
Findings of the Association for Computational Linguistics: EACL 2024, pages 500–512
March 17-22, 2024 c©2024 Association for Computational Linguistics

Learning to Compare Financial Reports for Financial Forecasting

Ross Koval1,3, Nicholas Andrews2, and Xifeng Yan1

1University of California, Santa Barbara
2Johns Hopkins University

3AJO Vista
rkoval@ucsb.edu

Abstract

Public companies in the US are required to pub-
lish annual reports that detail their recent finan-
cial performance, present the current state of
ongoing business operations, and discuss future
prospects. However, they typically contain over
25,000 words across all sections, large amounts
of industry and legal jargon, and a high percent-
age of boilerplate content that does not change
much year-to-year. These unique characteris-
tics present challenges for many generic pre-
trained language models because it is likely
that only a small percentage of the long report
reflects salient information that contains mean-
ingful signal about the future prospects of the
company. In this work, we curate a large-scale
dataset of paired financial reports and introduce
two novel, challenging tasks of predicting long-
horizon company risk and correlation that eval-
uate the ability of the model to recognize cross-
document relationships with complex, nuanced
signals. We explore and present a comprehen-
sive set of methods and experiments, and estab-
lish strong baselines designed to learn to iden-
tify subtle similarities and differences between
long documents. Furthermore, we demonstrate
that it is possible to predict company risk and
correlation solely from the text of their finan-
cial reports and further that modeling the cross-
document interactions at a fine-grained level
provides significant benefit. Finally, we probe
the best performing model through quantita-
tive and qualitative interpretability methods to
reveal some insight into the underlying task
signal.

1 Introduction

Investors are faced with the consumption of a myr-
iad of textual datasets relevant to financial markets,
spanning genres such as news, social media posts,
and financial reports. Public companies in the US
are required to publish annual reports detailing the
current operations of the firm, recent financial per-
formance, and discussing future prospects. How-

Annual Report - 2014 Annual Report - 2015

Our operations and facilities are
subject to extensive federal, state
and local laws and regulations
relating to the exploration for,
and the development, production
and transportation of, oil and
natural gas, and operating safety...

Our operations and facilities are
subject to extensive federal, state
and local laws and regulations
relating to the exploration for,
and the development, production
and transportation of, oil and
natural gas, and operating safety...

Results of Operations

Our oil and gas sales increased
$35.5 million (9%) in 2013 to
$420.3 million from $384.8
million in 2012. Oil sales in 2013
increased by $50.7 million (28%)
from 2012 while our natural gas
sales decreased by $15.2 million
(8%) from 2012. The increase in
oil sales was attributable to the
29% growth in oil production
offset by a 1% decrease in our
realized oil prices in 2013...

Depending upon future prices
and our production volumes,
our cash flows from our
operating activities may not
be sufficient to fund our capital
expenditures, and we may need
additional borrowings.
...If commodity prices remain
low, we may also recognize
further impairments of our
producing oil and gas properties
if the expected future cash flows
from these properties becomes
insufficient to recover their
carrying value, and we may
recognize additional impairments.

Results of Operations

Figure 1: Comparison of a sample of passages from
consecutive annual reports from the validation dataset
of the Risk Prediction task that highlights the salient
sentences that were added that potentially indicate an
increase in future company risk.

ever, these reports contain over 25,000 words in
length and large amounts of financial and legal jar-
gon. As noted in Cohen et al. (2020), this length
and linguistic complexity have increased signifi-
cantly over time as a result of increased govern-
ment regulations and business complexity, making
it difficult for investors to efficiently process the
salient information contained in these reports.

Despite theses challenging characteristics, fi-
nancial reports do contain meaningful informa-
tion about future company performance. For in-
stance, Cohen et al. (2020) show that large year-
over-year changes to the language of company re-
ports indicates a significant negative signal about
their future performance and can predict finan-
cial variables, such as earnings, profitability, and
bankruptcy. While their methods are shown to be
effective, they only use simple string similarity

500



measures to compare reports.
In a different application, given the detailed in-

formation about company business operations con-
tained in these reports, there is an opportunity to
identify relationships between companies that can
help predict their future market correlation. Pub-
lic companies are related to each other in vari-
ous forms and this relationship governs the co-
movement of their stock prices. Therefore, the
ability to predict that relationship in advance from
their reports is valuable to investment managers.
These relationships can take various forms, includ-
ing, having similar products, sharing technologies,
or being exposed to the same economic risk factors.
(Cohen and Frazzini, 2008; Hoberg and Phillips,
2016; Lee et al., 2019).

In this work, we explore these applications by
curating a dataset of paired financial reports and
introducing two novels tasks that exploit the cross-
document interaction between them to make long-
horizon financial predictions. We experiment with
a comprehensive set of end-to-end methods to
model the interaction between these long financial
documents. We find that it is possible to predict
stock risk and pairwise correlation solely from text
and that methods that allow for a more sensitive
and fine-grained interaction between them provide
significant benefit. In addition, we find that these
text-based models provide considerable value be-
yond standard financial variables.

We provide a simple yet effective method that
can compare arbitrarily long documents at a fine-
grained level and identify subtle similarities and
differences between them. We train this model end-
to-end to allow the model to learn directly from
the future financial outcomes associated with each
pair of reports, so it can learn to identify subtle,
task-specific similarities and differences that are
most predictive.

In summary, we make the following contribu-
tions:

1. We curate a new dataset of paired company fi-
nancial reports, containing complex, financial
language and cross-document relationships, that
we anticipate to be of broad interest to the com-
munity (§4, Appendix A).

2. We propose two novel and challenging financial
prediction tasks, including forecasting future
long-horizon stock risk and pairwise correla-
tion, that both require the ability to recognize
subtle similarities and differences between long

financial documents (§3). To the best of our
knowledge, this is the first work to consider
and effectively model the cross-document in-
teractions between paired reports for financial
prediction in an end-to-end manner.

3. We systematically investigate and experiment
with a comprehensive set of methods for these
tasks, including tailored document-level and
sentence-level Transformers that achieve strong
performance, establishing the state-of-the-art
(§5).

4. We demonstrate that while the tasks are chal-
lenging and many simple methods perform
poorly, it possible to predict company risk and
correlation with performance well-above ran-
dom chance from solely the text of their finan-
cial reports by modeling the cross-document
relationship at a fine-grained level with tailored
pretraining objectives (Table 2).

5. We probe the best performing model through
quantitative and qualitative interpretability
methods to reveal insight into the underlying
task signal (§7).

Broader Impact We hope this work will inspire
future research in long document similarity and
cross-document modeling by providing a dataset
and two challenging tasks, particularly as the con-
text size for LLMs continues to grow. For re-
producibility and to advance the study of these
research areas, we release the dataset and sam-
ple code at: https://github.com/rosskoval/
learn_to_compare_fr/.

2 Related Work

In the broader NLP literature, there has been great
interest recently in extending the context length
of Transformer-based language models to be able
to efficiently process long documents (Dai et al.,
2019; Beltagy et al., 2020; Zaheer et al., 2020;
Kitaev et al., 2020; Guo et al., 2022). These meth-
ods attempt to approximate full self-attention with
more efficient computation and have been shown
to excel at long document understanding tasks.

In a related area, long document similarity in-
volves identifying the relationship between two
long documents. While semantic similarity has
been of interest for a while, most work has focused
on short text at the sentence or paragraph-level (Cer
et al., 2017). However, semantic similarity at the
document-level is more challenging because long
documents often contain content spanning multiple
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topics and relationships between them may exist
at different levels. Despite the difficulty, the prob-
lem has varied applications, including citation rec-
ommendation, plagiarism detection, coreference
resolution, and multi-document summarization. In
Zhou et al. (2020), the authors propose a cross-
document attention component into HAN (Yang
et al., 2016) to enable the comparison between
documents at different levels. Further, in Caciu-
laru et al. (2021), the authors consider a similar
setting and propose a novel pretraining approach
for Cross-Document Language Modeling (CDLM)
with a dynamic attention mechanism that allows
the model to learn cross-document relationships.
They demonstrate that their model has a strong
understanding of the relationship between docu-
ments and delivers SOTA performance on a variety
of multi-document tasks. Other methods have at-
tempted to perform an alignment between related
documents at the sentence-level for retrieval appli-
cations, but typically pretrain encoders in a self-
supervised manner, without finetuning them end-
to-end on the target task. (Ginzburg et al., 2021;
Di Liello et al., 2022a,b).

2.1 Financial Prediction

In addition to Cohen et al. (2020) which inspired
this work, there have been other works that examine
using single firm reports for financial forecasting
tasks, but primarily in isolation without any com-
parison to other related documents. For instance,
Kogan et al. (2009) extract textual features from
the most recent financial report to predict stock
volatility, while Koval et al. (2023) directly learn to
predict companies’ future earnings surprise from
the text of their conference call transcripts. Other
work in this area has combined textual reports with
multimodal data, such as audio, tabular, and finan-
cial features to enhance predictions (Sawhney et al.,
2020; Feng et al., 2021; Alanis et al., 2022; Mathur
et al., 2022).

3 Problem Statement

We propose two novel tasks designed to evaluate
the ability to recognize subtle similarities and dif-
ferences between long financial documents that
are predictive of long-horizon financial outcomes.
It is important to note that since the reports oc-
cur at an annual frequency, we choose target vari-
ables at the 1-year horizon, which produces a lot
of uncertainty between the forecast and outcome

date, and makes these long-horizon prediction tasks
particularly challenging. We also believe that the
long-horizon requires the ability to capture more
intricate, subtle signals than similar short-horizon
tasks. In addition, this choice is consistent with
prior work (Kogan et al., 2009; Feng et al., 2021;
Alanis et al., 2022) and the premise from Cohen
et al. (2020) that the text-based signal contained in
these reports is related to business risk that poten-
tially can take up to multiple quarters to materialize
on company performance.

3.1 Risk Prediction

Risk prediction is a valuable tool for investment
managers when constructing a portfolio of financial
assets. While there are many measures of financial
risk, Maximum Drawdown (MDD) has become an
important one, which measures the most significant
percentage decline in the value of an asset over a
given period of time (Magdon-Ismail and Atiya,
2004; Chekhlov et al., 2004; Gray and Vogel, 2013;
Nystrup et al., 2019). Therefore, we choose this
as a target variable and use consecutive financial
reports as task inputs to learn to identify subtle
yet important signals of company risk. Given the
Management Discussion and Analysis (MDA) sec-
tion of the current financial report Di,t for firm i at
year t, we wish to learn to compare and contrast it
with the previous report Di,t−1 to predict whether
the company will experience an abnormal decline
(MDD) over the next year. While there may signal
in only considering the current report, we believe it
can be considerably enhanced when contextualized
with the previous report to better capture the salient
risks factors facing the company. Given daily price
data Pi,t for company i at time t, we compute the
MDD over the next year T as the magnitude of the
largest price decline from peak to trough (Drenovak
et al., 2022):

MDDi,t = |mint1∈{t,T}
Pi,t1

maxt0∈{0,t1} Pi,t0
− 1|

For each year, we label companies with the 20%
largest drawdowns during each year in the sample
as High Risk (y = 1) and those in the bottom 80%
as Normal Risk (y = 0):

yi,t =

{
0, Percentile(MDDi,t) < 0.80

1, Percentile(MDDi,t) ≥ 0.80

We carefully choose this task formulation and tar-
get variable for a few different reasons. First, it
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is common for investment managers and the finan-
cial literature to segment portfolios into quintiles,
approximating a live trading setting in which in-
vestment managers are faced with the decision to
exclude certain high-risk stocks from their portfolio
at each decision point. Therefore, it has the poten-
tial to help them reduce portfolio risk. Second, we
carefully selected Maximum Drawdown (MDD)
as our target variable because of its ability to cap-
ture the effect of extreme events that occur anytime
within the time horizon, since it computes the bot-
tom of market prices attained over the horizon, and
use the stock’s MDD relative to other stocks within
the same time period to indicate High Risk stocks
to remove the impact of broad market movements
and focus on stock-specific events.

Since the dataset is imbalanced by design and
High Risk is a clear positive minority class, we
use the F1-score as our primary measure of per-
formance evaluation. We believe it accurately re-
flects the trade-off for an investment manager who
is faced with the decision to include or exclude
a stock in their portfolio because misclassifying
a High Risk stock as Normal Risk is more costly
than misclassifying a Normal Risk stock as High
Risk.

3.2 Correlation Prediction
In addition to risk, the correlation matrix of stock
returns is an equally important measure for the
risk management practices of investment managers
(Embrechts et al., 2002; Andersen et al., 2007).
Therefore, we also propose the task to predict the
future correlation between companies’ stock prices
by learning to identify similarities and differences
between their financial reports. We introduce this
task to evaluate the ability of the model to capture
various forms of relationships between companies.

For computational purposes, we take a subset
of the 100 largest companies in our dataset and
compute pairwise relationships to generate 4,950
company-company pairs per year. Further, we re-
move company pairs in which both companies be-
long to the same industry classification to challenge
the model to identify more subtle connections that
extend beyond industry keywords, leaving us with
3,836 pairs per year. We measure the relationship
as the correlation between their daily stock returns
over the next year from their most recent reports.
To do so, we compute daily stock returns ri,t from
daily prices Pi,t for company i at time t and the cor-
relation between their stock returns over the next

year from t to T :

corr(ri,t, rj,t) =
∑T

t=1
(ri,t−r̄i)(rj,t−r̄j)√
(ri,t−r̄i)2(rj,t−r̄j)2

Then, we normalize them to be N(0, 1) within
each year to account for the nonstationarity of mar-
ket correlations over time:

yi,j,t =
corr(ri,t,rj,t)−µt

σt

We use the Spearman Rank Correlation between
the model predictions and observed correlations
in each year to evaluate model performance. We
use these metrics at the year-level rather than ag-
gregated Mean-Squared Error because the relative
ranking of the predictions within a given year is
more important than their absolute levels given the
non-stationarity of market correlations.

4 Data

4.1 Data Acquisition

To curate the dataset, we download preprocessed
HTML files of company filings from the Notre
Dame Software Repository for Accounting and
Finance (Loughran and McDonald, 2011).

We focus our analysis on Section 7A: Manage-
ment Discussion and Analysis (MDA) section from
annual reports of US-based public companies. Ac-
cording to the SEC, this section is intended to pro-
vide management’s perspective on the business re-
sults of the past year and their future prospects for
the upcoming year, including information about
key business risks. While there are other sections,
we choose to focus on the MDA because it reflects a
direct communication from company management
to shareholders. We use a variety of regular expres-
sions to extract the MDA section and filter the re-
sulting section text for quality in a refined iterative
process. We source stock price data from FactSet
Prices & Returns API. Please see Appendix A for
further details on the data curation process.

4.2 Data Statistics and Task Formulation

To prevent any form of lookahead bias, we tem-
porally partition the dataset according to the re-
port publication date into training (Jan 2010 – Dec
2014), validation (Jan 2015 – Dec 2015), and test
(Jan 2016 – Dec 2019) splits. We do not use ex-
panding sample windows for training/validation
due to lack of computational resources, but we
would expect doing so would improve results
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across model types and we validate this hypoth-
esis with the best performing model.

We present an overview of the dataset with sum-
mary statistics in Table 1, including document
length and linguistic complexity, measured with
Gunning FOG Index (Bushee et al., 2018). We con-
firm that the MDA section of these reports is be-
coming longer and more complex over time, likely
making it increasingly difficult for investors to pro-
cess the information contained in them.

Train Validation Test

Start Date Jan-2010 Jan-2015 Jan-2016

End Date Dec-2014 Dec-2015 Dec-2019

# Samples 8,123 1,617 7,579

# Firms 2,574 1,572 2,170

# Words 13,092 13,455 14,354

# Sents 403 417 426

Linguistic Complexity 10.76 10.98 11.38

Table 1: Summary Statistics of each MDA section in
the Financial Report on each sample split.

5 Methods

We explore a comprehensive set of baselines on
these novel tasks that range from simple bag-of-
words based methods to well-tailored state-of-the-
art document-level and sentence-level Transformer-
based models, including both generic and domain-
adapted versions of each.

5.1 Simple Baselines
First, we establish a variety of simple baselines that
indicate the difficulty of the task. BOW + Sim +
Linear is solely based on the similarity between
the reports using TF-IDF weighted, bag-of-words
features while BoW + Linear concatenates their
features together and passes them to a linear clas-
sifier. We also include a pretrained financial sen-
timent classifier FinBERT-Sent + Linear (Araci,
2019) applied at the sentence-level (Alanis et al.,
2022):

FinBERT-Sent = #PositiveSentences - #NegativeSentences
#TotalSentences

The results of this baseline clearly distinguish the
Risk task from traditional sentiment analysis.

Additionally, given that the positive auto-
correlation of risk is well documented in the fi-
nancial literature (Kambouroudis et al., 2016), we
provide a simple autoregressive time-series base-
line AR(1) + Linear that fits a linear classifier on

the 1-year trailing value. While the resulting perfor-
mance is below that of the best text-based models,
it is important to note that the signal contained in
the text is largely distinct from and complemen-
tary to it (corr < 0.20). Finally, we also include
a purely company financial-based linear classifier
FinVar + Linear with 10 common accounting and
stock-price based financial variables (e.g. valua-
tion, profitability, volatility, price momentum, etc.)
to serve as a traditional financial baseline (Alanis
et al., 2022). Please see A for more details on the
variables used.

5.2 Document-Level Transformers

We consider two approaches to predicting the re-
lationship between two long documents at the
document-level, including the Bi-Encoder (BE) and
the Cross-Encoder (CE).

5.2.1 Document Encoder
First, we select our primary document encoder to
be the Longformer-base because it has been shown
to excel at document matching (Caciularu et al.,
2021). The model applies a combination of local
and global attention to efficiently approximate the
full attention matrix.

For the Risk Prediction task, we provide single
document baselines that only make use of the cur-
rent report Dt (Longformer-Curr) and previous
report Dt−1 (Longformer-Prev), respectively, as
well as one that performs a soft "diff" operation
between them, only extracting those not contained
in the previous report (Longformer-Diff), to fur-
ther justify the use of more sophisticated cross-
document methods. We find that several variations
of the "diff"-based approach perform worse than
just using the current report, which we conjecture
is for two reasons. First, the changes are subtle and
difficult to identify using manual heuristics. Sec-
ond, the salient sentences require the surrounding
context to effectively contextualize the meaning.

5.2.2 Cross-Encoder (CE)
We also experiment with the Cross-Encoder ap-
proach (Longformer-CDLM-CE) of concatenat-
ing the document text together and use the CDLM-
pretrained Longformer model from Caciularu et al.
(2021). This approach implicitly interacts the to-
kens between the documents via the local/global
attention mechanism, but the granularity of the
interaction may be limited because attention is lim-
ited to a local window and special global tokens.
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We follow the CDLM-framework and allocate
global attention to the first [CLS] token and special
document separator tokens <doc-s> and </doc-s>.
We extend the maximum length of the model to
8192 tokens by copying over the position embed-
dings, and then concatenating the first 4096 tokens
of each document together.

CE(Di, Dj) = g([Di;Dj ])

5.2.3 Bi-Encoder (BE), Document-Level
Second, we experiment with encoding each docu-
ment independently and then passing them through
a 1-hidden layer MLP for interaction via concatena-
tion of the document embeddings, known as a Bi-
Encoder approach (Longformer-BE). Consider
the document encoder g and related documents
Di and Dj that are encoded as g(Di) = Ei and
g(Dj) = Ej , respectively:

BE(Ei, Ej) = MLP([Ei;Ej ; |Ei − Ej |)

This interaction function was inspired by Reimers
and Gurevych (2019) for sentence-level semantic
similarity and we continue to include the absolute
value difference term to impose the inductive bias
that encourages the model to compare and contrast
documents.

5.3 Sentence-Level Transformers

We also experiment with methods that operate on
the sentence-level. Since the related documents
have a different number of sentences in varying
order, we explore a simple yet effective method to
perform a soft-alignment between them.

5.3.1 Sentence Encoder
First, we divide each document into sentences and
encode each sentence si ∈ Si and sj ∈ Sj , using
a pretrained sentence encoder f to get sentence
embeddings ei ∈ Ej and ej ∈ Ej , in each report,
respectively. This model produces contextualized
embeddings of all tokens and we extract the last
hidden state of the first [CLS] token as the sentence
representation (Devlin et al., 2019).

Since the task requires the detection of subtle
similarities and differences between topically sim-
ilar text, it is important to have a sentence en-
coder that is well-attuned to semantic similarity
and the financial domain. Therefore, we explore
both pretrained encoders, such as SBERT (Reimers
and Gurevych, 2019) and FinBERT (Huang et al.,
2022), as well as the DiffCSE (Chuang et al., 2022)

framework to pretrain a sentence encoder on our
in-domain corpus. DiffCSE improves upon the
SimCSE (Gao et al., 2021) framework, which uses
stochastic dropout-based augmentations as positive
pairs and in-batch negatives with contrastive learn-
ing, by incorporating an additional Replaced Token
Detection (RTD) loss that conditions upon the orig-
inal sentence representation to predict the location
of randomly replaced tokens that were generated by
a fixed masked language model. This additional ob-
jective has been shown to make the encoder more
sensitive to small yet important differences in sen-
tences.

5.3.2 Cross-Document Sentence Alignment
(CDSA)

The IR literature suggests that methods with token-
level interactions provide a more fine-grained and
powerful approach for query-document similarity
tasks than those that operate at the document-level
(Khattab and Zaharia, 2020; Zhou et al., 2020).
With this in mind, we explore a simple yet effective
extension of this approach to align and compare
long financial reports at the sentence-level, which
we denote as Cross-Document Sentence Alignment
(CDSA).

To do so, we employ a cross-attention mecha-
nism between the sentence embeddings of both
documents to perform a soft-alignment, inspired by
encoder-decoder attention (Bahdanau et al., 2014;
Vaswani et al., 2017), which operates at a token-
level. This mechanism creates a unique and corre-
sponding context vector for each sentence in the
focal report by attention weighting all sentences
in the related report, and represents the portion of
information of that sentence that is contained in the
other report. We apply this in both directions, for
each sentence embedding ei ∈ Ei across sentences
embeddings Ej , and for each sentence ej ∈ Ej

across sentence embeddings Ei:

ci =
∑

ej∈Ej

αi,jej

cj =
∑

ei∈Ei

αj,iei

where the attention weight α is given by softmax,
dot-product attention (Vaswani et al., 2017).

To adapt the document-level Bi-Encoder ap-
proach BE to the sentence-level, we can compare
each sentence embedding ei, ej with the corre-
sponding soft-aligned context vector ci, cj from
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CDSA using a similar interaction function:

BES(ei, ci) = MLP([ei; ci; |ei − ci|])
Then, we conduct simple mean pooling over all

sentence-level MLP outputs:

m(Ei) =
1

|Ei|
∑

ei∈Ei

BES(ei, ci);

m(Ej) =
1

|Ej |
∑

ej∈Ej

BES(ej , cj)

Finally, we concatenate the pooled outputs from
both reports m(Ei) and m(Ej) and pass them
through a classifier for prediction:

ŷ = σ([m(Ei);m(Ej)])

This mechanism allows for the detection of similar-
ities and differences across each sentence in both
reports.

5.4 Domain Adaptive Pretraining (DAPT)
Domain adaptation is important to the success
of using pretrained language models for out-of-
distribution text (Han and Eisenstein, 2019; Guru-
rangan et al., 2020). Since we believe our tasks
require a nuanced understanding of financial lan-
guage, we conduct domain-adaptive pretraining
(DAPT) for all of the baseline models. To do so,
we aggregate a collection of 30K paired annual re-
ports published between 2000 and 2009, prior to
the start of the training data to prevent any form of
data leakage, and create an in-domain pretraining
corpus for all forms of DAPT in this work for fair
comparison across model types.

5.4.1 Document-Level
For the document-level models with a Longformer
backbone, we conduct DAPT across the following
different pretraining objectives: long context MLM
(Beltagy et al., 2020) denoted as Longformer-BE
+ DAPT w/ MLM, CDLM (Caciularu et al., 2021)
with pairs of consecutive reports (Longformer-CE
+ DAPT w/ CDLM); and follow the same pretrain-
ing settings and hyperparameters as Beltagy et al.
(2020) and Caciularu et al. (2021), respectively.

We also adapt the DiffCSE pretraining frame-
work designed for short-context models, to the
Longformer backbone model (Longformer-CE +
DAPT w/ DiffCSE) for more sensitive document
representations by prepending and assigning global
attention to the original document embedding in
the RTD objective to encourage the model to use
that information to predict the replaced tokens.

5.4.2 Sentence-Level
We also use this corpus for pretraining a more
domain-adapted and sensitive sentence encoder
from the RoBERTa checkpoint using the DiffCSE
framework (CDSA-FinDiffCSE) but limit the size
to 10M sentences for computational purposes, and
use the same pretraining settings and hyperparam-
eters in Chuang et al. (2022). We expect this pre-
training step to be able to better differentiate top-
ically similar yet semantically different financial
language.

Finally, since the validation data (2015) and
last year of the test data (2019) are 4 years apart,
we experiment with an expanding window train-
ing/validation approach (CDSA-FinDiffCSE + Ex-
panding) to allow the model to access more recent
data and simulate a production trading environment.
However, we only do this for the best performing
model because it is not computationally feasible to
do for all models. We also include a simple multi-
modal approach (CDSA-FinDiffCSE + AR(1))
that fits a linear combination between the predic-
tions of the CDSA-FinDiffCSE and AR(1) models.
Please see Appendix A for further details.

5.4.3 Implementation Details
Finally, we train all of these baseline models on
each financial prediction task with binary cross-
entropy loss and mean-squared error for the Risk
and Correlation prediction tasks, respectively. For
fair comparison across model types, we only con-
sider the first 4096 tokens in each report; see Ap-
pendix A for further implementation details.

6 Experimental Results and Analysis

The results in Table 2 highlight the challenging
nature of both tasks, but we find broad consistency
in the relative performance results across them,
with CDSA-FinDiffCSE performing the best in
both with statistical significance, and improving
considerably from expanding training data. This
result provides evidence that while the tasks are
distinct, they both require the ability to recognize
subtle similarities and differences between long
documents at a fine-grained level, and this ability
is directly correlated with the relative ranking of
model performance.

In general, we find that the sentence-level
methods generally perform better than the
document-level methods, which we conjecture
is because by they allow for a more fine-grained
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Risk Prediction Correlation Prediction
Model # Params F12016 F12017 F12018 F12019 Avg ρ2016 ρ2017 ρ2018 ρ2019 Avg

Minority Class All-1 0 0.33 0.33 0.33 0.33 0.33 - - - - -
BoW + Sim + Linear 2 0.36 0.35 0.35 0.34 0.35 0.10 0.16 0.07 0.06 0.10

BoW + Linear 100K 0.41 0.39 0.38 0.37 0.38 0.14 0.20 0.19 0.19 0.18
FinBERT-Sent + Linear 2 0.38 0.38 0.38 0.38 0.38 - - - - -

AR(1) + Linear 2 0.42 0.40 0.44 0.40 0.42 0.25 0.25 0.25 0.26 0.25
FinVar + Linear 11 0.45 0.43 0.48 0.45 0.45 - - - - -

Longformer-Prev 152M 0.42 0.43 0.40 0.35 0.40 - - - - -
Longformer-Curr 152M 0.48 0.47 0.47 0.45 0.47 - - - - -
Longformer-Diff 152M 0.44 0.43 0.43 0.39 0.43 - - - - -

Longformer-BE 152M 0.48 0.47 0.47 0.44 0.47 0.11 0.24 0.19 0.08 0.15
Longformer-CDLM-CE 152M 0.51 0.48 0.50 0.44 0.48 0.12 0.26 0.20 0.13 0.18

Longformer-BE + DAPT w/ MLM 152M 0.49 0.45 0.49 0.45 0.47 0.16 0.25 0.28 0.24 0.23
Longformer-BE + DAPT w/ DiffCSE 152M 0.52 0.48 0.49 0.46 0.49 0.26 0.34 0.29 0.24 0.28**

Longformer-CE + DAPT w/ CDLM 152M 0.53 0.49 0.50 0.46 0.50 0.22 0.30 0.31 0.24 0.27

CDSA-RoBERTa 128M 0.51 0.48 0.48 0.42 0.47 0.27 0.24 0.24 0.19 0.24
CDSA-SBERT 115M 0.54 0.52 0.51 0.44 0.50 0.28 0.31 0.27 0.18 0.26
CDSA-DiffCSE 128M 0.51 0.52 0.52 0.47 0.51 0.28 0.33 0.28 0.19 0.27

CDSA-FinBERT 128M 0.53 0.51 0.53 0.48 0.51* 0.30 0.32 0.25 0.17 0.26

CDSA-FinDiffCSE 128M 0.55 0.54 0.52 0.51 0.53* 0.30 0.33 0.32 0.27 0.31**

CDSA-FinDiffCSE + AR(1) 128M 0.58 0.56 0.57 0.53 0.56 0.37 0.45 0.46 0.33 0.40

CDSA-FinDiffCSE + Expanding 128M 0.55 0.55 0.59 0.57 0.56 0.30 0.40 0.36 0.31 0.34

Table 2: Main Results - Model performance on the test set of the Risk and Correlation Prediction task. All
performance numbers are reported in decimal and the top 2 models within each task are bolded. "-BE" indicates
Bi-Encoder while "-CE" indicates Cross-Encoder document-level models as defined in §5. "+ Expanding" indicates
that expanding training/validation sample windows was used. "+ AR(1)" indicates that a linear combination of the
predictions was fit between the CDSA-FinDiffCSE and AR(1) model. *, ** indicates the performance of the best
model is statistically better (p < 0.01) than that of the second best model according the Wilcoxon Signed-Rank Test.

interaction between the document sentences before
any document-level pooling. We find this effect to
be more pronounced on the Correlation Prediction
task, especially when the Longformer base model
is not pretrained for semantic similarity. This sug-
gests that despite the extensive, language modeling-
based pretraining process of the Longformer model,
it does not produce strong document embeddings
without finetuning.

However, we find that our long context adap-
tation of the DiffCSE pretraining framework for
the Longformer is well-suited for generating fine-
grained document embeddings, suggesting that
this is a promising direction for future work.

Relatedly, we find that pretrained models not
adapted to the financial domain or pretrained
with semantic similarity objectives struggle to
learn the subtle task signals. However, we ob-
serve a significant improvement across most mod-
els after DAPT, suggesting that the task requires
a nuanced understanding of financial language.

For both tasks, we find that a simple multi-modal
model CDSA-FinDiffCSE + AR(1) improves per-
formance, particularly for the Correlation Predic-
tion task which exhibits stronger autocorrelation.

We conjecture their complementary nature is partly
due to the fact that historical market patterns cap-
tures the persistence of past behavior while the text-
based models identify the catalyst that causes novel
behavior, suggesting the text-based methods could
serve as a valuable tool to augment traditional risk
management practices. However, we leave it to
future work to explore more sophisticated methods
to incorporate tabular data into text-based models.

7 Model Interpretability and Analysis

7.1 LM Sensitivity Analysis

To further understand model behavior on the Risk
Prediction task, we perform a simple interpretabil-
ity test using the LM financial dictionary (Loughran
and McDonald, 2011) and the predictions of the
best performing model (CDSA-FinDiffCSE). We
provide an overview of the summary statistics of
the dictionary and results in Table 3. To do so,
we extract the model predicted probabilities, and
regress them onto the changes in the proportion of
LM dictionary words between the current and pre-
vious report to understand their linear relationship.

In Table 3, we observe that the model’s predic-
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Category #
words

%
words

%
sentences coeff p-

value

∆ Positive 347 0.55 13.59 -4.06 0.04
∆ Negative 2345 1.32 24.92 4.12 0.04
∆ Uncertain 297 1.36 30.34 4.56 0.13
∆ Litigious 903 0.59 13.10 1.05 0.18
∆ Constraining 184 0.57 14.23 6.12 0.05
∆ Strong Modal 19 0.23 6.53 11.46 0.11
∆ Weak Modal 27 0.59 15.20 0.58 0.91

Table 3: Linear Regression of the model predictions
onto the YoY changes in LM financial sentiment vari-
ables.

tions for High Risk are negatively associated with
increases in positive financial sentiment, and pos-
itively associated with increases in negative, con-
straining, and litigious financial sentiment. While
some variables are statistically significant and the
results are economically intuitive, the linear model
has an adjusted R2 of just 3.4%, indicating that the
trained model is capturing more powerful features
than only simple changes in LM sentiment. We
also note the positive correlation with increases in
strong modal words is consistent with Loughran
and Mcdonald (2011), who find that firms with
higher proportions of strong modal words in their
quarterly reports are more likely to subsequently
report material weakness in their accounting con-
trols, which is likely a strong signal for increases
in the likelihood of future High Risk behavior.

7.2 Case Study and Qualitative Analysis

We conduct a case study of the reports of Comstock
Resources Inc, referenced (CRK) in Figure 1. We
find that the report scores highly as High Risk by
the best performing CDSA model and correctly
identifies the salient risky sentences, as measured
via the largest L2 norms in the |si−ci| term, which
we highlighted in the exhibit. As shown in Figure 2,
the company stock price experienced a precipitous
drawdown of more than 100% in the 6 months
following the release of this report. We find that
the model was able to detect subtle yet important
changes in the text that predicted a large drawdown
months before it occurred.

8 Conclusion

We curate a large-scale corpus of paired an-
nual financial reports and introduce two novel
benchmarks that require modeling complex, cross-
document interactions between long documents.
We methodically investigate a comprehensive set
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Figure 2: Stock Price of CRK following the publication
of the 2015 Annual Report that was identified by the
best performing model as High Risk based off changes
from the 2014 Annual Report.

of methods that are well-attuned to the task, estab-
lishing the state of the art. Through analysis of
the experimental results and use of interpretabil-
ity methods, we reveal insights into the underlying
task signals. We hope our contributions inspire
further research in this important area.

Limitations

Our experiments demonstrate that it is possible to
analyze and compare the financial reports of pub-
lic companies to predict future company risk and
correlation with performance that is well above
random chance. However, we acknowledge that
the Risk Prediction task is formulated as a clas-
sification setting so the results do not necessarily
directly translate to a live trading setting and that
the absolute values of the performance numbers in
the Correlation Prediction task are relatively low
so we leave it to future work to assess their utility
in real-world portfolio management.

Ethics Statement

We acknowledge that our 10K Annual Financial
Report dataset contains English reports from the
largest US-based companies so it is possible that
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tional companies and financial reports written in
other languages in the future.
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A Appendix

A.1 Data Curation
To extract the MDA section from the HTML files,
we begin by searching for strings that begin with
"Item 7: Management Discussion and Analysis"
and conclude with "Item 7A: Quantitative and Qual-
itative Disclosures", as well as other variations of
these patterns in a refined and iterative process to
achieve the best coverage. This process required
an extensive amount of text processing that was
required to extract the relevant sections required
many different regular expressions, extensive trial-
and-error, and a significant amount of manual qual-
ity filtering. We next pair reports for companies
based on their fiscal calendar and reporting dates,
allowing for delays and differences in publication
dates. Finally, we filter the section text for validity
and quality, such as ensuring each text has at least
500 words. We also choose focus on annual rather
than quarterly reports because their formatting is
more standardized and consistent.

A.2 Text-Based Baseline Models
We use Scikit-learn develop the BoW models. We
apply the following text preprocessing steps to cre-
ate input features: remove stop words and rare
words; create both unigrams and bigrams; and ap-
ply Term Frequency-Inverse Document Frequency
weighting (TF-IDF; Salton and Buckley, 1988; Wu
et al., 2008).

We develop the neural models in PyTorch
and source pretrained checkpoints from Hug-
gingFace. We perform several variations of the
Longformer-Diff model over different ways to
measure sentence-sentence similarity, only report-
ing the configuration with the best result on the
validation set in Main Results for brevity, in-
cluding Jaccard Similarity and Cosine Similar-
ity between SBERT pretrained sentence embed-
dings. We also vary the cutoff threshold over
{0.10, 0.25, 0.50, 0.75, 0.90} to define a sentence
in the current report that is sufficiently different
from those in the previous report.

We use an Expanding training/validation win-
dow for the best performing model (CDSA-
FinDiffCSE + Expanding) to simulate a live trading
setting in which we do walk-forward prediction by
expanding the training and validation set by 1-year
as we predict on the next year of the test set. For
instance, when we make predictions on the test
set for 2018, we use training data from 2010-2016
and 2017 as validation data. We only due this for
the best performing model to provide a proof-of-
concept because it is too computationally expensive
to do for all models.

A.2.1 Financial-Based Baseline Model

We select 10 commonly used market price and
accounting-based financial variables available at
the time of the report from the literature (Alanis
et al., 2022), including dividend yield, valuation,
growth, profitability, medium-term price momen-
tum, short-term price reversal, volatility, leverage,
liquidity, and size. This baseline is not intended
to be comprehensive in including all possible rel-
evant financial variables to the prediction task but
rather to serve as a reasonable baseline approxi-
mating common risk factor models employed in
the financial industry against which to reference
and compare the value of text-based models. There
may be other relevant financial variables such as
those source from the options or corporate credit
market to which we do not have access and is out
of the scope of this text-based focused work.

A.3 Training Details and Hyperparamter
Tuning

All neural network-based experiments are per-
formned on a single Tesla A100 GPU with 40GB
in memory and use AdamW to optimize all parame-
ters. We tune the hypeparamters with a grid search
over learning rates ∈ {3e − 5, 5e − 5, 7e − 5},
weight decay ∈ {1e − 3, 1e − 2} and batch size
∈ {32, 64}, based off validation set performance.
We train all models for 10 epochs and select the
best checkpoint based off validation set perfor-
mance for test evaluation. For computational con-
straints, we use mixed precision training and gra-
dient checkpointing to satisfy GPU memory con-
straints. It takes approximately 30 minutes per
epoch of supervised finetuning for the sentence-
level models and 60 minutes per epoch for the
document-encoder models.
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A.4 DAPT Pretraining Details
We conduct the DAPT process for the document-
level, Longformer backbone models for a maxi-
mum of 25K training steps or until the loss on
the validation set increases, using the same hyper-
parameter configuration and settings as Caciularu
et al. (2021). This pretraining process takes mul-
tiple days of run time for each framework and in-
dicates the difficulty of pretraining these Efficient
Transformers models on domain relevant text.

We conduct the DAPT process for the sentence
encoder with the DiffCSE framework for a maxi-
mum of 100K training steps or until validation loss
increases. For the Longformer DAPT w/ Diffcse
model, we use Longformer base as the fixed gener-
ator (masked language model) model because there
are no widely accepted distilled or smaller versions.
For both sentence and document encoders, we tune
the RTD loss weight in the DiffCSE objective over
{0.01, 0.05, 0.10, 0.50} according to validation set
performance. Please see Chuang et al. (2022) for
more details on the framework.
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