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Abstract

Tactics, Techniques and Procedures (TTPs) rep-
resent sophisticated attack patterns in the cy-
bersecurity domain, described encyclopedically
in textual knowledge bases. Identifying TTPs
in cybersecurity writing, often called TTP map-
ping, is an important and challenging task. Con-
ventional learning approaches often target the
problem in the classical multi-class or multi-
label classification setting. This setting hinders
the learning ability of the model due to a large
number of classes (i.e., TTPs), the inevitable
skewness of the label distribution and the com-
plex hierarchical structure of the label space.
We formulate the problem in a different learn-
ing paradigm, where the assignment of a text
to a TTP label is decided by the direct seman-
tic similarity between the two, thus reducing
the complexity of competing solely over the
large labeling space. To that end, we propose a
neural matching architecture with an effective
sampling-based learn-to-compare mechanism,
facilitating the learning process of the matching
model despite constrained resources.

1 Introduction and Background

Cyber Threat Intelligence (CTI), an essential pillar
of cybersecurity, involves collecting and analyzing
information on cyber threats, including threat ac-
tors, their campaigns, and malware, helping timely
threat detection and defense efforts. Textual threat
reports or blogs are considered a important source
of CTI, where security vendors diligently inves-
tigate and promptly detail intricate attacks. A
key sub-task in extracting CTI from these textual
sources involves the identification of Tactics, Tech-
niques, and Procedures (TTP) of the threat actors,
i.e. comprehending descriptions of low-level, com-
plex threat actions and connecting them to stan-
dardized attack patterns. One of the popular stan-
dard knowledge frameworks widely adopted in the
CTI community is MITRE ATT&CK (Storm et al.,
2020). Within this framework, a technique repre-

[...] We witnessed that the botnet was spread via mass
phishing, using a VB−scripted Excel attachment to
download the second stage from xx.warez22.info. The same
domain was used for C&C via HTTP. The botnet
distributed a file encryption module we named VBenc. [...]

Figure 1: A fictional attack described in typical cyberse-
curity threat report writing style.

sents a specific method used to achieve an objective,
with its corresponding tactics and sub-techniques
covering broader strategies and variations. Fig. 1
illustrates an example of a text in a threat report,
which indicates two attack patterns, among others,
i.e., (1) the use of a malicious email attachment to
take control of a victim’s system (T1566 1), and (2)
encrypting data on the victim’s system, presumably
for ransom demands (T1486 2).

As of 2024, there are over 600 techniques,
together with 14 high-level tactics described in
MITRE ATT&CK. In its ontology, a technique
is associated to at least one tactic (e.g., the tech-
nique “Hijack Execution Flow” is listed under
three distinct tactics: Persistence, Privilege Esca-
lation and Defense Evasion) and may have several
sub-techniques. Mining techniques from CTI re-
ports poses significant challenges due to several
factors. Firstly, the large number of techniques,
coupled with their diverse nature, intricate inter-
dependencies, and hierarchical structure, renders
the task complex and laborious. Secondly, the anal-
ysis of CTI reports necessitates the expertise of
security professionals. The reports focus on delin-
eating low-level threat actions rather than explic-
itly mentioning the associated techniques and tac-
tics. Consequently, extracting relevant techniques
and tactics from these reports requires diligent in-
ference by the reader. Employing an automated
approach to TTP mapping presents inherent chal-

1attack.mitre.org/techniques/T1566
2attack.mitre.org/techniques/T1486
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lenges. One major hurdle is the low-resource nature
of the task, due to the limited availability of labeled
data and the extensive label space. Moreover, the
presence of long-tail infrequent TTPs adds com-
plexity to the learning process.

Due to these challenges, TTP mapping has
not been fully solved in related work. Most re-
cent works use a classical document-level multi-
label (Li et al., 2019) or sentence-level multi-class
classification (Orbinato et al., 2022; You et al.,
2022) learning setting. These granularity choices,
however, either introduce unneeded complexity of
long-form text representation (for document-level)
or make the task inapplicable to mapping complex
TTPs, which often require longer text (for sentence-
level). Moreover, the main learning issues in these
settings are: (i) the aforementioned problems of
label scarcity and long-tailedness, and (ii) the learn-
ing complexity costs of the softmax-based learning
approaches grow proportionally to the number of
classes. In the wider literature i.e., extreme multi-
label text classification (XMTC), the problems are
addressed by (i) capturing the label correlation
and (ii) partitioning and handling the sub-label
spaces separately. They are, however, most effec-
tive in relatively resource-rich settings, and have
drawbacks when applied to label-scarce scenarios,
as the signal-to-noise ratio increases (Bamler and
Mandt, 2020). In the multi-label context, learn-
ing is greatly affected, additionally, by the frequent
presence of missing labels, which is a common trait
observed in human-curated datasets.

In this work we propose an alternative learning
setting which avoids the direct optimization for dis-
criminating between data points in a large label
space. Concretely, we transform the task into a text
matching problem (Tay et al., 2018; Wang et al.,
2017), allowing us to utilize the direct semantic
similarity between the input-label pairs to derive a
calibrated assignment score. The framework inher-
ently incorporates an inductive bias, encouraging
the capture of nuanced similarities even in the pres-
ence of limited labeled data, enhancing its ability to
generalize to long-tail TTPs. This transformation is
achieved by leveraging the textual profile of a TTP
(i.e., textual description 3 in ATT&CK), a resource
that is often neglected in related work.

Label-efficient text matching: Our approach -–
dynamic label-informed text matching – empow-

3 A technique, its description and procedure examples:
attack.mitre.org/techniques/T1021/

ered by Noise Contrastive Estimation (NCE) (Gut-
mann and Hyvärinen, 2010), exploits the shared
information between a pair of texts (text matching)
in the learning phase, and altogether attempts to
discriminate between the positive labels versus the
rest in the label space (classification).

Conventionally, NCEs are used to alleviate com-
putational challenges in parameter estimation for
large target spaces. In this work, we apply NCEs
uniquely in a moderately sized label space, nav-
igating data scarcity and noise constraints. We
demonstrate experimentally that our ranking-based
NCEs, characterized by their probabilistic nature
and ability to capture global patterns, can over-
come these low-resource constraints and help the
matching model perform particularly well. In con-
trast, common contrastive loss variants, i.e., Triplet
Losses lacking these properties, surprisingly per-
formed even worse than we anticipated.

To this end, we summarize our contributions:

• We formally redefine the challenging task of
TTP mapping as a paragraph-level hierarchi-
cal multi-label text classification problem and
propose a new learning paradigm that works
effectively on the nature of the task.

• We introduce robust ranking-based NCE
losses, designed not only to effectively handle
the large label space but also the scarce and
missing labels problem specific to this task.
Additionally, we present a multi-task learning
strategy that adeptly captures the intrinsic hier-
archical structure within the label semantics.

• We curate and publicize an expert-annotated
dataset that emphasizes on the multi-label na-
ture, with approximately two times more la-
bels per sample than existing datasets.

• Lastly, we conduct extensive experiments to
prove our learning methods outperform strong
baselines across real-world datasets.

2 Related Work

TTP Mapping and CTI Extraction Several
works target TTP mapping on the document level.
(Husari et al., 2017) used a probabilistic relevance
framework (Okapi BM25) to quantify the similar-
ity between BoW representations of TTPs and the
target text. However, this approach is limited to the
oversimplified vocabulary of threat actions within
an ad-hoc ontology. Ayoade et al. (2018); Niakan-
lahiji et al. (2018) used a TF-IDF-based document
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representation and leveraged classical (i.e., tree-
based, margin-based) ML for (multi-label) clas-
sification. Li et al. (2019) used latent semantic
analysis to extract topics from target articles, and
compared the topic vectors with the TF-IDF vec-
tors of ATT&CK description pages to obtain cosine
similarity. They used the similarity vectors with
Naïve Bayes and decision trees to classify TTPs.
However, the choice of document-level granularity
introduces additional unneeded complexity of long-
form text representation. Recent works leverage
transformers for sentence-level text representation
learning (Orbinato et al., 2022; You et al., 2022),
using the encoded representation in the multi-class
classification setting. However, with limited avail-
able data, they restrict the task to only a small
number of TTPs.

Extreme Multi-label Text Classification.
XMTC, or generally extreme multi-label classi-
fication is a line of research targeting extremely
large label spaces, e.g., product categorization in
e-commerce or web page categorization. The
main challenges for XMTC are computational
efficiency and data skewness. Common tech-
niques for XMTC are tree-based (You et al., 2019;
Jasinska-Kobus et al., 2020; Wydmuch et al., 2018),
sampling-based (Jiang et al., 2021) and embedding-
based (Chang et al., 2021) that attempt to partition
the label space and thus reduce the computational
complexity. However, generally, these methods as-
sume the sufficient availability of supervision and
still suffer in the long-tail performance.

Matching Networks. Deep matching net-
works have witnessed rapid progress recently, find-
ing applications in various conventional (e.g., re-
trieval (Wang et al., 2017)) or emerging tasks (e.g.,
few-shot (Vinyals et al., 2016) and self-supervised
learning (Chen et al., 2020)). They can be archi-
tecturally categorized as cross- vs dual-encoder
networks and can be optimized in tandem with
the triplet (Schroff et al., 2015) or contrastive
loss (Chopra et al., 2005). The former loss con-
siders triplets of examples (anchor, positive, neg-
ative) and is marginal-based, whereas the latter,
broadly referred to as NCE (Gutmann and Hyväri-
nen, 2010), utilizes a probabilistic interpretation.
Despite demonstrating promising results across var-
ious domains and datasets, matching networks ne-
cessitate substantial training data. Although the
NCE framework partially mitigates this concern,
the well-adopted approach by Oord et al. (2018)

remains somewhat limited, especially to the fully-
supervised settings. Our approach overcomes the
present constraints of training matching networks
in settings where resources are limited, specifically
when there is a scarcity of extensive training data.

3 Preliminaries and Problem Setup

We first provide a brief overview of the classifi-
cation settings with noise contrastive estimation
(NCE). These definitions then subsequently help
us in formulating our matching problem.

Classification: Let X and Y denote the input
and label spaces, |Y| < ∞. We define a score
function gθ : X → Y. In this setting, the label
space Y is categorical. Specifically, X ∈ Rn×m,
whereas Y ∈ {0, 1}n×|L|, with n being the number
of samples and L being the label set.

Matching: In this setting, X and Y represent the
same input space. The matching function gθ : X ×
Y → R, is differentiable in θ ∈ R|D|, where D is
the parameter space. In order to cast a classification
problem as a matching one, we assume there is an
invertible and smooth projection function π that
transforms the discrete categorical representation
Y into the same continuous space as X.

Cross-entropy Loss and NCE: In either classifi-
cation or matching settings, our goal is to estimate
whether θ : x 7→ maxy∈Y gθ(x, y) has optimal 0-1
loss. This can be reduced to conditional density
estimation. Let pθ(y|x) = exp(gθ(x,y)∑

ŷ∈Y exp(gθ(x,ŷ))
, the

cross-entropy loss is then defined as:

JCE(θ) = E(x,y)∼(X×Y )[− log pθ(y|x)] (1)

When Y is large, JCE(θ) is difficult to com-
pute as the computation of the normalization term
of pθ(y|x) becomes expensive. This issue is ad-
dressed by NCE through sub-sampling p(X,Y ),
and shifting the focus towards estimating the prob-
abilities of the true data samples.

Multi-label Classification. The vanilla classi-
fication problem can be defined as follows: Let
{X,Y } be the problem space, where the feature
space X ∈ Rn×|D|, and the label space Y ∈
{0, 1}n×|L|, with |L| ≪ ∞ being the number of
TTPs in the KB. The goal is to learn a function
f : D 7→ R|L| that accurately predicts the multi-
label one-hot vector output y ∈ Y, given x ∈ X.

Problem Reformulation. Given the training
data X ∈ Rn×|D|, and Y ∈ R|L|×|D|, with y ∈ Y
derived from the TTP textual profile, and |L| ≪ ∞
along with a set of supervisions {x 7→ y}n =
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{0, 1}n, such as x ∈ X and y ∈ Y, our tar-
get is to learn matching-based scoring functions
gθ(x, y) that model the relationship between x
and y within the same feature space, aiming for
gθ(x, y) ≈ {x 7→ y}n. The use of the textual pro-
file inherently eliminates the need for a projection
function π, as it directly aligns the discrete cate-
gorical representation Y with the same continuous
space as X. In the context of cross-entropy loss,
pθ(y|x) is now linked to pθ(x 7→ y|x, y).

4 Methodology

Here we describe our architectural choice for
the matching function gθ(x, y), and our learning
paradigm that approximates pθ(x 7→ y|x, y) to si-
multaneously match and compare TTPs labels.

4.1 Matching Network

The architecture of our matching network is built
upon the dual-encoder framework, which typically
employs a Siamese network. This shared network
is used for learning the representations of both the
target text segment and the TTP textual profile. As
depicted in Fig. 2, at a high level, our network com-
prises an embedding component and an alignment
component. Each includes specific layers aimed at
enhancing the connectivity between the two sub-
network sides. Finally, the two sides are merged
(by, i.e., a dot product) to output a (probabilistic)
matching score. We detail the architectural choice
for our matching network below.

Figure 2: The dual-encoder matching network.

Encoder. The encoder has two modes: (1)
scratch and (2) scratch with a pre-trained trans-
former (i.e., SecBERT) combined. Scratch indi-
cates that the token embeddings are learnt (with the
embedding layer). We then apply a simple CNN
on top of the embedding layer. With scratch alone,

a specialized tokenizer (that respects CTI entities,
e.g., URL, vulnerability identifier..) is used. While
using together with the transformer, the tokenizer
of the transformer is used. For (2), we simply stack
the encoded vectors from the two sources together.

Alignment Network. Formally, given the in-
put representation of the text-TTP pair as xt =
(â1, . . . , âl) and yttp = (b̂1, . . . , b̂l), the unnor-
malized attention weights are decomposed into:
eij = W align(âi) ·W align(b̂j), whereas W align is
a trainable projection matrix, · is the dot product.
Then, we derive the normalized weights for each
token ai and bj , and achieve the corresponding
alignment features. Similar to (Yang et al., 2019),
we further use the block-based residual architecture
with skip connections. Our block consists of the
encoder, alignment and fusion layers. The fusion
layer does various comparisons of local and aligned
representations (i.e., the Hadamard product) and
finally fuses the interaction vectors together us-
ing the concatenation operator. Then pooling, i.e.,
(non-) weighted average or max-pooling, is applied
to attain fixed-length vector representations.

4.2 Learning to Match and Contrast
Our efficient learning method aims to circumvent
the computational complexities that arise in the
large label space, whether in the proper multi-label
setting or its reduced multi-class version. The new
learning paradigm is shifted from multi-label clas-
sification to the so-called dynamic label-informed
text matching, in which negative labels are drawn
dynamically at every step. The ranker, acting as a
simultaneous matcher, strategically assigns higher
probabilities to positive pairs and lower probabil-
ities to negative pairs. Finally, the top-n positive
pairs are selected based on a cut-off threshold. We
detail our learning mechanism below.

Partial-ranking-based NCE. The general idea
of NCE in our scenario is to avoid an exhaus-
tive ranking (or partitioning) in the large label
space, i.e., in the vanilla multi-label classifica-
tion setting. Instead, a matching-based classifier,
p((x 7→ y)|x, y), is trained to differentiate between
samples from the true distribution and a noise distri-
bution, q(y), and inherently approximate the under-
lying ranking function. By utilizing Monte Carlo
sampling, the NCE loss is formulated as follows:

JNCE(θ) = E(x,y)∼(X×Y)(log p((x 7→ y) = 1|x, y)

+
k∑

i=1,yi∼q

log p((x 7→ y) = 0|x, yi))
. (2)
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While the NCE loss in Equation 2 is calcu-
lated by learning p((x 7→ y)|x, y) for every data
point (so-called local), we opt for a ranking setting
where data points in the same batch compete in
a contrastive setting. One way of achieving this
is to leverage the mutual information I, as uti-
lized in InfoNCE (Oord et al., 2018), to encour-
age informative representations for the positive
samples I(z(x, y); z(x, y(+))) (assuming multi-
label setting) and contrast them with negative ones
I(z(x, y); z(x, y(−))). The ranking NCE loss is
then defined as:

JglobalNCE = −E(x,y)[log
exp(gθ(x, y))

γ
∑

j:(x 7→yj)=0 exp(gθ(x, yj))
] , (3)

whereas, gθ(x, y) is the matching function. Con-
sequently, minimizing the loss promotes simulta-
neously a lower gθ for negative pairs and a higher
gθ for positive pairs. The scaling factor γ, which
is absent in InfoNCE, is introduced to account for
the need to reduce the impact of the considerably
larger portion of negative samples. This adjust-
ment aims to emphasize the top-n partial ranking,
where it is assumed that the positive samples are
concentrated in the distribution. Subsequently, with
γ, the loss is denoted as α-balanced NCE.

Asymmetric Focusing. Given the limited avail-
ability of reliable labels, our objective is to (i) re-
duce the impact of straightforward negative sam-
ples, and (ii) simultaneously mitigating the influ-
ence of potentially mislabeled (due to missing or
wrong labels) samples on the loss function. While
(i) can be achieved by applying a (hard) cut-off on
very low values of p(0|x, yi), (ii) is often attributed
to the high p(1|x, yi), with yi ∼ q . Thus, we opt
for an asymmetric approach for the design of the
NCE loss, wherein we prioritize the challenging
mislabeled samples. In doing so, we explicitly dif-
ferentiate the focusing (scaling) levels between the
positive and negative groups. The idea originated
in Ridnik et al. (2021), for vanilla cross-entropy.
In our case, the negative samples derived from our
negative sampling strategy in the NCE context. Our
hypothesis is that this asymmetric mechanism helps
stabilize the learning towards the noisy4 sampled
negative labels. Let γ+ and γ− be the positive
and negative scaling parameters, respectively. The
sample-level asymmetric loss is achieved as fol-
lows:

J(+) = (1− p)γ+ log(p);

J(−) = pγ− log(1− p),
(4)

4Which negative samples are not exclusively negative?

where γ− is often set larger than γ+ and p is short
for p((x 7→ y)|x, y). The NCE loss is obtained by
aggregating J over all samples.

JNCE = J (+)(x, y) +

k∑

i=1,yi∼q

J(−)(x, yi). (5)

To this end, we show in Algorithm 1 our NCE-
based training procedure. The convergence analy-
sis can be further found in Appendix B.

Algorithm 1 NCE-BASED TRAINING PROCEDURE

Input: Parameters θ, learning rate ϵ.
Empirical data distribution p̂d = (xi, yi)

n
i=1

for each epoch do
for t=1,2.. do

Sample i, i′k ∼ [1, .., n], k ∈ [1, .., K]
g(+) = gθ(xi, yi)
g(−) = gθ(xi, yi′

k
)

logits = {g(+), g(−)}, labels = {0, 1}
# compute α-balanced or asymmetric loss
JNCE = log

∑
k(exp(gθ(xi, yi′

k
)− γ · gθ(xi, yi))

# use SGD optimizer
G(t) ← G(t) + 1

m∇θJNCE(gθ)

θ ← θ + ϵ ·G(t)

end for
end for

4.3 Sampling Strategies
Corpus-level negative sampling. Due to mem-
ory constraints, the conventional negative sampling
method is often applied in-batch (Yih et al., 2011;
Gillick et al., 2019). One limitation of the in-batch
sampling is the number of negative samples are
bounded to the batch size. Whereas, the corpus-
level sampling provides a broader context for nega-
tive sampling, inherently leading to a more diverse
set of negative examples. In our low-resource con-
text, the diversified negative samples are extremely
useful in enhancing the discriminative power of the
dataset, that is likely not evident within a single
batch. In effect, we assume that a larger part of
the TTP corpus is irrelevant to the positive paired
sample. We also assume that noisy samples will
inherently be canceled out while learning signals
remain in our training paradigm (Rolnick et al.,
2017). While being simple, the policy augments
our dataset with a substantial supervision signal
stemming from negative samples. We explain the
details of our sampling policies below.

Random sampling. We select a simple uniform
distribution q(y) = 1

∥L∥ . To increase the hardness
of negative samples, other sampling methods, i.e.,
retrieval-based (e.g., candidates from a retrieval
model) or semantic structure-based (e.g., other sib-
ling TTPs of the same technique) can be applied.
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Figure 3: The distributions of the number of samples
per technique (TTP) for each dataset.

However, due to the missing label nature of the
task, these hard techniques tend to introduce noisy
bias and thus are sub-optimal.

Moderately sized label space. Formally, the
diversity Ddiv of the set of negative samples
S can entropy-wise be defined as: Ddiv(S) =
−∑

yj∈S P (yj |x) logP (yj |x), where for uniform
sampling, Ddiv = log(∥S∥), with ∥S∥ ≈ ∥L∥.
Recalling Equation 3, the denominator involves a
summation over the probabilities of negative sam-
ples, thus as Ddiv increases, the negative sam-
ples become more evenly distributed, resulting
in a more complex summation over the poten-
tially larger number of the exponential terms, as in∑

j:(x→yj)=0 exp(gθ(x, yj)). In our specific case,
∥L∥ (the number of TTPs) is naturally bounded,
thus nicely balancing the trade-off between the
computational complexity and discrimitive power
that Ddiv introduces.

4.4 Hierarchical Multi-label Learning

In ATT&CK, TTPs have a hierarchical structure,
where different sub-techniques map many-to-1 to
the same technique and techniques map many-to-
many to tactics. To exploit and encode this struc-
ture, we design an auxiliary task that predicts the
tactics of the textual input, alongside our matching
task. This auxiliary task is thus also a medium-
sized multi-label classification task, and we use
the binary cross-entropy loss for the optimization.
The two tasks are jointly optimized in a multi-task
learning manner, where the two losses are linearly
combined: Jtotal = αJNCE + βJaux, where α and
β are loss-weighting parameters.

5 Experiments

5.1 Datasets

We list below the datasets used in our experiments.
TRAM. Largest publicly available manual cu-

Table 1: Dataset statistics. S+T denotes the joint count
of techniques and sub-techniques.

Dataset Texts S+T Tech- Avg. # Avg. #
niques Labels Tokens

TRAM 4797 193 132 1.16 23
Procedures 11723 488 180 1.00 12
Derived Procedures 3519 374 167 1.22 65
Expert 695 290 151 1.84 72

rated dataset from CTID 5, commonly used in re-
lated work. It comprises mostly short texts, covers
only one-third of TTPs with relatively noisy labels,
thus appears to have limited application value.

Procedure+.6 Procedures: collected from
ATT&CK, where techniques have associated man-
ually curated procedure examples3. Each exam-
ple is a one-sentence expert-written summary of
the implementation of a technique in real-world
attacks. Derived Procedures: complements an ex-
ample with a text that aligns to threat report writing
style. We look for evidential paragraphs in the ref-
erences where the summary example is assumedly
derived from, using a per-document search engine.

Expert.6 Our purposefully crafted dataset
closely emulates real-world scenarios, providing
a practical setting for TTP extraction. Unlike
sentence-focused datasets, ours covers entire para-
graphs, thus the annotations are inherently multi-
label in nature. Annotated by 5 CTI experts using
an in-house tool, our dataset triples text length and
increases average labels per sample by approxi-
mately 60-80% compared to TRAM (see Table1).

In our experiments, the two procedure examples
datasets serve as high-quality pseudo-datasets, pro-
viding additional training examples, as well as valu-
able benchmarking perspective. Further descrip-
tions of the overall dataset construction processes
can be found in Appendix C.

5.2 Metrics and Baselines

The following common metrics in literature are
used: the micro-averaged {P,R,F1}@k and mean
reciprocal rank (MRR)@k, which measures the
relative ordering of a ranked list.

The following baselines are targeted: Okapi
BM25, adjusted from Husari et al. (2017). The
BoW is augmented with k closest terms from a se-
curity GloVe model, enhancing the BM25 retrieval

5CTID TRAM: github.com/CTID/TRAM
6 The datasets are publicly shared at github.com/

TTP-Mapping to foster further research.
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Table 2: Results of all models on 3 datasets. Procedures+ denotes the combined procedure examples datasets. Bold
denotes best while underscore signifies second-best performance. Indented (w/o) denotes training without the
specific option wrt. the preceding model. Ideal R@1 on the Expert dataset is 0.504. T uses pre-trained SecBERT.

Procedures+ TRAM Expert

Methods P@1 R@1 F1@3 MRR@3 P@1 R@1 F1@3 MRR@3 P@1 R@1 F1@3 MRR@3

B
as

el
in

e TTPDrill (BM25) .230 .227 .118 .232 .250 .212 .118 .205 .222 .037 .008 .139
Binary RelevanceT .206 .579 .193 .579 .236 .594 .209 .594 .189 .256 .085 .256
Dynamic Triplet-lossT .339 .336 .277 .432 .286 .253 .277 . 402 .449 .111 .252 .525

X
M

T
C

eXtremeText (Sigmoid) .557 .547 .371 .624 .632 .594 .425 .729 .407 .174 .279 .485
eXtremeText (PLT) .528 .519 .336 .582 .612 .578 .393 .671 .344 .146 .243 .411
NAPKINXC .578 .570 .383 .661 .662 .614 .453 .754 .497 .199 .365 .582
XR-LINEAR .604 .595 .393 .684 .674 .626 .445 .757 .529 .215 .363 .600
XR-TRANSFORMERT .502 .494 .304 .548 .540 .515 .334 .595 .389 .149 .239 .453

O
ur

s

InfoNCET .672 .639 .442 .758 .697 .577 .516 .799 .702 .175 .432 .768
@−balancedT .760 .720 .489 .837 .765 .646 .546 .856 .693 .169 .400 .762

w/o auxiliary .604 .584 .433 .719 .712 .601 .521 .816 .693 .177 .442 .773
w/o Transformers .646 .601 .357 .772 .642 .543 .547 .785 .700 .173 .430 .766

AsymmetricT .757 .718 .493 .838 .770 .658 .555 .864 .731 .182 .399 .789

Table 3: Technique-level (resolve sub-techniques to their super-techniques) results, with legend of Table 2 applies.

Procedures+ TRAM Expert

Methods P@1 R@1 F1@3 MRR@3 P@1 R@1 F1@3 MRR@3 P@1 R@1 F1@3 MRR@3

B
as

el
in

e TTPDrill (BM25) .294 .290 .152 .297 .281 .271 .161 .295 .197 .096 .096 .279
Binary RelevanceT .409 .655 .285 .655 .399 .647 .279 .647 .167 .295 .117 .295
Dynamic Triplet-lossT .449 .447 .408 .539 .404 .353 .382 .513 .559 .166 .344 .631

X
M

T
C

eXtremeText (Sigmoid) .659 .649 .426 .713 .742 .704 .494 .793 .439 .212 .333 .521
eXtremeText (PLT) .644 .636 .403 .689 .714 .679 .464 .756 .465 .206 .327 .532
NAPKINXC .698 .687 .426 .764 .800 .748 .495 .864 .548 .253 .409 .626
XR-LINEAR .705 .700 .429 .772 .817 .765 .494 .870 .586 .261 .439 .669
XR-TRANSFORMERT .683 .673 .416 .747 .801 .750 .488 .856 .554 .245 .405 .633

O
ur

s

InfoNCET .759 .727 .624 .823 .819 .696 .668 .876 .741 .228 .515 .871
@−balancedT .843 .806 .666 .892 .889 .778 .711 .927 .731 .224 .491 .789

w/o auxiliary .714 .689 .579 .791 .817 .697 .648 .88 .754 .233 .509 .816
w/o Transformers .777 .733 .664 .86 .791 .683 .713 .875 .718 .226 .497 .782

AsymmetricT .841 .806 .677 .892 .903 .789 .726 .938 .745 .236 .483 .802

capability. Here, query represents the target text,
and documents refer to TTP descriptions.

Binary Relevance, the vanilla multi-label learn-
ing approach, similar to Li et al. (2019) for TTP
mapping. It has the one side of the text matching
architecture and learns a binary classifier for each
label separately in a one-vs-all manner.

Dynamic triplet-loss, a competitive baseline
with a similar network architecture to ours, em-
ploys a triplet-based loss (Schroff et al., 2015).
In contrast to the (empirically found) ineffective
vanilla setting, we dynamically generate k-negative
samples (akin to N-pairs loss (Sohn, 2016)) to
mimic the NCE mechanism.

In addition, we employ the following state-of-
the-art (SoTA) models in XMTC as competitive
baselines: NAPKINXC (Jasinska-Kobus et al.,
2020), a method that generalized the Hierarchi-

cal Softmax, so-called Probabilistic Label Trees
(PLT), commonly used in XMTC literature. XR-
LINEAR (Yu et al., 2022), a model designed
for very large output spaces, with 3 phases: se-
mantic label indexing (label clustering), matching
(where the most relevant clusters are identified),
and ranking (of labels in the matched clusters). XR-
TRANSFORMER (Zhang et al., 2021), similar
to XR-LINEAR, but with a transformer encoder.
exTremeText (Wydmuch et al., 2018), algorithm-
wise relatively similar to NAPKINXC.

5.3 Experimental Setup

We use the common security LM SecBERT7 for
the transformer-based models, and grid search de-
termined the best hyperparameters for each model.
The rich textual description3 of a TTP is selected

7https://github.com/jackaduma/SecBERT
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for the textual profile. Except for XMTCs and
BM25, all models are with the auxiliary tasks.

Data Settings. For the Procedure+ and TRAM
datasets, each was stratified-shuffled and split into
training, validation and test sets with ratios of
72.5%, 12.5% and 15%, respectively. The test sets
remained fixed for reporting purposes. For training
and validation, two modes were considered: sepa-
rate and combined. In the former, the datasets are
kept distinct, while in the latter, they were merged
according to their respective splits.

For the Expert dataset, we utilize a dedicated
held-out recall-focused test set, with 157 unique
paragraph-level samples and 3.3 labels per sample
on average. This carefully curated held-out set
closely resembles paragraph-level text snippets in
complete CTI reports, facilitating a comprehensive
analysis of the entire report.

5.4 Results and Analysis

Table 2 presents the main experimental results.
Overall, our proposed NCE-based models greatly
outperform the baselines. Particularly, the asym-
metric loss-based model achieves the best perfor-
mance across most metrics and datasets. We also
observe the significant improvements of the two
loss variants (i.e., α-balanced and asymmetric)
over the vanilla InfoNCE. In addition, the mod-
els demonstrates a substantial improvement at the
cutoff threshold @1 (∼10%) in comparison to @3
(∼5%). This supports the effectiveness of our
matching network in classification settings.

The SoTA XMTC baselines perform consider-
ably robust across the three datasets, among these
XR-LINEAR perform best. Interestingly, XR-
LINEAR demonstrates consistently higher perfor-
mance than its related transformer-based counter-
part (XR-TRANSFORMER), suggesting the chal-
lenges of the larger models in our low-resource
settings. We also observe the subpar performance
of the triplet-loss approach, suggesting similar dis-
advantages in the low-resource settings.

Across the datasets, the overall model perfor-
mance declines from Procedure+ to TRAM and Ex-
pert, indicating varying complexities within each
dataset. Notably, our performance yields com-
pelling results in TRAM, well-surpassing methods
commonly reported in related work, i.e., BM25 and
Binary Relevance.

Table 4: Model performance on the head vs. tail parts of
the TRAM dataset. Head denotes more frequent TTPs
(> empirical 7 samples in the training split), whereas
tail are infrequent TTPs. All are trained in combined
mode. Bold denotes absolute best performers.

TRAM head (94.5%) TRAM tail (5.5%)

Methods F1@1 F1@3 MRR@3 F1@1 F1@3 MRR@3

BM25 .195 .112 .21 +118% +99.1% +108%
NAPKINXC .624 .458 .752 -36.9% -27.1% -30.2%
XR-LINEAR .62 .448 .743 -16.3% -25.4% -21.5%
@-balanced .668 .548 .841 -3.3% -12.2% -8%
Asymmetric .679 .547 .848 -4.9% -14.3% -10.4%

5.5 Ablation Studies

Hierarchical Labeling. We analyze the contribu-
tions of our hierarchical modeling to the ranking
performances. As shown in Table 2, in general,
our joint learning with the auxiliary task gives a
notable performance boost in most scenarios. We
report further in Table 3 the models’ results in the
technique-level of the label hierarchy, where a sub-
technique label is resolved to its technique. This
is also a common practice in literature to stream-
line the complexity of the task. Overall, all models
present significant improvements in this setting. In-
terestingly, here the α-balanced model, without the
auxiliary task, is the best performer on the Expert
dataset. This is, nonetheless, understandable as the
original hierarchical structure is semantically one
level reduced in this case.

Transformers. We observe the positive contri-
butions of SecBERT to the performance of all mod-
els in most cases. Nevertheless, without SecBERT
(i.e., w/o Transformers), our models are still very
much on par with the strong XMTC baselines at
k = 1 and outperform them at k = 3, indicat-
ing the better ranking capability, specially on the
Expert dataset.

Long Tail Analysis. Tables 4 and 5 provide
an analysis on the models’ performances on the
classes of head versus tail frequency distributions
visualized in Fig. 3. Overall, matching-based ap-
proaches, with the inductive bias, are relatively ro-
bust, whereas the classification-based XMTC base-
lines suffer in the long tail.

Loss Analysis. In Fig. 4, we present additional
analysis on the impact of the size of negative sam-
ples. The results indicate that as the size increases,
the model tends to converge faster and exhibit bet-
ter performance. However, it appears that there are
no additional benefits beyond a size of 60, which
corresponds to 10% of the label space.
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Table 5: Model performance on the head vs. tail parts
of the Expert dataset. Legend of Table 4 applies.

Expert head (56.5%) Expert tail (43.5%)

Methods F1@1 F1@3 MRR@3 F1@1 F1@3 MRR@3

BM25 .071 .107 .188 +26% +28% +18.6%
NAPKINXC .334 .381 .655 -40.7% -23.9% -16.6%
XR-LINEAR .335 .407 .676 -31.6% -22.9% -14.5%
@-balanced .302 .426 .819 -18.2% -11.3% -2.9%
Asymmetric .306 .416 .831 -18.9% -12% -2.9%
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Figure 4: InfoNCE loss and f1@1 performance wrt.
different number of negative samples. The network
is without transformers. OOM for larger number of
negative samples on an NVIDIA V100 32GB RAM.

A further analysis on the score distribution of the
ranked lists are reported in Fig. 5. The details are
provided in the caption for convenient reference.

Expert Dataset. To further examine the difficul-
ties posed by the Expert Dataset, we present the
outcomes of models trained on the training splits
of Procedure+ and TRAM, evaluated on the entire
Expert dataset. The results are showcased in Ta-
bles 6 and 7. Overall, although all models exhibit
reduced performance in this scenario, our mod-
els demonstrate superior generalization capability.
Also, InfoNCE performs rather robustly in this set-
ting, perhaps due to its stable nature to noisy input
representation stemming from long-form text.

6 Conclusion

We proposed a solution for the TTP mapping task
that overcomes low-resource challenges in security
domain. This new learning paradigm integrates the
inductive bias into the classification task, resulting
in significant out-performance of strong baselines.
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Figure 5: The aggregated probability distribution of the
top-50 ranking on different models on the test splits
of the TRAM (left) and Expert (right) datasets. While
InfoNCE tends to allocate probabilities to labels in the
long tail, @-balanced and asymmetric exhibit a more
pronounced skewness in their distribution, resembling
that of a pure classification model like NAPKINXC. The
NCE-based models display a broader distribution at the
head, indicating their inclination to assign comparable
probabilities to multiple labels.

Table 6: Results on the entire Expert dataset, trained
on the training splits of Procedure+ and Tram. Bold
denotes best-performer.

Methods P@1 R@1 F1@3 MMR@3 F1@5 MRR@5
TTPDrill (BM25) .311 .166 .226 .364 .207 .375

NAPKINXC .43 .186 .3 .51 .275 .519
XR-LINEAR .426 .198 .311 .517 .275 .529

InfoNCE .489 .208 .362 .564 .339 .576
@-balanced .443 .195 .328 .528 .324 .543
Asymmetric .484 .217 .348 .558 .333 .573

Table 7: Technique-level results on the entire Expert
dataset. Legend in Table 6 applies.

Methods P@1 R@1 F1@3 MMR@3 F1@5 MRR@5
TTPDrill (BM25) .369 .202 .283 .437 .267 .449

NAPKINXC .51 .26 .344 .583 .375 .592
XR-LINEAR .526 .279 .378 .595 .332 .609

InfoNCE .556 .286 .447 .621 .432 .633
@-balanced .506 .273 .428 .594 .429 .604
Asymmetric .543 .287 .442 .615 .423 .626
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7 Limitations

Despite its label efficiency, our learning approach
is not particularly efficient in terms of training. On
average, it requires 24 hours for training on a ma-
chine equipped with a single NVIDIA-Tesla-V100
32 GB. Nonetheless, its training time is nearly com-
parable to the baselines employing Transformers.
Although our expert dataset closely aligns with the
multi-label nature of the task and exhibits higher
quality, it remains relatively limited in size, cover-
ing just one-third of the TTPs.

8 Ethics Statement

Our datasets are constructed from security threat
reports published by security vendors, and copy-
righted by their respective owners. We scraped
and extracted textual contents from these public
websites to build the datasets. The criteria for text
selection was whether the text discusses TTPs.

Some source reports contain Personally Identi-
fiable Information (PII) of report authors, threat
actors (i.e., persons suspected of involvement in
cybercrime) or victims (i.e., persons suspected of
being targeted by cybercrime). In the text selec-
tion process, we screened for any PII and removed
all uncovered instances. However, we cannot rule
out the possibility that some PII might have been
missed in that process. Thus, users wishing to use
the data will need to accept our terms of use and
report potential remaining instances of PII, which
will be removed in a subsequent dataset update.
Crucially, the potential remaining PII in the dataset
has been originally published by the reports’ au-
thors and may still remain public on the original
websites even after our dataset updates.

The datasets have been annotated by security
experts in our organization as part of their regular
work under full-time employment contracts.

The language of the dataset is English, written
by native and non-native speakers.

We are not aware of any ethical implications
stemming from the intended use of this dataset, i.e.,
TTP mapping.
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A The Task of TTP Mapping

In the cybersecurity domain, one of the pillars of ef-
fective defense is Cyber Threat Intelligence (CTI).
An analog to military intelligence, CTI is tasked
with collecting and organizing information on cy-
ber threats such as threat actors, their threat cam-
paigns, and malicious software, i.e., malware. It
can be traced back to ancient military-theoretical
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observations that understanding one’s enemy is cru-
cial to winning battles8.

CTI describes cyber threats on three levels. The
strategic level (e.g., periodicals on trends in the
cyber risk landscape) describes high-level threat
information and targets non-technical chief execu-
tives. The tactical level (e.g., technical reports on
individual threat actors) describes details on threat
actors’ behavior, for use by security managers. The
lowest, operational level (e.g., lists of malicious in-
ternet domains) describes specific threat indicators
which may be directly used for defense (e.g., by
blocking the offending domains).

While the value of CTI data is roughly propor-
tional to its intelligence level, the difficulty of ob-
taining it is the opposite. Automated production
only exists for operational CTI data, and higher
levels require costly manual expert work. However,
leading CTI community members regularly publish
tactical and strategic CTI information in form of
cybersecurity threat reports – digital documents
with unstructured natural language text along ta-
bles and images, written using a domain-specific
vocabulary, between hundreds and thousands of
words long, and strongly interspersed with techni-
cal tokens such as URLs, hashes and similar. Top-
ically they cover profiles of major threat actors,
summaries of threat campaigns, and malware anal-
ysis reports. An illustrative excerpt is provided in
Fig. 1. Thus an opportunity arose for a fruitful
application of NLP: automated extraction of high-
value CTI data from natural language documents.

In recent years, the NLP and cybersecurity com-
munities have been engaged in exactly this direc-
tion. Early work targeted the operational level,
extracting Indicators of Compromise (IoCs), i.e.,
threat actor controlled internet domains, IP ad-
dresses, file hashes and URLs, from security ar-
ticles, social media or forum posts. Subsequent
efforts targeted the tactical level, but the challenge
there remains unsolved.

The tactical level characterizes adversaries’ be-
havior, typically referred to as attack patterns.
Fig. 1 illustrates, among others, (1) the use of a
malicious email attachment to take control of a
victim’s system, and (2) encrypting data on the
victim’s system to extort money from the victim.

8“If you know the enemy and know yourself, you need not
fear the result of a hundred battles. If you know yourself but
not the enemy, for every victory gained you will also suffer a
defeat. If you know neither the enemy nor yourself, you will
succumb in every battle.” (Tzu)

To facilitate reasoning about attack patterns, of
which hundreds are documented, the community
converged around a common framework called Tac-
tics, Techniques and Procedures (TTPs):

• A tactic describes the purpose of the actor’s
behavior – “why?”. For above examples, the
tactics are taking control of the system and
financial gain, respectively. Other typical ad-
versarial tactics include reconnaissance, es-
tablishing permanent presence, command and
control, data theft, etc.

• A technique describes the method used for the
given purpose – “how?”. In our case, those are
malicious email attachment and data encryp-
tion. A technique may be assigned to several
tactics if it achieves several purposes. Each
tactic can be achieved using any of a range of
different techniques. Other typical techniques
include collecting victim system information,
execution on system start, encrypted commu-
nication, password theft, etc.

• Some ontologies also define a subtechnique
as a specialized technique. A technique may
be specialized by zero or more subtechniques.
For example, the technique input capture
may have subtechniques keystroke capture and
screen capture.

• A procedure describes the implementation
details of a technique. For example, the email
attachment may be a malicious Excel file, and
the data encryption may be performed using a
custom encryption algorithm. Each technique
can be implemented using any of potentially
many different procedures.

Although others exist, MITRE
ATT&CK9 (Storm et al., 2020) is the preva-
lent knowledge base and taxonomy of TTPs used
in the literature. The version 12.0 comprises 14
tactics, 196 techniques, 411 sub-techniques and
thousands of procedures, continually curated by
community experts.

Retrieval of TTPs from unstructured text is re-
ferred to as TTP mapping in this work, although
TTP mining/extraction also occur in the literature.
Crucially for TTP mining, threat reports very rarely
name actors’ TTPs explicitly. Instead, they estab-
lish a chronological narrative in terms of threat

9https://attack.mitre.org/

366

https://attack.mitre.org/


actions, i.e., low-level actions taken by the threat
actor. Some examples for threat actions from Fig. 1
are botnet spreading, use of phishing emails, use of
Visual Basic for malicious scripting, use of Excel
macros, etc. Not all threat actions are explicitly
expressed in the text. For example, although the
term “email” is not mentioned, the use of phish-
ing emails is inferred by domain experts because
phishing means sending deceptive emails with ma-
licious purposes, therefore sending emails is the
technical implementation of phishing and it must
have occurred.

Thus, at a high level, TTP mapping from text is
a 3-step process:

1. Identification of individual threat actions from
paragraphs or longer context

2. Correlation of one or more identified threat
actions into procedures

3. Mapping of identified procedures into tech-
niques and tactics.

B Convergence Analysis

Based on the stability of the NCE losses, we briefly
discuss the convergence properties of our adjusted
losses.

Boundedness of Gradients. Proof : Let g(x, y)
be the matching function such that 0 ≤ g(x, y) ≤
1 for all (x, y). Consider the NCE loss, i.e., @-
balanced with a scaling factor γ:

JNCE(θ) = Ep(x,y)[log g(x, y)]− γEp(x)[log
∑

j g(x, yj)]

We want to prove that the gradients of the NCE
loss with respect to the model parameters are
bounded. Let ∇JNCE(θ) denote the gradient vec-
tor. Taking the partial derivative of JNCE(θ) with
respect to a parameter θi, we have:

∂JNCE(θ)
∂θi

= ∂
∂θi

(
Ep(x,y)[log g(x, y)]− γEp(x)[log

∑
j g(x, yj)]

)

Using the linearity of the derivative, we can
rewrite the above expression as:

∂JNCE(θ)

∂θi
= Ep(x,y)

[
∂

∂θi
log g(x, y)

]

−γEp(x)


 ∂

∂θi
log

∑

j

g(x, yj)




Since 0 ≤ g(x, y) ≤ 1, the derivative of
log g(x, y) with respect to any parameter θi is
bounded between 0 and 1. Similarly, the deriva-
tive of log

∑
j g(x, yj) with respect to θi can be

bounded by considering the partial derivatives of
g(x, yj).

Therefore, we can conclude that:

∣∣∣∣
∂JNCE(θ)

∂θi

∣∣∣∣ ≤ max{1, γmax
x,yj

|∂θig(x, yj)|}

The above inequality implies that the absolute
value of the partial derivative of the NCE loss with
respect to any model parameter is bounded by a
finite value, scaled by γ. Hence, we have shown
that the gradients of @-balanced with the scaling
factor γ are bounded. The proof for the asymmetric
loss can be derived in an analogous manner.

Lemma 1 The matching function g(zi, zj) is
Lipschitz-continuous with a constant C, mean-
ing that for any zi, z

′
i, zj , we have |g(zi, zj) −

g(z′i, zj)| ≤ C|zi − z′i|.
Informal proof. Our Siamese neural networks-

based matching function g(zi, zj) ∈ [0, 1]. □.

Lemma 2 The noise distribution q satisfies the
matching moment condition of the true distribution
p, which, in essence, indicates that the covariance
matrices of the two are similar.

Informal proof. Since the noise distribution is
sampled over the whole corpus, the lemma holds
true for the random sampling strategy. □.

Thus, our loss is also Lipschitz-continuous and
retains convergence properties of the original NCE
losses, when optimized using SGD together with
the random negative sampling.

C Dataset Construction

Derived Procedure Examples. The dataset is
created as a contextualized version of the origi-
nal Procedure examples. We search for eviden-
tial paragraph-level text snippets in the references
where the summary example is derived from. With
this, the examples are contextualized and reflect
the true reporting style present in the references.
The pre-processing steps are as follows:

• Each example-reference pair is indexed at the
paragraph level. Any paragraphs that are
deemed (1) too short (less than 20 tokens), (2)
too long (more than 300 tokens), or (3) have a
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Jaccard index with the example exceeding 0.9
(indicating near-duplicate) are discarded.

• The remaining paragraphs are ranked based on
their relevance to the example using a tailored
BM25 retrieval model.

• A maximum of two paragraphs that satisfy a
carefully chosen global cut-off threshold are
selected.

• Additionally, we eliminate any potential near-
duplicates to the TRAM and Expert datasets.

We further assessed the dataset quality on a
limited sample set consisting of 50 text snippets.
Through this qualitative evaluation, the overall im-
pression of the examined samples is largely posi-
tive.

Expert Dataset.
The Expert dataset comprises relevant text para-

graphs from articles of reputable cybersecurity
threat researchers, annotated by seasoned cyber-
security experts. The dataset was purposefully
designed to closely mimic real-world scenarios,
aiming to provide a practical and authentic setting
for TTP extraction. Unlike datasets that primar-
ily focus on individual sentences, our dataset en-
compasses entire paragraphs, and the annotations
are inherently multi-label in nature. Rather than
concentrating on isolated sentences, this dataset in-
cludes entire paragraphs that contain implicit men-
tions of TTPs, making the annotations inherently
multi-label in nature.

The dataset was collected as follows:

1. We scraped 30 thousand articles from the
feeds of leading cyber threat research organi-
zations, and heuristically filtered out irrelevant
articles, which do not describe attacks related
to malware, advanced persistent threats, or
cyber threat campaigns.

2. Further heuristics were applied to remove ir-
relevant paragraphs, i.e., we look for para-
graphs which satisfy aforementioned length
constraints, and contain at least 3 cybersecu-
rity entities (e.g., malware, URL, etc.). The
remaining relevant paragraphs were then ran-
domly sub-sampled for annotation.

3. The expert annotators were tasked with an-
alyzing the paragraph and identifying TTPs.
To assist them in this process, an in-house

search engine, powered by the baseline re-
trieval model BM25, was employed. This
search engine allowed the annotators to for-
mulate queries based on the paragraph and
retrieve relevant information to aid in their
TTP selection.

4. The annotators were instructed to only anno-
tate explicit tactics and techniques in the given
paragraph10.

Each annotated item, namely a text paragraph,
undergoes evaluation by a single annotator. We
refrained from implementing extra quality control
procedures, such as reviews or reaching consensus
among annotators. To ensure quality, we engaged
seasoned cybersecurity experts as annotators, rather
than relying on crowd-sourced workers.

The choice of text paragraphs is biased by the
described selection process towards high-quality
writing from expert threat reports, and might not be
representative of other writing styles, e.g., micro-
blogging posts.

Expert Dataset: Special Test Split. In the afore-
mentioned process, it cannot be guaranteed that all
annotations will be retrieved accurately due to the
extensive task of re-formulating queries and review-
ing the lengthy ranked list of TTPs generated by the
relatively lower-performing BM25 model. There-
fore, in order to enhance the recall of the test split,
we substituted BM25 with our InfoNCE model,
which was trained on the train splits of the Proce-
dure+ and Tram datasets. For every sample, we
utilize a deep cut-off approach by selecting the top
20 entries, which are then assigned to annotators
for further analysis. We continued to follow the
same procedures as before.

In rare cases, relevant labels were missing from
the top-20 predictions, but the annotators were not
explicitly instructed to manually include those la-
bels in the dataset. Thus the recall of the annota-
tions is inherently imperfect, and the labels tend to
be biased towards to the use of InfoNCE, Never-
theless, based on the annotators’ subjective assess-
ment, the estimated annotation recall ranged from
95-100%, indicating that this dataset deviates min-
imally from a perfect annotation. Consequently,
this split contains a significantly higher number of

10An expert may comprehend from the text that it would
be impossible to perform a discussed attack step without an-
other tactic or technique, even if those dependencies were not
explicitly written.
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labels per sample compared to competing datasets.,
e.g., TRAM.

In conclusion, our Expert dataset, and particu-
larly the test split, is of relatively small size, but is
comprised of fully representative text paragraphs
and has exemplary annotation precision and recall.

D Further Experimental Studies

D.1 Metrics
The definitions of the used metrics in our experi-
ments are reported below.

P@k. Given a ranked list of predicted labels
for each sample, the micro precision of the top-k
is defined as: P@k = 1/k

∑k
i=1 1y+i

(li), whereas
li is the i-th label in the ranking and 1y+i

is the
indicator function.

R@k. Similarly, the micro recall of the top-k is
defined as: R@k = 1/|Q|∑k

i=1 1y+i
(li), whereas

|Q| is the number of positive labels in the sample.
F1@k. The metric maintains the harmony be-

tween P@k and R@k of a given ranked list, and is
calculated as 2·P@k·R@k

(P@k+R@k) .
MRR@k. The metric measures the relative or-

dering of a ranked list, with RR is the inverse
rank of the first relevant item in the top-k ranked
list. Accordingly, MRR@k is measured as follows.
MRR@k = 1/S

∑S
i=1 1/ranki, whereas S is the

number of samples.

D.2 Training Procedure and
Hyperparameters

While InfoNCE and @-balanced are with normal
training procedures, to leverage the effectiveness of
the asymmetric loss, which performs optimally un-
der stable gradient conditions, we adopt a two-step
training procedure in our experiments. Initially, the
model is trained using an @-balanced loss. Once
the training process reaches a stable state, we then
introduce the asymmetric loss.

We report the best hyperparameter sets for all
models in Table 8. For the XMTC baselines, the
parameter ranges for the probabilistic-based tree
construction (i.e., with Huffman or K-Means) are
designed to closely resemble the structure of the
ATT&CK taxonomy. This resemblance is achiev-
able thanks to its dot-separated naming convention,
where the prefix represents the super technique.

D.3 Qualitative Studies
In this section, we provide a series of illustrative
examples (see Tables 10 to 12) to qualitatively

showcase the practical efficacy of our methodology
in addressing the compound TTP-Mapping task.
We relate our results with the established LLMs,
such as ChatGPT 4 11, which serve as a reference
to the overall intricacy of this task.

For the setup of ChatGPT, for each text, we cre-
ate a prompt in the following format: What MITRE
ATT&CK techniques (TTPs) are explicitly and im-
plicitly mentioned in the following text: [..]. In
general, the responses provided by Chat-GPT are
remarkable and somewhat accurate in certain in-
stances. However, it is evident that the answers
primarily consist of high-level information (some-
times hallucinatory), with a lack of granularity that
makes it useful, e.g., for precise modeling of the
attack steps.

We provide further a full report analysis of a
threat report released by Mandiant (see Wayback
machine). Each paragraph in the report is pro-
cessed by our model and finally techniques were
assigned to the tactic bins of the MITRE ATT&CK
matrix 12, based on a simple assignment algorithm,
with two constraints (1) maximize total relevant
score (of each TTP) in the bins and (2) maximize
total number of TTP-occurrences in the bins (i.e.,
a TTP can occur in more than one paragraph). Fur-
ther details are in Table 9.

11While being extensively studied, we opt to exclude its re-
sults in our experiments due to the objective prompt-sensitive
performance limitations.

12https://attack.mitre.org/
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Table 8: The default hyperparameters used in the experiments for each model.

Models Hyperparams

O
ur

s @-balanced {cls-ratio: {γ: 0.11}}
InfoNCE {cls-ratio: {γ: 1.}}
asymmetric {γ_pos:1, γ_neg:3, cut-off: 0.1}

- base settings
{learning_rate: 1e-3, auxiliary_task: {α: 0.6, β: 0.4}, batch_size:[2,4,8],
negative_samples:[30,60] sampling_method: random}

- auxiliary {α: 0.6, β: 0.4}

Dynamic Triplet Loss
{cls-ratio: {γ: 0.11} learning_rate: 1e-3, auxiliary_task: {α: 0.6, β: 0.4}, batch_size:[2,4,8],
negative_samples:[30,60] sampling_method: random}

NAPKINXC
{model: PLT, tree_type: {“hierarchicalKmeans”, “huffman”},
arity:{2,10, 20}, max_leaves:{10, 20}, kmeans_eps=0.0001,
kmeans_balanced={True, False}}

XR-LINEAR {mode: “full-model”, ranker_level: 1, nr_splits: 16}

XR-TRANSFORMER
{mode: “full-model”, negative_sampling: [“tfn”, “man”],
, do_fine_tune: True, only_encoder: False}

ExtremeText + Sigmoid {loss: sigmoid, neg: [0, 100], tfidfWeights: True}
ExtremeText + PLT {loss: “plt”, neg: [0, 40], tree_type: {“hierarchicalKmeans”, “huffman”}, tfidfWeights: True}

Table 9: A full report analysis of the Mandiant threat report (see Wayback machine). We compare our results
with the list of TTPs explicitly provided by the same report, Appendix section, with that, we achieve 90% recall,
missing only one technique (Non-Standard Port). All the extracted TTPs from the model are further examined and
confirmed correct by our security experts.

Tactics Techniques
Reconnaissance

• Vulnerability Scanning (T1595.002)

Resource Development
• Vulnerabilities (T1588.006)
• Exploits (T1588.005)

Initial Access
• External Remote Services (T1133)
• Exploit Public-Facing Application (T1190)

Execution
• Windows Command Shell (T1059.003)
• Exploitation for Client Execution (T1203)

Persistence
• BITS Jobs (T1197)
• Windows Service (T1543.003)

Privilege Escalation
• Process Hollowing (T1055.012)
• Exploitation for Privilege Escalation (T1068)

Defense Evasion
• Obfuscated Files or Information (T1027)
• Deobfuscate/Decode Files or Information (T1140)

Discovery
• System Information Discovery (T1082)
• File and Directory Discovery (T1083)

Lateral Movement
• Exploitation of Remote Services (T1210)
• Lateral Tool Transfer (T1570)

Command and Control
• Ingress Tool Transfer (T1105)
• File Transfer Protocols (T1071.002)
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Table 10: Example 1: A threat report text is analyzed by ChatGPT and α-balanced. Here, an important technique
is the Masquerading, described by MITRE as: “Adversaries may attempt to manipulate features of their artifacts
to make them appear legitimate or benign to users and/or security tools. Masquerading occurs when the name
or location of an object, legitimate or malicious, is manipulated or abused for the sake of evading defenses and
observation. This may include manipulating file metadata, tricking users into misidentifying the file type, and giving
legitimate task or service names.“ This technique is missed by ChatGPT, identified by our model, and is ranked
higher than explicit TTPs i.e., Powershell or Visual Basic.

Text After the .NET PE file has been run, we observed the same behavior as the above QUADAGENT sample
of dropping a PowerShell script with the filename SystemDiskClean.ps1 alongside a VBScript file with
the same name. The C2 techniques remained identical, with the only change being the server which
became cpuproc[.]com.}

ChatGPT
Based on the provided text, we can identify several MITRE ATT&CK techniques, both
explicitly and implicitly:

• Execution (T1059): The text mentions the execution of a .NET PE file, indicating the
execution technique.

• Scripting (T1064): The dropping of a PowerShell script (SystemDiskClean.ps1) and a
VBScript file suggests the use of scripting techniques.

• Command and Scripting Interpreter (T1059.003): Specifically, the use of PowerShell
in dropping the SystemDiskClean.ps1 file implies the use of command and scripting
interpreters.

• Deobfuscate/Decode Files or Information (T1140): The use of a .NET PE file
suggests potential obfuscation or encoding that may need to be deobfuscated or
decoded.

• Command and Control (T1043): The mention of a change in the C2 server
(cpuproc[.]com) indicates the use of a different command and control infrastructure.

α-balanced
The top-n ranking is:

1. Masquerading (T1036), score: 0.68

2. PowerShell (T1059.001), score: 0.58

3. Visual Basic (T1059.005), score: 0.52

4. Obfuscated Files or Information (T1027), score: 0.47
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Table 11: Example 2: A threat report text is analyzed by ChatGPT and α-balanced. Here, ChatGPT provides a
correct justification on the use of the common HTTP port 443. This is a false positive from our model, as a simple
text matching fails to reason whether a port number is common or uncommon. Our model however, is still able to
identify the important technique Ingress Tool Transfer, which described by MITRE as: “Adversaries may transfer
tools or other files from an external system into a compromised environment. Tools or files may be copied from an
external adversary-controlled system to the victim network through the command and control channel or through
alternate protocols such as ftp. Once present, adversaries may also transfer/spread tools between victim devices
within a compromised environment.”

Text The Meterpreter downloader ‘TzGG’ was configured to communicate with 91.208.184[.]78 over
port 443 to download the shellcode (MD5: 659bd19b562059f3f0cc978e15624fd9) for Cobalt Strike
BEACON (trial-version).

ChatGPT
Based on the provided text, we can identify several MITRE ATT&CK techniques, both
explicitly and implicitly:

• Data Obfuscation (T1001): The use of the term "shellcode" implies the presence of
binary code that is typically obfuscated and designed to be directly executed.

• Standard Application Layer Protocol (T1071): The communication with IP address
91.208.184[.]78 over port 443 suggests the use of HTTPS, which is a standard
application layer protocol.

• Command and Control (T1043): The Meterpreter downloader ’TzGG’ communicating
with an external server over port 443 indicates a command and control channel.

• Connection Proxy (T1090.002): The use of port 443 may involve the exploitation of
the encrypted communication channel often used for securing web traffic, serving as a
form of connection proxy.

• Impersonation of Legitimate Entity (T1090.002): The mention of Cobalt Strike
BEACON (trial-version) suggests the potential for attackers to impersonate legitimate
entities or tools.

• Application Layer Protocol (T1071.001): The use of port 443 for communication is
specifically associated with the HTTPS protocol at the application layer.

• Download Evil Content (T1105): The Meterpreter downloader ’TzGG’ is configured to
download shellcode for Cobalt Strike BEACON, indicating the download of malicious
content.

• Remote Access Tools (T1219): Cobalt Strike BEACON is a well-known remote access
tool often used by adversaries for post-exploitation activities.

α-balanced
The top-n ranking is:

1. Non-Standard Port (T1105), score: 0.76

2. Ingress Tool Transfer (T1059.001), score: 0.71

3. Application Layer Protocol (T1071), score: 0.59

4. Web Protocols (T1071.001), score: 0.57
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Table 12: Example 3: A threat report text is analyzed by ChatGPT and α-balanced. Here interestingly, both answers
show certain consensus. Our model is still able to match to low-level techniques i.e., Symmetric Cryptography,
derived from the use of RC4 for encryption.

Text Unlike previously identified RedDelta PlugX samples, this one uses a legitimate Avast Proxy executable
for the second DLL side-loading phase rather than the legitimate Adobe executable used in previously
analyzed samples. When loaded into memory, the PlugX payload uses www.systeminfor[.]com for
command and control — the same domain used across the Catholic church-themed PlugX samples.
Across all four newly analyzed samples, the first stage DLL loader files share an identical, uncommon
import hash and rich header with previously observed first stage RedDelta PlugX DLLs. The loaded
PlugX payload also matches the custom RedDelta PlugX variant previously described, using RC4
encryption for C2 communications with the same hardcoded RC4 passphrase and configuration block
decoding function.

ChatGPT
Based on the provided text, we can identify several MITRE ATT&CK techniques, both
explicitly and implicitly:

• DLL Side-Loading (T1073.002): The mention of using a legitimate Avast Proxy
executable for the second DLL side-loading phase indicates the use of DLL
side-loading, a technique where a malicious DLL is loaded into a legitimate process.

• Masquerading (T1036): The use of a legitimate Avast Proxy executable for the second
DLL side-loading phase is a form of masquerading or disguising the malicious activity
to appear legitimate.

• Command and Control (T1043): The PlugX payload uses the domain
www.systeminfor[.]com for command and control, indicating communication with an
external server.

• Standard Application Layer Protocol (T1071): The use of a domain for command
and control suggests the use of standard application layer protocols for communication.

• Data Obfuscation (T1001): The use of RC4 encryption for C2 communications
indicates the obfuscation of communication traffic.

• RC4 (T1027): The mention of using RC4 encryption for C2 communications
specifically refers to the use of the RC4 symmetric encryption algorithm.

• Data Encoding (T1132): The use of RC4 encryption can be considered a form of data
encoding for communication between the implant and the C2 server.

• Encoded/Encrypted Files or Information (T1022): The RC4 encryption is used for
encrypting communications between the PlugX payload and the C2 server, securing the
information exchanged.

• Registry Run Keys / Startup Folder (T1060): While not explicitly mentioned in the
provided text, the persistence mechanism used by PlugX (loading into memory) often
involves leveraging registry run keys or startup folders.

α-balanced
The top-n ranking is:

1. DLL Side-Loading (T1574.002), score: 0.81

2. Obfuscated Files or Information (T1027), score: 0.56

3. DLL Search Order Hijacking (T1574.001), score: 0.52

4. Encrypted Channel (T1573), score: 0.49

5. Symmetric Cryptography (T1573.001), score: 045

6. Deobfuscate/Decode Files or Information (T1140), score: 0.32

7. Masquerading (T1036), score: 0.32

8. Registry Run Keys / Startup Folder (T1547.001), score: 0.31
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