
Findings of the Association for Computational Linguistics: EACL 2024, pages 347–354
March 17-22, 2024 c©2024 Association for Computational Linguistics

Improving Cross-Domain Low-Resource Text Generation through LLM
Post-Editing: A Programmer-Interpreter Approach

Zhuang Li, Levon Haroutunian,
Raj Tumuluri, Philip Cohen, Gholamreza Haffari

Openstream.ai
{zhuang.li, levon, raj, phil.cohen, reza.haffari}@openstream.com

Abstract

Post-editing has proven effective in improv-
ing the quality of text generated by large lan-
guage models (LLMs) such as GPT-3.5 or GPT-
4, particularly when direct updating of their
parameters to enhance text quality is infeasi-
ble or expensive. However, relying solely on
smaller language models for post-editing can
limit the LLMs’ ability to generalize across do-
mains. Moreover, the editing strategies in these
methods are not optimally designed for text-
generation tasks. To address these limitations,
we propose a neural programmer-interpreter ap-
proach that preserves the domain generalization
ability of LLMs when editing their output. The
editing actions in this framework are specif-
ically devised for text generation. Extensive
experiments demonstrate that the programmer-
interpreter significantly enhances GPT-3.5’s
performance in logical form-to-text conversion
and low-resource machine translation, surpass-
ing other state-of-the-art (SOTA) LLM post-
editing methods in cross-domain settings.

1 Introduction

Large pre-trained language models like GPT-3.51

or GPT-42 have gained significant attention in nat-
ural language research. However, fine-tuning these
models for specific tasks is challenging due to lim-
ited computational resources or inaccessible pa-
rameters. Consequently, many researchers resort to
using web APIs for instructing LLMs, leveraging
zero-shot or few-shot in-context learning, enabling
the LLMs to tackle tasks they weren’t explicitly
trained for. Unfortunately, this approach falls short
when tackling some low-resource sequence genera-
tion tasks in machine translation (MT), and logical
form (LF)-to-text translation, as shown in Lai et al.
(2023); Haroutunian et al. (2023). In such cases,
minimal task-specific data was available during the

1https://platform.openai.com/docs/models/gpt-3-5-turbo
2https://platform.openai.com/docs/models/gpt-4-and-gpt-

4-turbo

original
 نىا نزَ ینکٔ هتِي ، هِچ ہِت ہٕٹسيٹ لنشىت

مازکىا سنيرٹنىا یڈ یيآ

generator

programmer

hypothesis #2
there are also such tests as nid
entrance exams in kashmiri
institutes in a form.

interpreter

hypothesis #1
there is a woman who came to
give the national test here .

hypothesis #3
there are national tests like the
nid entrance exam , too .

programmer

interpreter

programmer

action set #1
DELETE woman
DELETE who
INSERT nid
...

action set #2
DELETE such
DELETE kashmiri
DELETE institutes
...

Figure 1: The diagram of our post-editing architecture.

LLMs’ pre-training phase. The output quality of
LLMs for such tasks is compromised due to the
absence of task-specific knowledge.

To address this challenge, a promising set of
solutions suggests integrating task-specific knowl-
edge into language models through post-editing
the generated text using a smaller model fine-tuned
on task-specific data. Yet, these methods are not
without their drawbacks. Our findings indicate that
exclusive reliance on a smaller model for editing,
e.g. Self-Correct (Welleck et al., 2022), results
in suboptimal performance in domain generaliza-
tion scenarios, likely due to the inherently limited
domain knowledge within these smaller models.

As LLMs (i.e. GPT-3.5 or GPT-4) have shown
superior domain generalization ability (Wang et al.,

347

2023; Yang et al., 2023) over the fine-tuned model,
we introduce an innovative approach based on
the programmer-interpreter framework (Reed and
de Freitas, 2016), which benefits from the domain
generalization ability from LLMs. The program-
mer component - a smaller language model fine-
tuned on task-specific data - delivers precise edit in-
structions to the larger language model, thus infus-
ing the large model with task-specific knowledge.
The interpreter, in turn, edits the large model’s out-
put given the provided instructions. Contrary to
the Self-Correct (Welleck et al., 2022) approach
that utilizes smaller, fine-tuned models for edit-
ing, our interpreter is also an LLM. The editing is
accomplished through the use of prompts that in-
clude editing instructions, eliminating the need for
any additional fine-tuning. This distinct framework
guarantees the preservation of the LLM’s domain
generalization ability while simultaneously benefit-
ing from the task-specific knowledge encoded by
the programmer. Our method distinguishes itself
from approaches like PiVe (Han et al., 2023), which
also employ an LLM as the interpreter but focus on
graph generation tasks. In contrast, our approach
specifically designs word-level editing actions in
the instructions, tailored to enhance text generation.
This targeted strategy renders our method more
effective for text-generation tasks.

Overall, our key contributions are as follows:

• We introduce a novel programmer-interpreter
method that enhances LLM in low-resource
cross-domain text generation tasks. This ap-
proach capitalizes on the programmer’s ability
to encode task-specific knowledge and the in-
terpreter’s prowess in domain generalization.

• We design editing operations optimized for
text generation tasks, leading to substantial
text quality improvements by simply prompt-
ing the LLMs with action instructions.

• In scenarios where training and test data span
different domains, our comprehensive empir-
ical studies confirm that the method outper-
forms all existing LLM post-editing baselines
in low-resource MT and LF-to-Text.

2 Programmer-Interpreter Approach

The objective in LF-to-text and MT tasks using
LLMs is to generate a high-quality output text y,
denoted as y′ = argmaxy∈Y P (y|x, C), given an
input x (e.g., LF, source-language utterance) and an

exemplar pool C = {(xj ,yj ,y
∗
j ,a

∗
j)}

|C|
j=1. Here,

xi and yj are the ground truth input-output pairs,
y∗
j is the imperfect translation of xi, and a∗

j rep-
resents the Oracle edit actions that can modify y∗

j

into yj . Our approach focuses on achieving high-
quality generation through iterative refinement of
the initial output text produced by an LLM. Specif-
ically, the iterative refinement framework includes
three-parameterized modules: a Generator, a Pro-
grammer, and an Interpreter,3

P (yt|x, C) =
Generator︷ ︸︸ ︷

P (y0|x,M(·))× (1)

t−1∑

{a,y}

t−1∏

i=0

(

Interpreter︷ ︸︸ ︷
P (yi+1|ai,yi,x, A(·))×

Programmer︷ ︸︸ ︷
P (ai|yi,x))

(2)

The Generator corresponds to the LLM (e.g. GPT-
3.5, GPT-4). It produces the initial output text, y0,
given the input x, a set of examples retrieved by
the function M(x, C) when performing in-context
learning. The Programmer, a module that cre-
ates editing actions ai given x and the current
imperfect output yi, is a pre-trained Sequence-to-
Sequence (Sutskever et al., 2014) language model,
such as mT5 (Xue et al., 2021) or flan-T5 (Chung
et al., 2022), fine-tuned on a synthetic dataset. The
Interpreter, essentially also an LLM, refines the
imperfect intermediate output yi by processing in-
structions that incorporate predicted editing actions
and few-shot editing examples, retrieved via the
function A(x, C). Please note that the Programmer
has much fewer parameters than the LLM used by
the Generator and Interpreter. After several itera-
tive refinements, we arrive at the final output yt

generated by the LLM. During generation, we as-
sume no access to the parameters of the LLMs but
only obtain the output text by providing prompting
instructions. The implementation details of each
module are as follows:

Generator. To generate the initial output, we sup-
ply a prompt composed of a few-shot set of exem-
plar pairs, denoted as M(x, C) = {(xj ,yj)}mj=1,
selected from a pool of reference pairs C. This is
accompanied by an instruction prompting the LLM
to produce output y0 based on the input x. The
retrieval function identifies the closest pairs by cal-
culating the cosine similarity of TF-IDF features
between x and other instances of x in C.

3To save space, we simplify the marginalization notation.

348

Programmer. After obtaining the initial or inter-
mediate output yi from either the Generator or the
Interpreter, we combine the input x and yi into a
single sequence and feed it to the Programmer to
generate a sequence of edit actions ai. We create a
synthetic training set T , extracted from the exam-
ple pool C, for fine-tuning the Programmer. Each
pair in T is defined as (xconcat,a

∗), where xconcat

is the concatenated sequence of x and y∗, serving
as the input for the Programmer. The output a∗ is
the sequence of Oracle edit actions, synthetically
generated based on the reference pairs in C. For
each reference y ∈ C, we calculate the word-level
edit distance to the imperfect translation y∗, gener-
ating intermediate edit actions. Only INSERT-word
and DELETE-word actions are retained in the se-
quence, forming the final training sequence a∗ for
the Programmer. If y∗ is identical to the reference
y, the action is labeled as “NoAction”, indicating
that no refinement is needed for that instance. Un-
like PiVe, which generates the imperfect translation
y∗ by scrambling the original y, we directly use the
initial output y0 from the Generator as y∗ in both
C and T . This approach enables the Programmer
to learn an action distribution that more effectively
corrects translation errors from LLMs.

Interpreter. To edit the intermediate output yi,
we engage the LLM in the Interpreter role by pro-
viding it with prompting instructions. Given the
edit instructions ai and a pair (yi,x), the LLM
can INSERT or DELETE words in order to gen-
erate the modified text yi+1. We also incorpo-
rate a few-shot examples that demonstrate edit-
ing procedures, extracted from C and denoted as
A(x, C) = {(xj ,yj ,y

∗
j ,a

∗
j)}nj=1. These examples

are selected based on the cosine similarity between
the TF-IDF features of x and those in C. Further-
more, to mimic action prediction errors from the
Programmer, we adopt an adversarial in-context
learning strategy, similar to the approach in Zhuo
et al. (2023). This involves corrupting the action
sequence by deleting Oracle actions with a cer-
tain probability d%. If an action is not deleted,
we swap it with other actions from C at the same
probability d%. Through this manipulation, we
have discovered that the LLM’s exceptional text
generalization ability enables it to effectively com-
prehend the editing instructions. As a result, it
can generate high-quality text after performing the
necessary edits, even if the predicted actions from
the Programmer are not completely accurate. See

Figures 2 and 3 in the Appendix for zero/few-shot
instruction examples.

3 Experiments

Setup. In our experiments, we default to using
GPT-3.5-turbo-0301 as the LLM for the Generator
in both the zero-shot and few-shot settings. For
the Interpreter, we use GPT-3.5-turbo-0301 in the
zero-shot setting and GPT-3.5-turbo-16k4 in the
few-shot setting. For the Generator used across all
settings and baselines, we consistently use 0 and 5
shots for MT and LF-to-Text, respectively. For the
Interpreter in the few-shot setting, we apply 10 and
5 action examples for MT and LF-to-Text, respec-
tively, with a 50% action corruption probability.
For the MT and LF-to-Text tasks, we employ mT5-
base and flan-T5-base as the backbones of the Pro-
grammers, respectively. These backbone choices
are driven by our emphasis on a computationally
efficient setup, ensuring the models fit within an
Nvidia V100 with 16GB memory. We train our
programmers with a development set to select the
optimal model. Our search for the best learning
rate includes [5e-5, 1e-4, 2e-4], while the range of
epochs considered is [5, 10, 20], with batch sizes
4. GPTs require no fine-tuning. Each generation
of 1096 tokens costs approximately $0.0015. For
Self-Correct and Self-Refine, we perform five edit-
ing iterations. Prog-Refine and Algo-Refine stop
when more than 95% of action is ‘NoAction’.

Datasets. To simulate low-data scenarios, in the
context of MT, we utilize a Kashmiri-English
dataset from IndicTrans2 (Gala et al., 2023). Since
Kashmiri is a notably low-resource language, trans-
lating it poses a formidable challenge for LLMs.
The dataset provides 26,016 training pairs, which
we use to generate synthetic data for action gener-
ation. The development set consists of 997 pairs.
The dataset includes two distinct test sets, GEN and
CONV, with 1,024 and 1,503 pairs, respectively.
Each of the training, development, and test sets
originates from different domains. For LF-to-Text,
we employ the AMR-LDC2.05 dataset, which con-
tains 22,550 AMR-English pairs for training and
1,368 pairs for development. For testing, we turn
to a separate dataset, Bio-AMR6, which offers 500
pairs in a different domain. Likewise, the AMR-to-
Text task poses a low-resource challenge for LLMs.

4https://platform.openai.com/docs/models/gpt-3-5-turbo
5https://catalog.ldc.upenn.edu/LDC2017T10
6https://amr.isi.edu/download.html

349

MT (Kashmiri to English) LF-to-Text (AMR to English)

GEN CONV Bio-AMR
Method BLEU BERT ChrF++ BLEU BERT ChrF++ BLEU BERT ChrF++

Fine-tuned mT5/flan-T5 16.58 89.32 41.77 13.19 88.83 33.03 9.27 87.90 41.06

GPT-3.5
Initial 9.21 87.29 34.30 5.92 87.24 26.23 9.63 88.57 43.98
Self-Correct 13.11 89.02 38.98 12.73 89.61 33.76 11.64 89.44 46.05
Algo-Refine 8.40 86.92 39.66 6.29 87.31 32.21 7.72 86.64 43.39
Self-Refine 8.13 86.54 31.78 4.73 86.55 24.13 8.67 87.34 39.63
Prog-Refine (Zero-shot Act.) 13.81 88.58 39.00 12.09 89.41 33.41 11.43 89.30 45.44
Prog-Refine (Few-shot Act.) 16.32 90.36 42.44 14.78 90.19 35.48 13.64 89.27 47.69
Prog-Refine (ORACLE) 43.48 92.11 65.29 42.42 93.00 42.42 27.77 90.01 52.86

Table 1: The main results of MT on GEN and CONV test sets, and LF-to-Text on Bio-AMR test set.

Baselines. We evaluate our approach, Prog-
Refine, which utilizes zero-shot action exemplars
(Zero-shot Act.) and few-shot action exemplars
(Few-shot Act.) for Interpreters, against five base-
line methods and an ORACLE setting

i) Fine-tuned Models include mT5-base for MT
and flan-T5-base for LF-to-Text generation, both of
which are fine-tuned on the training set consisting
of pairs (x,y) ∈ C. These baseline models do not
perform any refinement.

ii) GPT-3.5 + Initial simply applies the GPT-
3.5 as the Generator to obtain the text without any
further refinement.

iii) GPT-3.5 + Self-Correct (Welleck et al.,
2022) fine-tunes smaller models to be the Inter-
preter, fixing the output errors of the large models
given the feedback. Here, we supply the edit ac-
tions produced by our Programmer as feedback to
the fine-tuned Interpreters. These Interpreters are
also built upon mT5-base or flan-T5-base.

iv) GPT-3.5 + Algo-Refine directly ‘Insert’ or
‘Delete’ specific words in certain positions of the
generated text instead of using an Interpreter to
rewrite. Therefore, in this baseline, we also ap-
ply the Interpreter to predict the indices of words
for actions. This method is prevalent in the MT
literature; e.g. see Vu and Haffari (2018).

v) GPT-3.5 + Self-Refine (Madaan et al., 2023)
leverages an LLM to provide feedback for its own
output, enabling self-refinement without the need
for additional fine-tuning.

vi) GPT-3.5 + Prog-Refine (ORACLE) applies
the ORACLE actions generated by comparing the
reference in the test set with the initial output of the
Generator, allowing for optimal refinement after
one iteration in the Zero-shot Act. setting.

Evaluation Metrics. For LF-to-Text and MT
tasks, we utilize three evaluation metrics to assess
the quality of the final output text generated by the

Programmer-Interpreter framework: BLEU (Pap-
ineni et al., 2002), BERTScore (Zhang et al.) and
Chrf++ (Popović, 2017).

3.1 Main Results and Analysis

Table 1 shows that GPT-3.5 + Prog-Refine notably
boosts the Generator’s performance (i.e., GPT-3.5
+ Initial), underlining our method’s effectiveness in
cross-domain scenarios by enhancing initial GPT-
3.5 outputs. Moreover, the few-shot setting (Few-
shot Act.) significantly outperforms both the zero-
shot (Zero-shot Act.) setting and all other refine-
ment baselines. It’s also noteworthy that apply-
ing ORACLE action to our method can lead to a
roughly 30-point increase in BLEU score, suggest-
ing substantial potential for improvement in our ap-
proach. In comparison, Self-Refine shows minimal
improvement, possibly due to its limited integration
of task-specific knowledge. Algo-Refine inconsis-
tently improves the initial text, lacking the robust-
ness seen in our method. We note that rewriting
Interpreters, as in our approach and Self-Correct,
can eliminate invalid actions, thus enhancing edit-
ing quality. However, Algo-Refine does not pos-
sess this capability and is susceptible to incorrect
feedback actions. The Self-Correct method, us-
ing a fine-tuned Interpreter, along with fine-tuned
mT5/flan-T5 models, demonstrates better perfor-
mance than other baselines across various tasks.
This underscores the importance of learning task-
specific knowledge, especially in low-resource sce-
narios. Nonetheless, these methods face significant
challenges in cross-domain applications, as further
evidenced by our analysis in Table 4.

3.2 Ablation Study

Refinement Iterations. In Table 2, we observe
that Prog-Refine significantly improves the initial
output generated by the Generator. However, it
only demonstrates marginal improvements in the

350

MT (Kashmiri to English)

#Iter BLEU BERT ChrF++ NoAct%

Iter 0 5.92 89.00 33.27 17.70
Iter 1 11.01 89.18 33.05 79.71
Iter 2 11.87 89.36 33.41 90.67
Iter 3 12.09 89.41 33.41 95.28
Iter 4 12.26 89.45 33.43 97.21
Iter 5 12.36 89.47 33.39 -

Table 2: The influence of multiple iterations on main
results of MT using Prog-Refine (Zero-shot Act.) on
CONV test set. NoAct%: The percentage of utterances
requiring no refinement, as indicated by ‘NoAction’.

MT (Kashmiri to English)

BLEU BERT ChrF++

Initial 5.92 89.00 33.27

Edit: DEL, INS 12.36 89.47 33.39
Edit: DEL 12.27 89.42 33.21
Edit: INS 12.18 89.45 33.42

Unordered: DEL, INS 7.12 87.86 29.21
Unordered: DEL 6.52 87.51 26.46
Unordered: INS 7.14 88.04 30.38

Table 3: The results of MT using Prog-Refine (Zero-
shot Act.) on CONV test set with different types of
actions. Edit: Actions are generated based on edit dis-
tance. Unordered: Actions without any specific order.
INS: Insertion. DEL: Deletion.

subsequent outputs from the Interpreter, even after
four additional iterations. We hypothesize that this
limited improvement may be attributed to training
the model solely on synthetic data generated by
the Generator, so the action distribution might be
different to the ones for modifying the output of
the Interpreter in the subsequent iterations.

Action Types. We further examine the impact
of solely utilizing one type of action and the in-
fluences of disregarding the sequence of these ac-
tions. In the setting with unordered actions, oracle
actions are generated by simply contrasting the dif-
ferences within two sentences’ unordered sets of
words. As depicted in Table 3, the Delete and In-
sert actions, when used individually, can deliver
performance metrics on par with when they are
combined. However, ignoring the order of actions
can lead to a substantial decline in the refinement
performance. This highlights that LLM editing
methods like PiVe, which utilize unordered inser-
tions, are not optimally suited for our tasks. Further
analysis is in Appendix A.5.

Domain Discrepancy. As shown in Table 4, a
domain shift dramatically impacts the performance
of flan-T5 and Self-Correct. While both baseline
models show markedly superior performance on

LF-to-Text (AMR to English)

Method BLEU BERT ChrF++

Fine-tuned flan-T5 34.63 95.05 66.97
GPT-3.5

Initial 19.67 92.10 55.98
Self-Correct 34.49 94.68 66.81
Self-Refine 16.16 91.08 52.78
Prog-Refine 29.12 94.01 64.85

Table 4: LF-to-Text results using Prog-Refine (Zero-
shot Act.) on the in-domain LDC test.

LF-to-Text (AMR to English)

Rate BLEU BERT ChrF++

0.0 12.06 89.31 46.23
0.2 12.35 89.36 46.49
0.5 13.64 89.27 47.69
1.0 11.97 89.32 46.13

Table 5: LF-to-Text results using Prog-Refine (Few-shot
Act.) vary with different corruption probabilities for the
action sequence in the adversarial in-context examples
used for the Interpreter.

the in-domain test set relative to our model, ours
either surpasses or equals their performance in the
cross-domain MT and AMR-to-Text test sets. This
disparity in performance is likely due to the smaller
models’ limited cross-domain generalization. Sim-
ilarly, in MT tasks, our preliminary experiments
show that fine-tuned mT5 achieves 30 points of
BLEU on the in-domain test but only 16 and 13 on
out-of-domain tests. For further details on domain
discrepancies, see Appendix A.3.

Adversarial In-context Learning. Table 5 in-
dicates 0.0 for no corruption and 1.0 for com-
plete discarding of exemplar actions, leaving only
(xj ,y

∗j,yj)nj=1. Rates between 0.0 and 1.0 rep-
resent partial corruption of Oracle actions. The
results suggest that neither full application nor total
corruption of Oracle actions is optimal. However,
partial corruption leads to improved performance.
Additionally, across all corruption rates, few-shot
settings consistently outperform zero-shot settings.

4 Conclusions

We present a programmer-interpreter method that
iteratively refines LLM outputs using edit actions
from a fine-tuned programmer and an LLM inter-
preter. Our approach combines the task-specific
encoding capacity of a fine-tuned model with the
domain generalization strength of the LLM, incor-
porating specifically designed actions for text gen-
eration. The experiments confirm its efficacy, show-
ing significant improvements in LLM-generated
text quality for low-resource MT and LF-to-Text
tasks. Moreover, our approach outperforms estab-
lished baselines in cross-domain scenarios.

351

5 Limitations

This work has two primary limitations. First, in
in-domain tests, our approach does not outperform
smaller models, such as mT5 and flan-T5. Consid-
ering the performance improvements we observed
when using ORACLE actions, we believe there is
substantial potential to further enhance our method
for text generation in the in-domain evaluation set-
ting. Second, our approach requires internet trans-
mission of prompt instructions to the servers of
ChatGPT. This could potentially lead to a risk of
privacy leakage, which is a critical concern in data-
sensitive applications.

References
Hyung Won Chung, Le Hou, Shayne Longpre, Bar-

ret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2022. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416.

Jay Gala, Pranjal A Chitale, Raghavan AK, Sumanth
Doddapaneni, Varun Gumma, Aswanth Kumar, Janki
Nawale, Anupama Sujatha, Ratish Puduppully, Vivek
Raghavan, et al. 2023. Indictrans2: Towards high-
quality and accessible machine translation models
for all 22 scheduled indian languages. arXiv preprint
arXiv:2305.16307.

Jiuzhou Han, Nigel Collier, Wray Buntine, and Ehsan
Shareghi. 2023. Pive: Prompting with iterative verifi-
cation improving graph-based generative capability
of llms. arXiv preprint arXiv:2305.12392.

Levon Haroutunian, Zhuang Li, Lucian Galescu, Philip
Cohen, Raj Tumuluri, and Gholamreza Haffari. 2023.
Reranking for natural language generation from logi-
cal forms: A study based on large language models.
arXiv preprint arXiv:2309.12294.

Viet Dac Lai, Nghia Trung Ngo, Amir Pouran Ben
Veyseh, Hieu Man, Franck Dernoncourt, Trung Bui,
and Thien Huu Nguyen. 2023. Chatgpt beyond en-
glish: Towards a comprehensive evaluation of large
language models in multilingual learning. arXiv
preprint arXiv:2304.05613.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2023. Self-refine: Iterative refinement with
self-feedback. arXiv preprint arXiv:2303.17651.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318.

Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers,
John Thickstun, Sean Welleck, Yejin Choi, and Zaïd
Harchaoui. 2021. MAUVE: measuring the gap be-
tween neural text and human text using divergence
frontiers. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), pages 4816–4828.

Maja Popović. 2017. chrf++: words helping character
n-grams. In Proceedings of the second conference on
machine translation, pages 612–618.

Scott E. Reed and Nando de Freitas. 2016. Neural
programmer-interpreters. In International Confer-
ence on Learning Representations (ICLR).

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
Advances in neural information processing systems,
27.

Thuy Vu and Gholamreza Haffari. 2018. Auto-
matic post-editing of machine translation: A neural
programmer-interpreter approach. In Proceedings of
the 2018 conference on empirical methods in natural
language processing, pages 3048–3053.

Jindong Wang, HU Xixu, Wenxin Hou, Hao Chen,
Runkai Zheng, Yidong Wang, Linyi Yang, Wei Ye,
Haojun Huang, Xiubo Geng, et al. 2023. On the
robustness of chatgpt: An adversarial and out-of-
distribution perspective. In ICLR 2023 Workshop
on Trustworthy and Reliable Large-Scale Machine
Learning Models.

Sean Welleck, Ximing Lu, Peter West, Faeze Brah-
man, Tianxiao Shen, Daniel Khashabi, and Yejin
Choi. 2022. Generating sequences by learning to
self-correct. arXiv preprint arXiv:2211.00053.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and
Colin Raffel. 2021. mt5: A massively multilingual
pre-trained text-to-text transformer. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 483–498.

Jingfeng Yang, Hongye Jin, Ruixiang Tang, Xiaotian
Han, Qizhang Feng, Haoming Jiang, Bing Yin, and
Xia Hu. 2023. Harnessing the power of llms in prac-
tice: A survey on chatgpt and beyond. arXiv preprint
arXiv:2304.13712.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Wein-
berger, and Yoav Artzi. Bertscore: Evaluating text
generation with bert. In International Conference on
Learning Representations.

Terry Yue Zhuo, Zhuang Li, Yujin Huang, Fatemeh
Shiri, Weiqing Wang, Gholamreza Haffari, and Yuan-
Fang Li. 2023. On robustness of prompt-based se-
mantic parsing with large pre-trained language model:
An empirical study on codex. In Proceedings of the
17th Conference of the European Chapter of the As-
sociation for Computational Linguistics, pages 1090–
1102.

352

A Appendix

A.1 Prompt Example for Editing Text

Figures 2 and 3 depict the exemplary zero/few-shot
prompt employed in LF-to-Text.

You are a AMR translator and you are proficient with both AMR and English.

You are given the following AMR logical form:

(q / quote-01 : arg0 (r / report) : arg2 (a2 / and : op1 (g / government-organization :
arg0-of (g4 / govern-01 : arg1 (c / country : wiki `` greece '' : name (n2 / name : op1 ``
greece '')))) : op2 (g2 / government-organization : arg0-of (g5 / govern-01 : arg1 (c2 /
country : wiki `` turkey '' : name (n4 / name : op1 `` turkey '')))) : op3 (g3 /
government-organization : arg0-of (g6 / govern-01 : arg1 (c3 / country : wiki `` belarus '' :
name (n6 / name : op1 `` belarus ''))))) : arg3 (a / acknowledge-01 : arg0 a2 : arg1 (
m / miss-02 : arg0 a2 : arg1 (d / deadline))))

You are given the following English translation:

the report quotes the governments of greece , turkey and belarus acknowledging that
they missed the deadline .

Please improve the above English translation using the following edit rewriting actions:

DELETE : quotes
INSERT : quoted
INSERT : as
DELETE : they
...
INSERT : missed

Please only show the English sentence:

Figure 2: The zero-shot exemplary prompt for LF-to-
Text.

Here are the edit rewriting examples:

Example 1:

You are a AMR translator and you are proficient with both AMR and English.
You are given the following AMR source logical form:

(i / increase-01 : arg1 (e / express-03 : arg2 (p / protein)) : arg2 (p2 / product-of : op1 10)
: arg1-of (s / statistical-test-91 : arg2 (l / less-than : op1 0.05)))

You are given the following English translation:

there was a statistically significant increase in protein expression (10 fold , p < 0.05) .

Please improve the above English translation using the following edit rewriting actions:

DELETE "was" from the translation
DELETE "significant" from the translation
DELETE "fold" from the translation
DELETE "increase" from the translation

Please provide a fluent English sentence that is semantically equivalent to the AMR logical
form after editing its corresponding English translation.

Improved English sentence:

protein expression increased 10-fold (p < 0.05) .

Example 2:
 ...
Example 3:
 ...
Example 4:
 ...

Figure 3: The few-shot exemplary prompt for LF-to-
Text.

A.2 Adaption of Self-Corrector

In our experiment, we adapted the implementation
of the Self-Corrector to better suit our specific re-
quirements. To customize it for our context, we
constructed the training set for the Self-Corrector’s
Interpreter as follows: the input consists of a con-
catenation of Kashrimi/AMR, text produced by the

splits compared KL-div ↓ MAUVE ↑
train, dev 2.23 0.006
dev, testgen 1.97 0.231
train, testgen 1.94 0.005
dev, testconv 2.97 0.040
train, testconv 2.98 0.007

Table 6: Measures of domain difference across dif-
ferent splits of the machine translation datasets. KL-
divergence scores are calculated for the English sen-
tences in each data split, with additive smoothing (α =
1× 10−4). For MAUVE, 5000 sentences are sampled
from the training set.

splits compared KL-div ↓ MAUVE ↑
train, dev 2.00 0.512
dev, testi.d. 2.39 0.327
train, testi.d. 1.97 0.342
dev, testbio 6.01 0.004
train, testbio 5.48 0.004

Table 7: Measures of domain difference across different
splits of the AMR dataset. KL-divergence scores are
calculated for the English sentences in each data split,
with additive smoothing (α = 1× 10−4). For MAUVE,
5000 sentences are sampled from the training set.

Generator, and edit actions. The output, on the
other hand, is the ground truth text. For a fair com-
parison with our approach and to minimize training
and data collection expenses, models are trained
only during the first iteration. Additionally, the gen-
eration of the training set solely utilizes text from
the Generator in the initial iteration, without using
text from the Interpreter in subsequent refinement
iterations.

A.3 Measures of Domain Discrepancy

Tables 6 and 7 present domain discrepancies for the
training/development/testing sets for the MT and
LF-to-text generation tasks. The domain discrep-
ancy measures include the KL-divergence (based
on the unigram distributions) and MAUVE (Pil-
lutla et al., 2021). KL-divergence scores are higher
when two distributions are more different from
each other. MAUVE scores, which have a range
(0,1), are lower when two distributions are more
different from each other.

Based on Table 6, we observe that the domain
of test-gen is closer to the training set compared to
that of the test-conv. This is pronounced in higher
KL-divergence and lower MAUVE numbers for
the test-conv compared to test-gen, with respect to

353

INSERT DELETE Total

MT 33.64 83.73 62.57
NLG 24.52 60.48 44.90

Table 8: The F1 scores of comparing the predicted ac-
tions with the ORACLE actions in the GEN test set.

LF-to-Text (AMR to English)

BLEU BERT ChrF++

GPT-3.5-turbo-16k 11.43 89.30 45.44
GPT-4-turbo 11.72 89.36 45.58

Table 9: LF-to-Text results of Prog-Refine (Zero-shot
Act.) in zero-shot setting with different LLMs as Inter-
preters.

the training set.
Based on Table 7 , we observe a higher differ-

ence for the domain of the biology-AMR test com-
pared to the LDC2.0-AMR test set, with respect to
the training/development sets of the LDC2.0-AMR
dataset. This is pronounced in larger KL diver-
gence and lower MAUVE numbers compared to
those for the LDC2.0-AMR test set.

A.4 F1 Definition for Action Prediction

F1 = 2× Pact ×Ract

Pact +Ract
(3)

Here, Pact represents action precision, defined as
the ratio of predicted actions present in the refer-
ence action sequence to the total number of pre-
dicted actions. Ract denotes action recall, which
is the ratio of predicted actions that appear in the
reference action sequence to the total number of ac-
tions in the reference sequence. The F1 score, thus,
provides a harmonious mean of these two metrics.

A.5 F1 for Action Prediction
Table 8 reveals that predicting INSERT actions
is a relatively easier task compared to predicting
DELETE actions. This observation is reasonable
since the Programmer only needs to learn how to
DELETE words from the text with a fixed vocabu-
lary, whereas, for INSERT actions, the Programmer
must learn to INSERT arbitrary words.

A.6 Comparing GPT-4 and GPT-3.5 as
Interpreters

Table 9 illustrates the performance differences in
the LF-to-Text task when using GPT-4 and GPT-
3.5 as Interpreters for Prog-Refine (Zero-shot Act.).
While GPT-4 offers a slight performance boost,
the improvement is not substantial, amounting to

only a 0.3 increase in BLEU score. Moreover, this
comes at a higher cost of 0.06 per 1000 characters,
compared to 0.0015 for GPT-3.5.

354

