temp (τ ) init_temp (τi) steps_ratio (rs)
BERTbase 64 3e-5 0.05 0.10 0.028
BERTlarge 64 1e-5 0.05 0.10 0.018
RoBERTabase 128 1e-5 0.05 0.07 0.014
RoBERTalarge 256 3e-5 0.05 0.07 0.020

Table 7: The hyperparameters corresponding to the best results of the STS tasks.

PLMs Method uniformity(↓) alignment(↓)
BERTbase SimCSE -2.101 0.2073

+ TCC -2.124 0.1934
+ TCS -2.112 0.1924

BERTlarge SimCSE -2.410 0.2493
+ TCC -2.586 0.2482
+ TCS -2.518 0.2457

RoBERTabase SimCSE -2.383 0.2413
+ TCC -2.317 0.2196
+ TCS -2.196 0.2087

RoBERTalarge SimCSE -2.868 0.2823
+ TCC -2.817 0.2645
+ TCS -2.903 0.2880

Table 8: Uniformity and alignment results. Both losses
are better as they become smaller.

2017). Following this straightforward mechanism,
we introduce a simple approach of linear tempera-
ture cool-down (called TCL) as below:

τTCL,t =

{
τi − τi−τ

rs·s · t, if t ∈ [1, rs · s)
τ. otherwise

(4)

We believe that there may be several other can-
didates that show effective performance.

F Additional Results of Uniformity and
Alignment

In addition to the results of Section 3.4, we plot the
uniformity and alignment of 3 other PLMs during
training. As shown in Figure 4, our temperature
cool-down methods improve the quality of the rep-
resentation spaces in terms of both metrics. We
also report the uniformity and alignment of the
model’s best checkpoints in Table 8.
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PLMs Method STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.
BERTbase ArcCSE w/o Triplet loss 71.76 82.77 76.81 83.56 78.87 79.36 71.16 77.76

+ TCC 72.31 83.87 76.76 83.16 79.54 79.97 71.82 78.20
+ TCS 72.26 83.46 76.48 83.18 79.46 80.07 71.73 78.09
ArcCSE ♡ 72.08 84.27 76.25 82.32 79.54 79.92 72.39 78.11

BERTlarge ArcCSE w/o Triplet loss 73.38 84.94 76.74 84.28 80.19 80.02 72.96 78.93
+ TCC 73.92 84.53 77.24 84.72 79.66 79.96 73.76 79.11
+ TCS 72.22 85.17 77.60 84.71 79.76 80.50 74.66 79.23
ArcCSE ♡ 73.17 86.19 77.90 84.97 79.43 80.45 73.50 79.37

Table 9: Performance of different unsupervised contrastive learning methods on the STS tasks (Spearman’s
correlation). Each bold number indicates the best performance within the PLMs. ♡: Results from Gao et al., 2021.

PLMs Method MR CR SUBJ MPQA SST TREC MPRC Avg.
BERTbase SimCSE 81.37 86.49 94.46 88.66 84.95 87.60 74.32 85.41

+ TCC 80.77 85.57 94.24 88.86 85.28 87.47 74.49 85.21
+ TCS 80.30 85.25 94.31 88.85 84.35 85.80 74.14 84.71

BERTlarge SimCSE 84.30 87.98 94.86 88.78 89.51 93.00 74.61 87.58
+ TCC 84.68 88.40 94.76 89.58 90.39 93.40 75.30 88.07
+ TCS 84.47 88.37 95.11 89.57 90.72 91.80 76.58 88.09

RoBERTabase SimCSE 81.75 86.97 93.43 87.28 86.99 84.40 75.01 85.12
+ TCC 82.09 87.42 93.15 88.07 87.10 85.20 75.42 85.49
+ TCS 81.20 86.94 92.96 87.36 87.04 85.40 75.19 85.16

RoBERTalarge SimCSE 83.17 88.40 94.08 88.57 87.53 91.20 72.23 86.45
+ TCC 81.85 87.47 93.74 88.54 86.66 90.80 73.51 86.08
+ TCS 82.19 88.11 93.42 88.18 86.99 91.20 71.42 85.93

Table 10: Performance of different unsupervised contrastive learning methods on the transfer tasks. Each bold
number and underlined number indicates the best and the second best performance within the PLMs, respectively.
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