
Findings of the Association for Computational Linguistics: EACL 2024, pages 2129–2145
March 17-22, 2024 c©2024 Association for Computational Linguistics

Sorted LLaMA: Unlocking the Potential of Intermediate Layers of Large
Language Models for Dynamic Inference

Parsa Kavehzadeh2, Mojtaba Valipour1,2, Marzieh Tahaei2,
Ali Ghodsi1, Boxing Chen2, and Mehdi Rezagholizadeh2

1University of Waterloo
2Huawei Noah’s Ark Lab

{mojtaba.valipour, ali.ghodsi}@uwaterloo.ca,
{parsa.kavehzadeh, mehdi.rezagholizadeh, marzieh.tahaei, boxing.chen}@huawei.com

Abstract

Large language models (LLMs) have revolu-
tionized natural language processing (NLP)
by excelling at understanding and generating
human-like text. However, their widespread de-
ployment can be prohibitively expensive. Sort-
edNet is a recent training technique for en-
abling dynamic inference by leveraging the
modularity in networks and sorting sub-models
based on computation/accuracy in a nested
manner. We extend SortedNet to genera-
tive NLP tasks, making large language mod-
els dynamic without any Pre-Training and by
only replacing Standard Fine-Tuning (SFT)
with Sorted Fine-Tuning (SoFT). Our approach
boosts model efficiency, eliminating the need
for multiple models for various scenarios dur-
ing inference. We show that this approach can
unlock the potential of intermediate layers of
transformers in generating the target output.
Our sub-models remain integral components of
the original model, minimizing storage require-
ments and transition costs between different
computational/latency budgets. The efficacy
of our proposed method was demonstrated by
applying it to tune LLaMA 2 13B on the Stan-
ford Alpaca dataset for instruction following
and TriviaQA for closed-book question answer-
ing. Our results show the superior performance
of sub-models in comparison to Standard Fine-
Tuning and SFT+ICT (Early-Exit), all achieved
with very efficient tuning and without addi-
tional memory usage during inference.

1 Introduction

Large language models are revolutionizing the way
we interact with information in today’s world (Hoff-
mann et al., 2022; Brown et al., 2020; Penedo et al.,
2023; Scao et al., 2022). New models are continu-
ally emerging, demonstrating their capabilities in
understanding and, more importantly, in generating
human-like text. Notably, models such as ChatGPT,
LLaMA 2 70B (Touvron et al., 2023b), and Falcon
180B (Almazrouei et al., 2023) have had a profound

impact on the applicability of large language mod-
els (LLMs). However, deploying these expansive
language models can become prohibitively expen-
sive.

What distinguishes this new era of ChatGPT-like
models is their ability to perform an extraordinar-
ily wide array of tasks in natural language pro-
cessing (NLP), reasoning, and more, all through
behavior cloning (Wei et al., 2021; Wang et al.,
2022). In fact, a single model can leverage the
strong contextual learning ability offered by Stan-
dard Fine-Tuning to address numerous tasks, span-
ning from language comprehension to complex rea-
soning. While this unified usage simplifies the
deployment of these models as general assistants,
it remains highly inefficient. Enabling dynamic
inference, where the computational resources allo-
cated to a given query vary at inference time, can
significantly enhance the practicality of employing
such models in real-time scenarios. This enables
the use of smaller models when the budget is lim-
ited or latency is critical. It is important to note
that dynamic inference strategies for large models
with a substantial number of parameters should not
require loading different models during inference.

Previous research has explored methods for train-
ing dynamic models capable of adapting to evolv-
ing resource constraints (Cai et al., 2019; Hou et al.,
2020; Xin et al., 2020; Fan et al., 2019). However,
existing approaches often rely on complex training
procedures or necessitate modifications to the orig-
inal model architecture. SortedNet (Valipour et al.,
2023) introduces a novel approach to training deep
neural networks that leverages the inherent mod-
ularity of these networks to construct sub-models
with varying computational loads. This method
sorts sub-models hierarchically based on their com-
putation/accuracy characteristics, facilitating effi-
cient deployment during inference. Furthermore, it
employs an efficient updating scheme combining
random sub-model sampling with gradient accumu-

2129

lation to minimize the training cost. Consequently,
with a single round of training, numerous models
can be obtained within a single model.

While the SortedNet approach has primarily
been applied to vision and language understand-
ing tasks, given the significant impact of generative
language models in today’s AI landscape, the effi-
cacy of this method for generative tasks in NLP is
of considerable interest. In fact, being able to make
a large language model dynamic without the need
for Pre-Training and only at the cost of a round of
Standard Fine-Tuning can open doors to efficient
inference of these models without incurring addi-
tional expenses associated with common model
compression methods like knowledge distillation
and pruning, among others. Moreover, since all
the resultant models are components of the original
model, the storage requirements and the cost as-
sociated with transitioning between different com-
putation demands become minimal. Otherwise,
managing multiple models for various scenarios
during inference becomes impractical.

In this study, we challenge the conventional ap-
proach of relying solely on the last layer’s con-
textual embeddings and use Sorted Fine-Tuning
(SoFT) in place of Standard Fine-Tuning to en-
hance the performance of these models across mul-
tiple layers. By doing so, we aim to provide new
insights into the efficiency and effectiveness of mid-
dle layers in producing high-quality results for spe-
cific downstream tasks. Our proposed approach
can potentially optimize these sub-models in addi-
tion to the main model, ultimately enhancing their
overall performance. In this paper, we seek to an-
swer the following questions through systematic
evaluation:

i) Do the intermediate layers resulting from Stan-
dard Fine-Tuning of a large language model gen-
erate accurate and meaningful outputs? ii) Does
Standard Fine-Tuning exhibit a sorted behavior,
meaning that later layers produce more accurate
and meaningful results than earlier layers? If so, to
what extent? iii) How can we enhance this sorted
behavior with minimal cost?

To answer these questions, we employ LLaMA 2
13B and perform both Standard Fine-Tuning (SFT)
and Sorted Fine-Tuning (SoFT) on the Stanford Al-
paca (Taori et al., 2023) and TriviaQA (Joshi et al.,
2017) datasets. For Sorted Fine-Tuning, we tar-
get 8 sub-models and share the LLM head among
them to ensure cost parity. We utilize the PandaLM
benchmark (Wang et al., 2023) to assess the perfor-

mance of the sub-models on Alpaca dataset. Our
findings demonstrate the superior performance of
SoFT in comparison to SFT and even to memory-
demanding methods like Early Exit (Xin et al.,
2020). The contributions of this paper can be sum-
marized as follows:

• Extending the SortedNet method for tuning
auto-regressive language models for genera-
tive tasks by sharing a single LLM head layer
among sub-models.

• Generating 8 nested sub-models, ranging from
12 to 40 layers, from LLaMA2 13B by apply-
ing Sorted Fine-Tuning on the Stanford Al-
paca dataset and TriviaQA benchmarks and at
a cost equivalent to Standard Fine-Tuning.

• Evaluating the performance of the sub-models
of a LLaMA 2 and demonstrating the effec-
tiveness of SoFT in enhancing the ability of
intermediate layers for text generation and
question answering through extensive evalua-
tion.

2 Related Work

This section briefly introduces the most relevant
papers to our work.

Many-in-One Models Deep neural networks
(DNNs) are often overparameterized, motivating
researchers to explore ways to use the parameters
of the models more efficiently. More number of
parameters lead to higher costs of deployment for
neural networks. Moreover, in practice, these over-
parametrized DNNs are expected to accommodate
customers with varying requirements and computa-
tional resources. To address these diverse demands,
one can think of training models of different sizes,
which can be prohibitively costly (in terms of train-
ing and memory), or another alternative is to train
many-in-one networks (Cai et al., 2019). Many-
in-one solutions aim to train a network along with
some of its sub-networks simultaneously for spe-
cific tasks. For example, we can consider the Early-
Exit method (Xin et al., 2020), wherein a prediction
head is fine-tuned on top of specific intermediate
layers within a network. Another approach is Layer
Drop (Fan et al., 2019), which trains a network in
any depth by randomly dropping the layers during
training. While both Early-Exit and Layer Drop
are simple solutions, they are not state-of-the-art in
terms of performance. In Early-Exit, we only train
the output prediction layer on top of each interme-
diate layer, and this layer might not have enough

2130

capacity to retain a good performance. Layer Drop,
conversely, suffers from the abundant number of
possible sub-models in training, which makes the
training process exhaustive and sub-optimal. Fur-
thermore, this approach requires tuning the extent
of dropping layers during training. This additional
hyper-parameter, layer drop rate during training
determines the best size and setting of the model
at the inference time. Deviating from the train-
ing drop rate at the inference time can result in a
significant drop in performance.

Cai et al. (2019) in Once for All (OFA) pro-
posed an alternative solution to neural architecture
search (NAS). OFA requires training the model
and all possible sub-models in an arbitrary pro-
gressive way followed by a separate search phase.
Dyna-BERT (Hou et al., 2020) is another work
that targets training Dynamic pre-trained many-
in-one BERT models in two stages: first, distill-
ing from the main network to the width adaptive
networks and then distilling from the width adap-
tive networks to depth adaptive networks. Both
width adaptive and depth adaptive networks have
a limited pre-defined set of width and depth for
the sub-models. While both OFA and DynaBERT
have shown successful results, their solutions are
hardly applicable to multi-billion-parameter LLMs
because of their complicated multi-stage training
process and their search and knowledge distillation
requirements. SortedNet (Valipour et al., 2023) is a
recent method that forms and trains sub-models of
a network in a sorted manner while not requiring
any search during training or inference. SortedNet
has shown superior performance compared to other
previously mentioned methods in terms of simplic-
ity, performance, scalability, and generalization.
Considering these benefits, we target deploying the
SortedNet training algorithm for developing many-
in-one LLMs.

Many-in-One Large Language Models (LLMs)
Large language models have recently gained sig-
nificant attention in the literature (Touvron et al.,
2023a; Brown et al., 2020; OpenAI, 2023; Chowd-
hery et al., 2022; Ouyang et al., 2022). In
practice, these LLMs serve users with different
tasks, expectations, and computational budget re-
quirements (Sun et al., 2022). There are two
types of adaptation approaches to make LLMs
suitable for customer requirements: first is the
so-called parameter efficient tuning (PEFT), and
second is model compression. In PEFT, the

core backbone model remains the same, and we
just update much smaller adapter parameters (e.g.
LoRA (Hu et al., 2021), KRONA (Edalati et al.,
2022), Adapter (Houlsby et al., 2019; Pfeiffer
et al., 2020), DyLoRA (Valipour et al., 2022), Lad-
der Side-Tuning (Sung et al., 2022)) and Com-
pacter (Karimi Mahabadi et al., 2021). In model
compression, the larger model is compressed us-
ing any model compression solutions such as
knowledge distillation (Hinton et al., 2015; Hsieh
et al., 2023; Wu et al., 2023), pruning (Bansal
et al., 2023), and quantization (Prato et al., 2019;
Dettmers et al., 2023), a good related survey can
be found in (Zhu et al., 2023). Even though PEFT
solutions are pretty popular with LLMs, they do
not provide dynamic-size LLMs. Model compres-
sion solutions can provide models with different
sizes, but they need to train each compressed model
separately, and they are not many-in-one models.

To the best of our knowledge, this work is
the first attempt to obtain many-in-one generative
LLMs by applying the Sorted Fine-Tuning to the
LLaMA 13B model. Considering the benefits of
many-in-one networks and the growing applica-
tion of LLMs, we are hoping that this will help
the community to build more efficient large lan-
guage models that can be deployed adaptive during
inference using methods such as SoFT.

3 Methodology

This paper focuses on making generative LLMs
many-in-one by unlocking the potential of in-
termediate layers through the SortedNet ap-
proach (Valipour et al., 2023).

Let’s consider a language model f(x; θ) with the
parameters θ and the input x. The following is the
sorted training procedure:

Forming Sub-Networks First, we need to form
the sub-networks of the LLM. For the sake of sim-
plicity and without loss of generality, we focus on
the depth-wise sub-networks. Supposed that the
sub-network fn(x; θn) refers to the first n layers
of f(x; θ). In this paper, the language model is
considered to be LLaMA2 13B. Since LLaMA2
comprises 40 layers, we define the sub-networks as
n ∈ B = {12, 16, 20, 24, 28, 32, 36, 40}.

Calculating the Output of Sub-Networks Each
sub-model’s output will be predicted using the
shared output prediction head from the last layer
(original network). Remember that in the LLaMA

2131

Query: Summarize a meeting from the given list of bullet points. Be sure to convert shorthand into a first-hand account.
Rose: Analyze data and presents findings
John: propose new idea
Jane: appointed to head project
Tom: need more time to fix software bug

Layer LLaMA Response (SFT+ICT) Sorted LLaMA Response (SoFT)

12
summatronics21220f0f ... The meeting was held in order to discuss the project and its plans for

the next few months. The presenters were present in the room, and they
were able to provide a detailed explanation of the project and its goals.
The feedback from the meeting was positive and encouraged the team to
continue working towards the goal of delivering the project.

16
The first thing we hear about these characters individually separately
apart aparticularly divisidedly mannered mannerednesses ...

The meeting held at the company’s headquarters, where the three named
individuals were present. The first person named in the report is Rousness,
who has been assigned to task task task. The second person named in the
report is John, who has proposed a new idea. The third person named
in the report is Jane, who has been assigned to task task task. The third
person named in the report is Jane, who has been assigned to task task
task. The second person named in the report is Jane, who has been
assigned to task task task.

20
meeting held meeting held meeting held participants discussion discus-
sion discussion notable mentionsnone none None notable mentionsnone
...

The meeting held in the room with Rose, John, Jane, and Tom discusses
the need for analyzing data and presenting findings , as well as the
proposal of new ideas by John. Jane is appointed to head the project, and
Tom needs more time to fix the software bug.

24
meeting summary: attended attended attended attended ... The meeting was attended by Rose, John, Jane, and Tom. Rose was

tasked with analyzing data and presenting findings. John proposed a new
idea. Jane was appointed to head the project. Tom was granted additional
time to fix the software bug.

28
summary: During meeting participants discuss data analysis findings
presented by Rose followed proposal new idea by John appoint Jane head
project Tom request additional time fix software bug

In the meeting, Rose analyzed data and presented findings, John proposed
a new idea, and Jane was appointed to head the project. Tom also stated
that he needed more time to fix the software bug.

32
summary: During meeting attended by Rose Analyst who analyzed
data presented findings proposed new idea by John appointed Jane head
project Tom Software engineer request more time fix bug

In the meeting, Rose analyzed data and presented her findings, while
John proposed a new idea. Jane was appointed to head the project, and
Tom requested more time to fix a software bug.

36 During the meeting, Rose presented her analysis of data collected from
various sources. John proposed a new idea that could potentially improve
efficiency and increase productivity. Jane was appointed head of a new
project that will be launched soon. Tom requested more time to fix a
software bug that has been affecting the company’vity since last month.

In the meeting, Rose analyzed data and presented her findings, while
John proposed a new idea. Jane was appointed to head the project, and
Tom requested more time to fix the software bug.

40
At the meeting, Rose presented the analysis of the data and shared her
findings with the team. John proposed a new idea that he believed could
benefit the company. Jane was appointed to head a new project that the
company had recently taken on. Tom, however, requested more time
to fix a software bug that had been discovered. The team discussed the
importance of the bug fix and agreed to give Tom the additional time he
needed.

In the meeting, Rose analyzed data and presented her findings. John
proposed a new idea, and Jane was appointed to head the project. Tom
requested more time to fix the software bug.

Table 1: Generated responses in different layers of LLaMA (Early Exit) and Sorted LLaMA for two samples from PandaLM
validation set. Black phrases mean the answer is following the instruction and Red ones demonstrate errors and hallucinations.

model, there is an RMSNorm layer (Zhang and Sen-
nrich, 2019) before the output prediction head. This
RMSNorm is added before the shared prediction
head of every sub-model. This normalization may
be an important factor that helps Sorted LLaMA to
generalize better for all sub-models.
Objective Function Let Ln(x; θn) be the loss
for the nth sub-model for input batch x. To train
the network, we define the loss as the summation
of the losses of all these sub-models:

L =

∑
n∈B Ln(x; θn)

|B| (1)

For the experiments conducted in the paper,
|B| = 8. Note that these sub-models have shared
parameters through a nested style i.e. θ1 ⊂ θ2... ⊂
θn.

Training Dataset We utilized the Stanford Al-
paca dataset (Taori et al., 2023), which includes
demonstrations of 52K instruction-following exam-
ples. We also used TriviaQA open-domain QA
benchmark (Joshi et al., 2017) including 110K
closed-book question-answer pairs.

Evaluation In this paper, in addition to embed-
ding the last layer, we evaluate the quality of the
embeddings of intermediate outputs spanning from
block 1 to n. PandaLM benchmark (Wang et al.,
2023) compares the output of different sub-models.
PandaLM deploys a large language model (Fine-
Tuned LLaMA 7b) to judge the quality of generated
text from two sources. PandaLM provides a valida-

2132

12 (4.1B) -0.118 0.276 0.512 0.441 0.371 0.071 -0.553 -0.797

16 (5.4B) 0.024 0.329 0.506 0.441 0.394 0.132 -0.547 -0.753

20 (6.6B) 0.318 0.612 0.703 0.706 0.647 0.494 -0.203 -0.479

24 (7.9B) 0.494 0.694 0.762 0.797 0.715 0.621 0.024 -0.268

28 (9.2B) 0.535 0.729 0.812 0.788 0.735 0.6 0.076 -0.259

32 (10.4B) 0.671 0.829 0.9 0.874 0.824 0.756 0.235 -0.115

36 (11.7B) 0.691 0.844 0.891 0.874 0.788 0.741 0.271 -0.076

40 (13B) 0.724

12

0.847

16

0.9

20

0.874

24

0.794

28

0.75

32

0.318

36

-0.059

40
So

FT

SFT + ICT (Early-Exit)

12 (4.1B) -0.165 0.147 0.518 0.541 0.429 0.253 -0.471 -0.797

16 (5.4B) -0.047 0.194 0.518 0.55 0.468 0.353 -0.365 -0.753

20 (6.6B) 0.312 0.553 0.712 0.747 0.691 0.6 -0.071 -0.479

24 (7.9B) 0.465 0.606 0.776 0.829 0.762 0.738 0.212 -0.268

28 (9.2B) 0.476 0.706 0.812 0.818 0.774 0.724 0.218 -0.259

32 (10.4B) 0.665 0.788 0.882 0.894 0.821 0.806 0.374 -0.115

36 (11.7B) 0.662 0.797 0.885 0.912 0.797 0.782 0.409 -0.076

40 (13B) 0.688

12

0.835

16

0.9

20

0.906

24

0.8

28

0.803

32

0.45

36

-0.059

40

So
FT

SFT

Figure 1: SoFT vs. SFT + ICT (Early-Exit) (Left) and SoFT vs. SFT (Right). Note that for our SoFT method, the output
prediction layer is shared between all sub-models whereas, for Early-Exit, a separate prediction head is learned per sub-model,
making inference inefficient. Both SoFT and SFT had equivalent training time (2 Epochs) in this experiment. The number
in each cell is calculated by considering wins as the times SoFT sub-models (rows) were preferred, losses as the times SFT
sub-models (columns) were preferred and ties when non of them were preferred (Equation 2).

tion set consisting of 170 instructions1, to evaluate
target models for instruction-following tasks. To
ensure that the order of the models’ responses does
not influence the judgment of the PandaLM evalu-
ator, we reported an average score under both the
Model 1 first and the Model 2 first scenarios. The
output of the PandaLM evaluation is the number of
wins, denoted as W , the number of losses, denoted
as L, and the number of ties, denoted as T , in the
validation set. The final reported score has been
calculated using the following formula:

Score =
(W − L)

T
(2)

The final score is a number between -1 and 1, in
which 1 represents a strong win rate and -1 means
a poor performance of the model.

We used accuracy (exact match) as the evalua-
tion metric for the TriviaQA benchmark.

Baseline The primary objective of the LLM in
this paper is to follow the provided instructions
by a query. Therefore, following the setup of Al-
paca (Taori et al., 2023), we fine-tuned LLaMA2
13B on the Stanford Alpaca Dataset with two se-
tups: (1) Regular Standard Fine-Tuning (SFT) as
the baseline, focusing only on the training of the
last layer of the network as the common practice
in the literature; (2) Sorted Fine-Tuning (SoFT),
calculating loss for multiple outputs from layer 12
to layer 40 (last layer) with four intervals, and train-

1github.com/WeOpenML/PandaLM/blob/main/data/testset-
inference-v1.json

ing multiple models simultaneously as explained
in the previous section.

4 Experiments

This section delves into the experiments’ specifics
and the analysis provided to understand better the
effect of Sorted Fine-Tuning over the performance
of a large language model like LLaMA2 (Touvron
et al., 2023b). Before diving into results, we are
going to define certain notations that we used for
different setups in our experiments:

• SoFT/SFT: We first train the model with
SoFT or SFT paradigms and use the sub-
models after training without any further train-
ing of the language model head for intermedi-
ate layers.

• SFT+Intermediate Classifier Tuning (ICT):
We first train the model with SFT paradigm
and then further fine-tune the language model
head exclusively for each sub-model while
keeping their weights frozen. The SFT+ICT
is also known as Early-Exit (Xin et al., 2020)
in the literature.

• Extracted Fine-Tuning: When we extract
the sub-models from the learned weights of
the pre-trained original model and train each
sub-model separately.

4.1 Experimental Setup
We used the pre-trained LLaMA2 13b weights, pub-
licly available on Hugging Face, as our starting
point. For SFT+ICT (Early-Exit) setup, we froze
the parameters of the transformer blocks and only

2133

further trained the weights of the language model
head classifier for one additional epoch. We used
a batch size of 32 and gradient accumulation of
8. The learning scheduler was cosine annealing.
The learning rate was set to 2e-5 and seed to 42.
We trained the models on 8 V100 32GB GPUs.
The same GPUs were used during inference time.
The training maximum input sequence length was
2024, with a maximum of 50 (TriviaQA) and 256
(PandaLM) generated tokens during inference. Ad-
ditionally, we used greedy search as the decoding
strategy in all of our experiments. We also extended
the huggingface assisted decoding code to imple-
ment Speculative Decoding and Instance-Aware
Adaptive Inference. In Speculative Decoding, we
used adaptive K window-size (the same as hug-
gingface) starting with K=4. In Instance-Aware
Dynamic Inference, we set the confidence thresh-
olds of intermediate layers as follow: Layer 12 =
0.95, Layer 16 = 0.95, Layer 20 = 0.9, Layer 24 =
0.9, Layer 28 = 0.8, Layer 32 = 0.8 and Layer 36 =
0.7.

4.2 What is the effect of sorting information
across layers of a generative model?

As mentioned before, we generated responses for
all the layers n ∈ B for both SFT and SoFT-based
trained models. Then, we conducted a pair-wise
comparison between all the sub-models in the two
trained models using the PandaLM evaluator. As
the results suggest in Figure 1, sorted training sig-
nificantly unlocks the potential of intermediate lay-
ers in generating the desired output.

Sorted LLaMA (aka SoFT) is outperforming reg-
ular fine-tuning (SFT) in nearly all layer compar-
isons by a meaningful margin, as shown through
automated evaluation in Figure 1.

It might be noted that the Layer 12 performance
of SFT is slightly better compared to Layer 12 of
Sorted LLaMA. We argue this is happening be-
cause the outputs of early layers in SFT are mostly
gibberish (see Table 1 as an example), and the Pan-
daLM evaluator has not been trained on such data.
Hence the automatic evaluation results for this layer
are not meaningful. To further investigate the rea-
son behind the results for early sub-models, we
conducted human evaluation on 6 cells of two ta-
bles in Figure 1 (Layer 12 of SFT and SFT+ICT
vs Layers 12,16, and 20 SoFT) to verify our claim.
We observed that SoFT early sub-models could sig-
nificantly outperform sub-model layer 12 of both
SFT and SFT+ICT models, proving the negative

impact of gibberish text on PandaLM evaluator per-
formance. As we go to higher layers in SFT, the
generated text becomes meaningful, which makes
the comparison with the Sorted LLaMA layer coun-
terpart more reasonable.

Moreover, to improve SFT results, inspired by
Early-Exit (Xin et al., 2020), we also tried the sce-
nario in which a separate classifier head is dedi-
cated to all sub-models of SFT. This method has
been introduced in the notation section as SFT+ICT.
These classification heads have been trained an ad-
ditional epoch after SFT tuning while keeping the
base model frozen. Note that this setting suffers
from significant memory overhead during tuning
and inference compared to our SoFT method. In
fact, the extra number of parameters for SFT+ICT
(Early Exit) is |B| − 1×D × V , where |B| is the
number of sub-models, D is the hidden size of the
model, and V is the vocabulary size. For LLaMA
2 13B, this is equivalent to 1B extra parameters.

The results of comparing sorted with the early
exit are shown in figure 1 (Left). Despite hav-
ing far more parameters, SFT+ICT (Early-Exit)
underperforms our sorted tuning for most sub-
models. According to the results, the sub-model in
Sorted LLaMA with 36 layers performs almost as
well as regular fine-tuning of the full-size model.
This showcases the impressive ability of our pro-
posed paradigm to generate powerful, small sub-
models that perform similarly to the original model.
Another experiment that has been conducted in
appendix A.2, further investigated the impact of
longer training time for SoFT. The results show that
our model was still under-trained, and we could ob-
serve a significant improvement in Sorted LLaMA
performance with longer training time.

Moreover, we compared the performance of
Sorted LLaMA sub-models with the actual capac-
ity of these models by fine-tuning the sub-models
separately and reporting the results in both equal
training time and more training time for SoFT. We
extracted 4 sub-models (Layer 12, Layer 20, Layer
28, and Layer 36) and each time fully fine-tuned
the extracted sub-model separately for two epochs
on the Alpaca dataset. Figure 2 and Table 9 shows
the comparison between Extracted Fine-Tuned and
SoFT sub-models. The first part in Table 9 shows
the equal training budget setup (2 Epochs) com-
parison in which SFT demonstrates slightly better
performance compared to the similar SoFT sub-
models. Further training SoFT will lead to better
sorted sub-models in which SoFT outperforms the

2134

fully fine-tuned sub-models, proving the positive
impact of SoFT on the performance of lower sub-
models.

12 (4.1B) -0.05 -0.556 -0.668 -0.756

16 (5.4B) 0.068 -0.468 -0.609 -0.721

20 (6.6B) 0.385 -0.168 -0.385 -0.503

24 (7.9B) 0.506 0.053 -0.156 -0.259

28 (9.2B) 0.582 0.071 -0.085 -0.212

32 (10.4B) 0.721 0.321 0.112 -0.068

36 (11.7B) 0.697 0.341 0.159 -0.056

40 (13B) 0.668

12

0.382

20

0.194

28

-0.041

36

So
FT

Extracted Fine-Tuning

12 (4.1B) 0.138 -0.453 -0.55 -0.659

16 (5.4B) 0.265 -0.276 -0.35 -0.524

20 (6.6B) 0.565 0.032 -0.156 -0.291

24 (7.9B) 0.597 0.226 0.044 -0.171

28 (9.2B) 0.685 0.226 0.038 -0.171

32 (10.4B) 0.741 0.403 0.15 -0.038

36 (11.7B) 0.756 0.418 0.235 0.044

40 (13B) 0.788

12

0.397

20

0.271

28

0.053

36

So
FT

Extracted Fine-Tuning

Figure 2: SoFT vs. Extracted Fine-Tuning. The left figure
shows an equal training time setup (2 epochs), and the figure
on the right considers two extra training epochs for SoFT.

4.3 How does SoFT work for other domains?

We further evaluated Sorted LLaMA in a different
domain from the instruction following, selecting
the TriviaQA (Joshi et al., 2017) benchmark to
assess the sub-models performance in open-domain
closed-book questions answering.

Figure 3 shows the performance of SoFT and
three SFT, Extracted Fine-Tuning and SFT+ICT
baselines in different checkpoints through the train-
ing procedure on the TriviaQA benchmark. SoFT
sub-models show significant superior performance
compared to SFT and SFT+ICT counterparts in all
sub-models. Similar to PandaLM, the gap between
SoFT and SFT full-model performance is small in
TriviaQA, which can underscore the SoFT capa-
bility in maintaining full-model performance com-
pared to SFT. We also did Extracted Fine-Tuning
on intermediate sub-models for 2 Epochs and re-
sults demonstrate close performance of SoFT inter-
mediate layers to Extracted Fine-Tuning counter-
parts.

4.4 How can SoFT accelerate text generation?

Improving Speculative Sampling Speculative
Decoding (SD) is a technique introduced by (Chen
et al., 2023) to increase the speed of text decoding
in large models. The method utilizes a large target
and smaller draft models to generate tokens faster.
We can verify the generated tokens by the large
model in parallel. We used the same paradigm for
Sorted LLaMA as we used earlier sub-models as

Epoch 2 Epoch 4 Epoch 6

0

5

10

15

20

25

30

35

40

Ac
cu

ra
cy

Accuracy of SFT and SoFT over Different Training Epochs on TriviaQA Validation Set
Extracted
SFT+ICT
Layer12
Layer16
Layer20
Layer24
Layer28
Layer32
Layer36
Layer40
SoFT
SFT

Figure 3: The results of TriviaQA. We reported case-sensitive
exact match accuracy as the main metric. SFT+ICT and Ex-
tracted Fine-Tuned results can be found in Epochs 2, as we
found Epoch 2 checkpoint saturated for the original SFT ex-
periment (main LLaMA2 13b model with 40 layers).

draft and the full-size model as the target model.
As the parameters have been shared between the
large and draft models in this setup, we can avoid
any extra memory overhead, unlike the standard
Speculative Sampling. Table 2 reports the results
of using speculative decoding on Alpaca and Triv-
iaQA benchmarks in inference in SoFT by using
three different sub-models as drafts (Layer 12, 16,
and 20). Using Speculative decoding in Sorted
LLaMA can speed up the token generation up to
1.16× compared to normal auto-regressive decod-
ing in PandaLM with negligible performance drop
compared. Duo to the short average length of an-
swers in TriviaQA, speculative decoding does not
result in speed up in this benchmark as the draft
generation process does not find any opportunity
to accelerate inference.

Instance-Aware Dynamic Inference We also dy-
namically utilize SoFT sub-models to increase text
generation speed during inference. Based on the
confidence of the sub-model’s predicted tokens,
we decide which sub-model needs to generate each
token during inference. Given each token during in-
ference, the sub-models would process the token in
size order (first smallest sub-model 12, then 16, and
so on). Wherever in this procedure, the confidence
of the predicted token by a sub-model is higher than
the defined confidence threshold, the predicted to-
ken would be chosen as the next token and exit the
model. We also implemented an adaptive caching
mechanism in order to utilize KV caching in this
non-trivial scenario where each token can exit from
a different layer. Table 2 shows that Instance-Aware
Dynamic Inference can speed up the normal auto-
regressive approach in all benchmarks up to 1.34×
in PandaLM and 1.12× in TriviaQA. Furthermore

2135

PandaLM TriviaQA

Auto-regressive Decoding
Model Time per Token (ms) Score Rejection Ratio Time per Token (ms) Accuracy Rejection Ratio
Layer 40 (full) 94.07 - - 91.27 37.95 -

Speculative Decoding
Draft Model Time per Token (ms) Score Rejection Ratio Time per Token (ms) Accuracy Rejection Ratio
Layer 12 80.86 (1.16×) -0.144 0.37 110.50 (0.82×) 34.36 0.72
Layer 16 84.10 (1.11×) -0.211 0.31 118.92 (0.76×) 34.16 0.70
Layer 20 84.50 (1.11×) -0.144 0.26 139.78 (0.65×) 34.19 0.66

Instance-Aware Dynamic Inference
Model Time per Token (ms) Score Rejection Ratio Time per Token (ms) Accuracy Rejection Ratio
Layer 12:40 69.91 (1.34×) -0.050 - 81.01 (1.12×) 36.53 -

Table 2: Speed-up in inference time on three PandaLM and TriviaQA benchmarks by utilizing Speculative Decoding and
Instance-Aware Dynamic Inference techniques. Score column in PandaLM section means the score of the model versus the
Auto-regressive generated results based on Equation 2.

dynamic inference can result in better performance
in PandaLM and TriviaQA compared to speculative
decoding.
4.5 Analysis

4.5.1 A comparison between the learned
probability distribution of SoFT versus
SFT

Sorted tuning aims to make sub-models perfor-
mance similar to the full model. To explore the
efficacy of the SoFT in closing the gap between sub-
models and the full model in instruction following
task, we measure the similarity between probabil-
ity distributions of each token in each sub-model
versus the full model using the Kullback–Leibler
(KL) divergence. Figure 4 (Left) compares the
probability distribution of Sorted LLaMA and SFT
sub-models at different output positions.

Figure 4a (Left) compares different SFT layers
and the last Sorted LLaMA layer. The figure shows
that only SFT’s full-size output distribution is close
to the sorted full-size model, while the other lay-
ers’ distribution diverges faster in the initial steps
compared to the SoFT. This is expected as the lan-
guage model head is unfamiliar with the learned
representation of the middle layers in SFT. In the
next section, we compared the learned representa-
tions of different sub-models to understand SoFT’s
impact better.

Figure 4b (Left) compares the output distribution
of all sorted layers to the last SFT layer. Compared
to Figure 4a (Left), Figure 4b (Left) Sorted LLaMA
can preserve the output distribution close to the
SFT full-size model even in lower layers for initial
output tokens.

The comparison between the last layer and the
layers 12 to 36 in the SFT model is shown in Figure

5a (Left). It is clear from this figure that the output
distribution diverges quickly compared to the last
layer after generating a few initial tokens, even in
higher layers like 36 and 32. It is important to note
that this evaluation was generated without adjusting
the classifier head.

Finally, Figure 5b (Left) demonstrates that in
Sorted LLaMA, the likelihood distribution of the
produced outcome becomes increasingly more sim-
ilar to the full-size model as we get closer to the
last layer.

4.5.2 A comparison between the learned
representation of SoFT versus SFT

During regular fine-tuning, no connection between
the language model head and sub-models can in-
tensify the divergence of probability distributions
in Figure 4 (Left). To overcome this, we conducted
another experiment to compare the hidden state rep-
resentation in the last and middle layers just before
passing the hidden states to the language model
head. Figure 4 (Right) compares the learned hid-
den state representation of SFT and Sorted LLaMA
sub-models at various positions in the output. This
will make the analysis independent of the language
model head. We used cosine similarity to measure
the difference between the two representations. As
shown using heatmaps, the cosine similarities are
highly correlated to the KL-Divergence compari-
son explained in the previous section.

Figure 4a (Right) compares all SFT sub-models
with the Sorted last layer regarding hidden represen-
tation similarity. Again, similar to probability dis-
tribution analysis, the similarity between the SFT
sub-model and Sorted last layer tends to fade imme-
diately after generating the first few tokens, while

2136

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Positions of Generated Response

40
36

32
28

24
20

16
12

La
ye

rs
 o

f S
FT

 M
od

el

0.38 2.1 2.7 3 3.6 4 4 4.3 4.1 4.6 5.2 4.7 5.4 5.3 5.3 5.3 5.4 5.3 5.5 5.2

3 5.4 6.3 6.2 6.7 6.7 6.7 6.7 6.8 7 7 6.8 7.2 7.1 7 7.2 7 7.1 7.1 6.9

4.1 6.5 6.8 6.4 6.9 7.1 7.2 7.2 7.3 7.4 7.5 7.1 7.5 7.4 7.4 7.5 7.6 7.5 7.7 7.7

4.5 6.9 7.3 6.7 7.3 7.4 7.5 7.4 7.7 7.7 7.8 7.6 7.8 7.7 7.8 7.9 7.9 7.8 7.8 7.9

4.7 7 7.2 6.9 7.1 7.2 7.4 7.5 7.5 7.6 7.5 7.5 7.4 7.4 7.5 7.5 7.5 7.5 7.6 7.4

4.6 6.7 6.8 6.7 6.8 7 7 7 7.1 7 7.1 7 6.8 7 7.1 7.1 7.1 7 7 7

5.5 7.1 7.5 7 7.3 7.5 7.5 7.6 7.6 7.7 7.6 7.4 7.4 7.5 7.6 7.4 7.6 7.5 7.5 7.4

6.6 7.6 7.9 7.1 7.4 7.3 7.4 7.4 7.3 7.2 7.3 7.2 7.1 7.2 7.2 7.1 7 7.2 7.2 7

KL-Divergence Comparison of Logits Distributions with Sorted Last Layer

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Positions of Generated Response

40
36

32
28

24
20

16
12

La
ye

rs
 o

f S
FT

 M
od

el

0.8 0.7 0.6 0.6 0.6 0.5 0.5 0.5 0.5 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

0.6 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

0.5 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

0.5 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.09 0.08 0.08 0.09 0.08 0.08

0.4 0.2 0.1 0.1 0.1 0.1 0.09 0.08 0.08 0.08 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.05 0.05 0.05

0.3 0.1 0.1 0.08 0.07 0.06 0.06 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03

0.2 0.06 0.04 0.03 0.03 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.008 0.008 0.01 0.006

0.1 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.008 0.009 0.008 0.008 0.009 0.005 0.008 0.006

Cosine Similarity Comparison of Hidden States Representations with Sorted Last Layer

1

2

3

4

5

6

7

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) SortedLLaMA Last Layer - LLaMA sub-models

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Positions of Generated Response

40
36

32
28

24
20

16
12

La
ye

rs
 o

f S
or

te
d

M
od

el

0.38 2.1 2.7 3 3.6 4 4 4.3 4.1 4.6 5.2 4.7 5.4 5.3 5.3 5.3 5.4 5.3 5.5 5.2

1 3 3.5 3.6 4.2 4.6 5.3 5 5 5.6 6.1 5.9 6 6.1 5.9 6.5 6.4 6.5 6.4 6.4

1.1 3.3 3.9 4.1 4.7 5.1 5.5 5.3 5 5.8 6.3 5.5 5.9 6.1 5.9 5.9 6 5.6 6.1 6.5

1.1 3.2 3.9 4.1 4.9 5 5.6 5.4 5.3 5.5 5.9 6 6.1 6.2 5.8 6.2 5.9 6.2 6.2 5.9

1.1 3.7 4.2 4.8 5.2 5.4 5.9 5.7 5.8 5.4 6 5.8 6.1 6.3 6.6 6.5 6.8 6.4 6.2 5.9

1.3 4.1 4.4 4.8 5.8 5.9 6.2 6.1 6.2 6 6.3 6.5 6.1 6.3 6.7 6.4 6.2 6.4 6.4 6.3

1.5 4.5 4.9 5.7 6.1 5.9 6.2 6.3 6.5 6.6 6.8 6.3 6.8 6.7 6.8 6.8 6.5 6.5 7 6.5

1.7 4.8 5.6 6.3 6.4 6.6 6.5 6.7 6.9 6.7 6.7 6.3 6.8 6.7 6.6 7 6.6 6.7 7 6.8

KL-Divergence Comparison of Logits Distributions with SFT Last Layer

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Positions of Generated Response

40
36

32
28

24
20

16
12

La
ye

rs
 o

f S
or

te
d

M
od

el

0.8 0.7 0.6 0.6 0.6 0.5 0.5 0.5 0.5 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

0.7 0.5 0.5 0.5 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2

0.6 0.5 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

0.6 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

0.5 0.4 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

0.4 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

0.3 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.09 0.09 0.09 0.1 0.09 0.09

0.3 0.1 0.1 0.1 0.09 0.08 0.08 0.08 0.07 0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.05 0.06

Cosine Similarity Comparison of Hidden States Representations with SFT Last Layer

1

2

3

4

5

6

7

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) SortedLLaMA sub-models - LLaMA Last Layer

Figure 4: A sub-model comparison based on output logits and hidden state cosine similarity. The numbers are average of all
170 samples in the PandaLM validation set.

Figure 4b demonstrates the capability of Sorted
LLaMA sub-models in preserving the learned rep-
resentations closely similar to the SFT last layer
hidden states.

Figure 5a (Right) depicts the heatmap of hidden
states cosine similarity among different SFT sub-
models compared to the SFT last layer. Similar to
its left plot, the similarity quickly diminishes after
a few tokens, and this fade is more considerable in
earlier layers.

On the other hand, Figure 5b (Right) shows that
the representations of Sorted sub-models stay sim-
ilar to the Sorted last layer even after generating
multiple initial tokens.

4.5.3 Case Specific Analysis

Table 1 shows a sample of instructions from the
PandaLM benchmark and the generated responses
by SFT+ICT (Early-Exit) and Sorted LLaMA sub-
models. Sorted LLaMA performs better in preserv-
ing and transferring the last layer performance to
earlier sub-models based on the information made
visible by black (related to the query) and red (hal-
lucinations, irrelevant, etc.) colors.

Sorted sub-models generate almost correct an-
swers from the 20 layers sub-model, while the first
meaningful result from SFT+ICT sub-models ap-
pears in layer 28. Other samples generated by SoFT
and Early-Exit can be found in A.3.

5 Conclusion

This work presents sorted LLaMA, a many-in-one
language model for dynamic inference obtained us-
ing Sorted Fine-Tuning (SoFT) instead of Standard
Fine-tuning. Sorted LLaMA unlocks the potential
capability of intermediate layers, offering dynamic
adaptation without pre-training or additional ex-
penses related to model compression. It presents
a promising avenue for optimizing generative lan-
guage models in NLP. Our approach makes the de-
ployment of these models far more efficient. As all
sub-models remain integral components of the orig-
inal model, the burden of storage requirements and
transition costs between different computational
demands is minimized, making the management of
multiple models during inference a practical reality.

Our systematic evaluation of instruction follow-
ing and questions answering benchmarks chal-
lenged conventional wisdom by empowering mid-
dle layers to produce high-quality results. This, in
turn, enables dynamic inference of LLMs with a
highly efficient tuning method (SoFT), ultimately
optimizing the usage of LLMs. Our encouraging
results show the promising capability of SortedNet
(Valipour et al., 2023) to train multiple language
models with different sizes at once without incur-
ring expensive costs.

2137

6 Limitations

Despite showing the effectiveness of the Sorted-
Net approach for large language models, further
research is necessary to better understand the scope
of its applicability in LLMs. For example, apply-
ing this method during pre-training, sorting other
model dimensions such as attention heads and hid-
den dimensions, and investigating the impact of
choosing a specific architecture could offer poten-
tial avenues for future research. Our study might be
slightly biased to automated evaluation, requiring
further investigation through human evaluation.

References
Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Al-

shamsi, Alessandro Cappelli, Ruxandra Cojocaru,
Maitha Alhammadi, Mazzotta Daniele, Daniel Hes-
low, Julien Launay, Quentin Malartic, Badreddine
Noune, Baptiste Pannier, and Guilherme Penedo.
2023. The falcon series of language models: To-
wards open frontier models.

Hritik Bansal, Karthik Gopalakrishnan, Saket Dingliwal,
Sravan Bodapati, Katrin Kirchhoff, and Dan Roth.
2023. Rethinking the role of scale for in-context
learning: An interpretability-based case study at 66
billion scale. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 11833–11856,
Toronto, Canada. Association for Computational Lin-
guistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang,
and Song Han. 2019. Once-for-all: Train one net-
work and specialize it for efficient deployment. arXiv
preprint arXiv:1908.09791.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving,
Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. 2023. Accelerating large language model
decoding with speculative sampling.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. Palm: Scaling language mod-
eling with pathways.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms. arXiv preprint arXiv:2305.14314.

2138

https://doi.org/10.18653/v1/2023.acl-long.660
https://doi.org/10.18653/v1/2023.acl-long.660
https://doi.org/10.18653/v1/2023.acl-long.660
http://arxiv.org/abs/2302.01318
http://arxiv.org/abs/2302.01318
http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2204.02311

Ali Edalati, Marzieh Tahaei, Ivan Kobyzev, Vahid Par-
tovi Nia, James J Clark, and Mehdi Rezagholizadeh.
2022. Krona: Parameter efficient tuning with kro-
necker adapter. arXiv preprint arXiv:2212.10650.

Angela Fan, Edouard Grave, and Armand Joulin. 2019.
Reducing transformer depth on demand with struc-
tured dropout. arXiv preprint arXiv:1909.11556.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Men-
sch, Elena Buchatskaya, Trevor Cai, Eliza Ruther-
ford, Diego de Las Casas, Lisa Anne Hendricks,
Johannes Welbl, Aidan Clark, et al. 2022. Train-
ing compute-optimal large language models. arXiv
preprint arXiv:2203.15556.

Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao
Chen, and Qun Liu. 2020. Dynabert: Dynamic bert
with adaptive width and depth. Advances in Neural
Information Processing Systems, 33:9782–9793.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational Conference on Machine Learning, pages
2790–2799. PMLR.

Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh,
Hootan Nakhost, Yasuhisa Fujii, Alexander Ratner,
Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister.
2023. Distilling step-by-step! outperforming larger
language models with less training data and smaller
model sizes. arXiv preprint arXiv:2305.02301.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke
Zettlemoyer. 2017. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics, Van-
couver, Canada. Association for Computational Lin-
guistics.

Rabeeh Karimi Mahabadi, James Henderson, and Se-
bastian Ruder. 2021. Compacter: Efficient low-rank
hypercomplex adapter layers. Advances in Neural
Information Processing Systems, 34:1022–1035.

OpenAI. 2023. Gpt-4 technical report.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.

Training language models to follow instructions with
human feedback.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow,
Ruxandra Cojocaru, Alessandro Cappelli, Hamza
Alobeidli, Baptiste Pannier, Ebtesam Almazrouei,
and Julien Launay. 2023. The RefinedWeb dataset
for Falcon LLM: outperforming curated corpora
with web data, and web data only. arXiv preprint
arXiv:2306.01116.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé,
Kyunghyun Cho, and Iryna Gurevych. 2020.
Adapterfusion: Non-destructive task composition for
transfer learning. arXiv preprint arXiv:2005.00247.

Gabriele Prato, Ella Charlaix, and Mehdi Reza-
gholizadeh. 2019. Fully quantized trans-
former for machine translation. arXiv preprint
arXiv:1910.10485.

Teven Le Scao, Angela Fan, Christopher Akiki, El-
lie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon,
Matthias Gallé, et al. 2022. Bloom: A 176b-
parameter open-access multilingual language model.
arXiv preprint arXiv:2211.05100.

Tianxiang Sun, Yunfan Shao, Hong Qian, Xuanjing
Huang, and Xipeng Qiu. 2022. Black-box tuning for
language-model-as-a-service. In International Con-
ference on Machine Learning, pages 20841–20855.
PMLR.

Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. 2022.
Lst: Ladder side-tuning for parameter and memory
efficient transfer learning. Advances in Neural Infor-
mation Processing Systems, 35:12991–13005.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan
Kobyzev, and Ali Ghodsi. 2022. Dylora: Parameter
efficient tuning of pre-trained models using dynamic
search-free low-rank adaptation. arXiv preprint
arXiv:2210.07558.

2139

http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2306.01116
http://arxiv.org/abs/2306.01116
http://arxiv.org/abs/2306.01116
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

Mojtaba Valipour, Mehdi Rezagholizadeh, Hossein Ra-
jabzadeh, Marzieh Tahaei, Boxing Chen, and Ali
Ghodsi. 2023. Sortednet, a place for every network
and every network in its place: Towards a generalized
solution for training many-in-one neural networks.
arXiv preprint arXiv:2309.00255.

Yidong Wang, Zhuohao Yu, Zhengran Zeng, Linyi
Yang, Cunxiang Wang, Hao Chen, Chaoya Jiang,
Rui Xie, Jindong Wang, Xing Xie, et al. 2023.
Pandalm: An automatic evaluation benchmark for
llm instruction tuning optimization. arXiv preprint
arXiv:2306.05087.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al-
isa Liu, Noah A Smith, Daniel Khashabi, and Han-
naneh Hajishirzi. 2022. Self-instruct: Aligning lan-
guage model with self generated instructions. arXiv
preprint arXiv:2212.10560.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

Minghao Wu, Abdul Waheed, Chiyu Zhang, Muham-
mad Abdul-Mageed, and Alham Fikri Aji. 2023.
Lamini-lm: A diverse herd of distilled mod-
els from large-scale instructions. arXiv preprint
arXiv:2304.14402.

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and
Jimmy Lin. 2020. Deebert: Dynamic early exit-
ing for accelerating bert inference. arXiv preprint
arXiv:2004.12993.

Biao Zhang and Rico Sennrich. 2019. Root mean square
layer normalization. Advances in Neural Information
Processing Systems, 32.

Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weip-
ing Wang. 2023. A survey on model compres-
sion for large language models. arXiv preprint
arXiv:2308.07633.

2140

Method Avg Time per Epoch (s) Avg Memory Usage per Epoch (MB)
SFT 25,765.95 99,168
SoFT 25,269.87 (0.98×) 125,682

Table 3: Training Time and Memory Usage comparison of
SoFT and SFT on Alpaca dataset.

A Appendix

A.1 Computational Overhead of SoFT
Given the nested pattern of sub-models and the
fact that we share the language model head across
sub-models, we do not expect to see any compu-
tation overhead for SoFT versus SFT. To validate
this claim, we compared SoFT and SFT regarding
training time and memory usage in our experiment
on the Alpaca dataset (Table 3). Here is the result
for two main experiments of SoFT and SFT. As ex-
pected, training with SoFT leads to equal training
time compared to SFT. During training, SoFT has
about 25% memory overhead in PyTorch compared
to SFT, which only provides a single full model at
the end.

A.2 Additional Experiments
Table 4 shows the detailed results of the Sorted
LLaMA and SFT performance on the PandaLM
benchmark in different setup in equal training time
(2 Epochs for both SFT and SoFT). As we can
see, sorted sub-models outperform their SFT coun-
terparts (and even higher sub-models) , while in
SFT+ICT (Early-Exit), as we go higher in sub-
models (e.g. layer 36), we can see a noticeable
improvement in the performance compared to the
SFT. This can demonstrate the importance of tun-
ing the language model classifier in improving text
generation capability in the latest layers in the stan-
dard fine-tuning format.

Table 5 shows the SoFT and SFT comparison in
a different training time setup in which SoFT has
access to doubled training time (4 Epochs). Results
show that Sorted LLaMA can outperform standard
fine-tuned LLaMA further by continuing the SoFT
process. The improvement in Sorted LLaMA sub-
models performance can be observed specifically
in intermediate layers.

A.3 Analysis
Table 6 and 7 show some samples generated by
sub-models of LLaMA (SFT+ICT) and SoFT on
PandaLM evaluation set. In the first query of Ta-
ble 6, LLaMA sub-models until layer 36 struggle
to generate relevant responses about books in the

Crime and Mystery genre. While Sorted LLaMA
sub-models start to address the related novels from
layer 24. The second query in the table is a simpler
instruction, which is a multi-label classification
problem. Again Sorted LLaMA sub-models start
to generate the correct label in much earlier lay-
ers (layer 20) compared to the LLaMA sub-models
(layer 24). Table 7 first example shows the per-
formance gap of the LLaMA and Sorted LLaMA
intermediate sub-models even in a more severe case.
To write a review about a restaurant with certain
aspects, LLaMA sub-models before layer 32 hallu-
cinate or generate gibberish, while Sorted LLaMA
starts to generate a complete review addressing key
points mentioned in the instruction even in the first
sub-model (layer 16). In the second example, the
same pattern occurs where SoFT sub-models can
generate meaningful response starting from layer
16 while LLaMA first reasonable text happens at
layer 36.

Table 8 shows an example of SFT and SoFT per-
formance on TriviaQA benchmark. While LLaMA
struggles to generate single answer token even in
the sub-models close to the last layer, SoFT could
transfer the question answering ability until sub-
layer 20 and generate the correct final answer.

After all, Sorted LLaMA sub-models demon-
strate the ability to generate more comprehensive
(Table 6 example 1 and Table 7 example 1) and
informative (Table 6 example 2) answers in earlier
layers compared to LLaMA. Based on our observa-
tion, LLaMA sub-models mostly tend to generate
irrelevant or even gibberish in earlier blocks (lay-
ers 12 to 24), while the generated texts by Sorted
LLaMA exhibit sufficient learned information to
answer the input instruction despite having much
fewer parameters.

2141

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Positions of Generated Response

36
32

28
24

20
16

12
La

ye
rs

 o
f S

FT
 M

od
el

2.6 5.3 6 7 7 7.5 7.5 7.8 7.9 7.9 7.8 7.9 8.2 7.9 8.1 8.3 8.2 7.8 8.1 7.9

3.6 6.5 6.8 7.5 7.7 8.1 8.6 8.5 8.4 8.6 8.6 8.6 9.1 8.8 8.8 9 9.1 8.9 9.5 9.2

4.1 6.6 7.3 7.6 8.2 8.5 8.6 8.6 8.9 9.1 9.5 9.1 9.3 9.5 9.3 9.4 9.4 9.4 9.6 9.7

4.6 6.8 7.5 8.1 8.3 8.9 9.1 9.3 9.3 9.4 9.6 9.5 9.5 9.6 9.5 9.9 9.8 10 9.9 10

5.7 7.1 7.4 8.1 8 8.3 8.4 8.3 8.5 8.4 8.5 8.6 8.4 8.6 8.7 8.8 8.8 8.8 8.9 8.9

7.4 7.5 7.8 8.5 8.2 8.4 8.4 8.3 8.2 8.5 8.4 8.3 8.6 8.4 8.3 8.3 8.3 8.3 8.5 8.4

8.4 7.7 8.1 8.3 7.9 8.2 8.1 8 8 7.9 8 7.9 8 8 7.9 7.8 7.9 7.9 8 7.9

KL-Divergence Comparison of Logits Distributions with SFT Last Layer

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Positions of Generated Response

36
32

28
24

20
16

12
La

ye
rs

 o
f S

FT
 M

od
el

0.7 0.4 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

0.7 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

0.6 0.3 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

0.5 0.2 0.2 0.2 0.1 0.1 0.1 0.09 0.08 0.09 0.08 0.08 0.08 0.07 0.07 0.07 0.06 0.06 0.06 0.06

0.4 0.2 0.1 0.09 0.07 0.07 0.07 0.06 0.05 0.05 0.04 0.04 0.04 0.04 0.03 0.04 0.03 0.03 0.03 0.03

0.2 0.07 0.05 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.009 0.009 0.007 0.006 0.007

0.1 0.03 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.008 0.009 0.01 0.008 0.009 0.009

Cosine Similarity Comparison of Hidden States Representations with SFT Last Layer

3

4

5

6

7

8

9

10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a) LLaMA sub-models vs LLaMA Last Layer

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Positions of Generated Response

36
32

28
24

20
16

12
La

ye
rs

 o
f S

or
te

d
M

od
el

0.81 1.9 2.4 2.5 3 3.1 3.7 3.7 3.9 3.9 4.5 4.6 4.4 4.2 4.7 4.9 5.2 5.5 5.4 5.5

0.88 2.4 3 3.2 4.1 4 4.3 4.3 4.8 5 5 4.7 5.1 5 5.6 5.4 5.5 5.4 5.5 6.2

0.95 2.5 3.2 3.3 4 4.2 4.6 4.9 5 5.1 5.2 5.5 5.5 5.3 5.6 5.6 6.2 6 6 5.9

0.97 3.1 3.5 4.1 4.7 4.7 5.1 5.3 5.2 5.6 5.4 5.5 6.2 5.9 6 5.8 6.6 6.2 6 5.9

1.2 3.6 4 4.6 5.1 5.3 5.5 5.5 5.9 6.3 6 6.4 6.2 5.8 6.3 5.6 6.2 5.9 6.1 6.2

1.4 3.9 4.5 5.1 5.7 5.8 5.7 6 6.3 6.5 6.7 6.4 6.5 6.5 6.3 6.4 6.1 6.5 6.5 6.6

1.6 4.6 5.3 6 6.4 6.2 6.3 6.4 6.7 6.5 6.4 6.1 6.6 6.6 6.8 6.6 6.3 6.9 6.8 6.8

KL-Divergence Comparison of Logits Distributions with Sorted Last Layer

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Positions of Generated Response

36
32

28
24

20
16

12
La

ye
rs

 o
f S

or
te

d
M

od
el

0.8 0.7 0.7 0.7 0.6 0.6 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.4 0.4 0.4 0.4 0.4 0.3

0.8 0.6 0.5 0.6 0.5 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.3

0.7 0.5 0.5 0.5 0.4 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.2

0.6 0.5 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

0.5 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

0.4 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

0.3 0.2 0.1 0.1 0.1 0.09 0.09 0.08 0.07 0.07 0.07 0.08 0.07 0.07 0.06 0.06 0.07 0.06 0.06 0.06

Cosine Similarity Comparison of Hidden States Representations with Sorted Last Layer

1

2

3

4

5

6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) SortedLLaMA sub-models - SortedLLaMA Last Layer

Figure 5: A comparison of sub-models based on output logits and hidden state cosine similarity.

Sorted LLaMA/LLaMA 12 (4.1B) 16 (5.4B) 20 (6.6B) 24 (7.9B) 28 (9.2B) 32 (10.4B) 36 (11.7B) 40 (13B)

SoFT vs. SFT

12 (4.1B) 71.0/99.0/0.0 97.5/72.5/0.0 129.0/41.0/0.0 131.0/39.0/0.0 121.5/48.5/0.0 106.5/63.5/0.0 45.0/125.0/0.0 17.0/152.5/0.5
16 (5.4B) 81.0/89.0/0.0 101.5/68.5/0.0 128.5/40.5/1.0 131.5/38.0/0.5 124.0/44.5/1.5 114.0/54.0/2.0 52.0/114.0/4.0 18.0/146.0/6.0
20 (6.6B) 111.5/58.5/0.0 132.0/38.0/0.0 144.5/23.5/2.0 147.5/20.5/2.0 141.5/24.0/4.5 132.5/30.5/7.0 73.5/85.5/11.0 32.5/114.0/23.5
24 (7.9B) 124.5/45.5/0.0 136.5/33.5/0.0 150.0/18.0/2.0 154.5/13.5/2.0 148.0/18.5/3.5 144.5/19.0/6.5 98.0/62.0/10.0 44.5/90.0/35.5
28 (9.2B) 125.5/44.5/0.0 145.0/25.0/0.0 153.0/15.0/2.0 153.5/14.5/2.0 148.0/16.5/5.5 143.5/20.5/6.0 96.5/59.5/14.0 45.0/89.0/36.0
32 (10.4B) 141.5/28.5/0.0 152.0/18.0/0.0 159.0/9.0/2.0 160.0/8.0/2.0 152.0/12.5/5.5 150.5/13.5/6.0 108.5/45.0/16.5 55.5/75.0/39.5
36 (11.7B) 141.0/28.5/0.5 152.5/17.0/0.5 159.0/8.5/2.5 161.5/6.5/2.0 150.0/14.5/5.5 148.5/15.5/6.0 112.0/42.5/15.5 53.0/66.0/51.0
40 (13B) 143.5/26.5/0.0 156.0/14.0/0.0 160.5/7.5/2.0 161.0/7.0/2.0 150.0/14.0/6.0 150.0/13.5/6.5 115.5/39.0/15.5 52.5/62.5/55.0

SoFT vs. SFT+ICT(Early-Exit)

12 (4.1B) 75.0/95.0/0.0 108.5/61.5/0.0 128.5/41.5/0.0 122.5/47.5/0.0 116.5/53.5/0.0 91.0/79.0/0.0 37.5/131.5/1.0 17.0/152.5/0.5
16 (5.4B) 86.5/82.5/1.0 113.0/57.0/0.0 127.0/41.0/2.0 122.0/47.0/1.0 117.5/50.5/2.0 94.5/72.0/3.5 36.0/129.0/5.0 18.0/146.0/6.0
20 (6.6B) 111.5/57.5/1.0 137.0/33.0/0.0 143.5/24.0/2.5 143.0/23.0/4.0 137.0/27.0/6.0 122.0/38.0/10.0 60.0/94.5/15.5 32.5/114.0/23.5
24 (7.9B) 126.5/42.5/1.0 144.0/26.0/0.0 149.0/19.5/1.5 151.0/15.5/3.5 143.0/21.5/5.5 133.5/28.0/8.5 76.5/72.5/21.0 44.5/90.0/35.5
28 (9.2B) 130.0/39.0/1.0 147.0/23.0/0.0 153.5/15.5/1.0 150.0/16.0/4.0 143.5/18.5/8.0 131.0/29.0/10.0 79.0/66.0/25.0 45.0/89.0/36.0
32 (10.4B) 141.5/27.5/1.0 155.5/14.5/0.0 161.0/8.0/1.0 157.0/8.5/4.5 151.0/11.0/8.0 143.5/15.0/11.5 89.5/49.5/31.0 55.5/75.0/39.5
36 (11.7B) 143.0/25.5/1.5 156.5/13.0/0.5 160.0/8.5/1.5 157.0/8.5/4.5 148.0/14.0/8.0 142.5/16.5/11.0 92.5/46.5/31.0 53.0/66.0/51.0
40 (13B) 146.0/23.0/1.0 157.0/13.0/0.0 160.5/7.5/2.0 157.5/9.0/3.5 149.0/14.0/7.0 143.5/16.0/10.5 97.5/43.5/29.0 52.5/62.5/55.0

Table 4: Pair-wise comparison for different layers (sub-models) in Standard Fine-Tuning and SoFT at equal training cost (2
Epochs). Each cell consists of three values: Wins, Losses, Ties. Wins demonstrate the number of times that the generated text of
the sub-model in row (sorted) is preferred to the sub-model in column (Fine-Tuned) and Losses is the opposite. Numbers are
average of two separate experiments with different order of inputs to evaluator in order to neutralize the order bias.

Sorted LLaMA/LLaMA 12 (4.1B) 16 (5.4B) 20 (6.6B) 24 (7.9B) 28 (9.2B) 32 (10.4B) 36 (11.7B) 40 (13B)

SoFT vs. SFT

12 (4.1B) 88.5/81.5/0.0 108.0/62.0/0.0 134.5/35.5/0.0 135.0/35.0/0.0 129.0/41.0/0.0 120.0/49.0/1.0 57.0/109.5/3.5 23.5/144.0/2.5
16 (5.4B) 106.5/63.0/0.5 120.0/50.0/0.0 140.0/29.0/1.0 144.5/24.5/1.0 142.0/26.5/1.5 136.0/32.0/2.0 70.0/95.0/5.0 34.5/124.5/11.0
20 (6.6B) 127.0/43.0/0.0 138.5/31.5/0.0 151.5/16.5/2.0 152.0/17.0/1.0 143.5/23.5/3.0 144.0/21.5/4.5 94.5/67.5/8.0 47.0/99.5/23.5
24 (7.9B) 138.5/31.5/0.0 149.5/20.5/0.0 159.0/9.0/2.0 158.0/10.5/1.5 151.5/13.5/5.0 149.0/15.5/5.5 107.0/49.5/13.5 53.0/81.0/36.0
28 (9.2B) 137.0/33.0/0.0 149.0/21.0/0.0 158.0/10.0/2.0 159.5/8.5/2.0 150.0/15.0/5.0 149.5/15.0/5.5 107.0/47.5/15.5 50.5/78.0/41.5
32 (10.4B) 146.0/24.0/0.0 157.0/13.0/0.0 163.0/5.0/2.0 163.0/5.0/2.0 154.5/10.5/5.0 151.5/12.5/6.0 117.5/37.5/15.0 63.5/62.0/44.5
36 (11.7B) 149.5/20.5/0.0 160.0/10.0/0.0 164.0/4.0/2.0 162.5/5.5/2.0 157.5/7.5/5.0 154.0/10.0/6.0 119.5/34.5/16.0 62.5/60.0/47.5
40 (13B) 153.5/16.5/0.0 163.0/7.0/0.0 165.5/3.0/1.5 163.5/4.5/2.0 157.0/8.0/5.0 156.0/8.5/5.5 121.0/33.5/15.5 67.5/52.0/50.5

SoFT vs. SFT+ICT(Early-Exit)

12 (4.1B) 91.5/77.5/1.0 123.5/46.5/0.0 138.5/31.5/0.0 134.0/36.0/0.0 130.5/39.0/0.5 107.5/59.0/3.5 46.0/120.5/3.5 23.5/144.0/2.5
16 (5.4B) 106.5/63.5/0.0 128.5/41.0/0.5 145.0/24.0/1.0 144.5/25.0/0.5 139.0/29.5/1.5 122.5/43.0/4.5 55.5/106.5/8.0 34.5/124.5/11.0
20 (6.6B) 128.0/40.5/1.5 142.0/27.5/0.5 152.5/16.0/1.5 148.0/19.0/3.0 142.0/22.5/5.5 131.0/31.0/8.0 74.0/79.0/17.0 47.0/99.5/23.5
24 (7.9B) 140.5/28.5/1.0 155.0/15.0/0.0 159.0/10.0/1.0 156.0/10.5/3.5 149.5/12.5/8.0 141.5/19.0/9.5 90.0/54.5/25.5 53.0/81.0/36.0
28 (9.2B) 142.0/27.0/1.0 155.5/14.5/0.0 161.5/7.5/1.0 155.5/10.5/4.0 148.5/13.0/8.5 141.0/19.0/10.0 91.5/53.5/25.0 50.5/78.0/41.5
32 (10.4B) 150.0/19.0/1.0 161.0/9.0/0.0 161.5/7.5/1.0 160.0/6.0/4.0 153.0/8.5/8.5 145.0/14.0/11.0 99.0/41.0/30.0 63.5/62.0/44.5
36 (11.7B) 151.0/18.0/1.0 163.5/6.5/0.0 165.0/3.5/1.5 161.0/5.0/4.0 155.0/7.5/7.5 147.5/12.0/10.5 105.5/36.0/28.5 62.5/60.0/47.5
40 (13B) 156.0/13.0/1.0 165.5/4.5/0.0 165.0/3.5/1.5 161.0/5.0/4.0 155.0/7.5/7.5 150.5/10.0/9.5 106.0/35.0/29.0 67.5/52.0/50.5

Table 5: Pair-wise comparison for different layers (sub-models) in Standard Fine-Tuning and SoFT (4 Epochs) after tuning
Language Model classifier for each SFT sub-model.

2142

Query: Choose the best books from the given genre. Crime & Mystery

Layer LLaMA Response (SFT + ICT) Sorted LLaMA Response (SoFT)

12 Therewiguptaranapped byoremandoesleven years ago agomairiensum...
Here are some of the best books from the genre: 1. The Fear of the unknown: The
Fist of the Darkness2. The Fist of the Deaths of the Deaths of the Deaths of the
Deaths of the Deaths of the Deaths ...

16 Here list list list!!!!!!!!!!!!!!!0̆0e4ndersonally preferences personal ...
Here is a list of top 10 books from the genre Crime & Mystery that you can read for
your next reading book list: 1. The Great mystery of the Mystery of the Mystery of
the Mystery of the Mystery of the ...

20 Here listicle lists some best books genreed intoxicatedly intoxicatedly ... Here are some popular and well-known crime and mystery books that you can choose
from: 1. The Secret of the Mystery solved by the detective by Jameson Jameson is
a classic crime and mystery novel that is widely regarded as one of the best crime
and mystery books ever written. 2. The Secret of the Mystery solved by the detective
by Jameson Jameson is a classic crime and mystery novel that is widely regarded as
one of the best crime and mystery books ever written. 3. The Secret of the Mystery
solved ...

24 Here list contains some best books belonging belongs genre crime & mystery genre
ordered alphabetically alphabetically ...

Here are some of the best crime and mystery books: 1. The Hatchery by Stephen
King - This book is a classic horror/ crime thriller that follows the story of a group of
friends who discover a hidden hatchery of horrors. 2. The Last Thistle by Murphy
Murphy - This book is a thriller that follows the investigation of a murder in a small
town. The story is filled with suspense and twists that will keep you hooked. 3. The
Last Thistle by Murphy Murphy - This book is a thriller that follows the investigation
of a murder in a small town. The story is filled with suspense and twists that will keep
you hooked. 4. The Last Thistle by Murphy ...

28 crime mystery books best crime mystery books crime mystery books best crime
mystery ...

Here are some of the best crime and mystery books that you might enjoy: 1. The
Great Gatsby by F. Scott Fitzgerald - This classic novel is a classic tale of love,
betrayal, and the dark side of the American Dream. 2. The Great Gatsby by F. Scott
Fitzgerald - This classic novel is a classic tale of love, betrayal, and the dark side of
the American Dream. 3. The Great Gatsby ...

32 Crime mystery genre has many great books to choose from. Here are some recom-
mendations: crime mystery books recommended by readers: 1) crime mystery books
recommended by readers: Crime mystery genre has many great books to choose from.
Here are some recommendations: crime mystery books ...

Crime & Mystery is a popular genre, and there are many great books that fall into
this category. Here are some of the best crime and mystery books that have stood
the test of time and are widely acclaimed by readers and critics alike: 1. The
Hound of the Baskervilles by Sir Arthur Conan Doyle: This classic detective novel
features the iconic detective Sherlock Holmes and his sidekick, Dr. John Watson.
The story follows Holmes as he investigates the mysterious death of a wealthy man
and the disappearance of his family. 2. The Silent Patient by Sarah C. Dessen:
This psychological thriller follows the story of a woman who is institutionized after
shooting her husband. The novel explores themes of trauma, mental illness, and the
power of love to heal. 3. The Silent majority by Agatha Christie: This classic mystery
novel features the beloved detective Hercule Poirot as he investigates the murder of a
wealthy man. The novel is full of twists and turns, and the identity of the murderer is
not revealed until the end.

36 Crime fiction is a genre that has captivated readers for centuries with intriguvity and
suspenseful plots. Here are some of the best crime books that you should definitely
read: 1. Sherlock Holmes series by Sir Arthur Conan Doyle: regarded as one of the
greatest fictional detectives of all time, Sherlock Holmes is known for his deductive
reasoning and ability to solve complex cases. 2. Agatha Christie novels: regarded as
the queen of crime fiction, Agatha Christie wrote numerous novels and short stories
that are still widely read today. Some of her most famous works include Hercules
Poirot series and Miss Marple series. Raymond Chandler novels: regarded as one
of the greatest crime writers of all time, Raymond Chandler wrote novels set in Los
Angeles featuring detective Philip Marlowe. Some of his most famous works include
T̈he Big Sleepänd T̈he Long Goodbye.̈ 4. crime novels by crime novelist Raymond
Chandler: regarded as one of the greatest crime writers of all time, Raymond Chandler
wrote novels set in Los Angeles featuring detective Philip Marlowe. Some of his
most famous

Based on your preference for crime and mystery books, here are some highly recom-
mended titles: 1. To Kill a Mockingbird by Harper Lee: This classic novel explores
themes of racism, prejudice, and injustice in the Deep South during the 1930s. 2.
The Silent Patient by Alex Michaelides: A psychological thriller about a woman
who shoots her husband and then refuses to speak. 3. The Girl with the Dragon
Tattoo by Stieg Larsson: This novel kicks off the Millennium Trilogy, following the
investigation of a missing journalist and the mysterious disappearance of a young
woman. 4. The Da Vinci Code by Dan Brown: This fast-paced thriller follows the
trail of a centuries-old conspiracy involving the Catholic Church, the Knights Templar,
and the secrets of the Da Vinci Code. 5. The Girl with the Dragon Tattoo by Stieg
Larsson: This novel kicks off the Millennium Trilogy, following the investigation of
a missing journalist and the mysterious

40 Here are some of the best books in the Crime and Mystery genre: 1. The Hound of the
Baskervilles by Sir Arthur Conan Doyle 2. The Maltese Falcon by Dashiell Hammett
3. The Big Sleep by Raymond Chandler 4. The Adventures of Sherlock Holmes by
Sir Arthur Conan Doyle 5. The Thin Man by Dashiell Hammett 6. The Murder of
Roger Ackroyd by Agatha Christie 7. The Silence of the Lambs by Thomas Harris 8.
The Red House Mystery by A.A. Milne 9. The Secret of the Old Clock by Carolyn
Keene 10. The Adventures of the Black Stallion by Walter Farley.

Here are some highly recommended crime and mystery books: 1. To Kill a Mock-
ingbird by Harper Lee 2. The Hound of the Baskervilles by Sir Arthur Conan Doyle
3. The Silence of the Lambs by Thomas Harris 4. The Great Gatsby by F. Scott
Fitzgerald 5. The Catcher in the Rye by J.D. Salinger 6. The Da Vinci Code by Dan
Brown 7. The Girl with the Dragon Tattoo by Stieg Larsson 8. The Adventures of
Sherlock Holmes by Sir Arthur Conan Doyle 9. The Secret of the Old Clock by
Carolyn Keene 10. The Help by Kathryn Stockett.

Query: Classify the questions in the FAQ into Finding policy details, Change account settings, Filing a claim and viewing status, or Cancelling coverage.
Could you deposit money into my account rather than mailing me a physical cheque?

Layer LLaMA Response (SFT + ICT) Sorted LLaMA Response (SoFT)

12 Yes sir/ sorry sorryonymouslyovoyedance Festivalandeiamot... The question is not classified as a request or request for information. It is a question
that is addressed to the customer’s request.

16 belongs belongsfrontieralandersonallyi... The given question is a question of financial accounting and it belongs to the Can-
celling coverage category.

20 belongs category c̈hangeable via email or phone call or online portal or phone con-
tactless payment etceterially...

Change account settings

24 Change account settings Change account settings
28 This question falls category of Change account settings. Change account settings
32 Change account settings Change account settings
36 Change account settings Change account settings
40 Change account settings Change account settings

Table 6: Generated responses in different layers of SFT (Early Exit) and Sorted LLaMA for two samples from PandaLM
validation set.

2143

Query: Based on the given keywords, write a review of a restaurant. Name: Pizzeria
good prices, quiet place, tasty, nice staff

Layer LLaMA Response (SFT + ICT) Sorted LLaMA Response (SoFT)

12 Hinweis B0̆0e9jar Brothersqueeries...
The restaurant is located in a small town, with an impressive list of options for meals
and drinks. The atmosphere is comfortable and comfortable, with a small, large-scale
room, with a large enough room for comfortable comfortable rooms. The menu is
a great way to choose the best option for meals and drinks. The menu is easy to
understand and can be easily used to find the best option for meals and drinks. The
menu is also available online and can be easily accessed by anyone who is interested
in making a purchase. The menu is also made up of a variety of cuisine, with a variety
of cuisine. The menu is also made up of a variety of cuisine...

16 Review: description description Cassandra Smithsoniusque ... The Pizzeria is a great place to eat and enjoy a relaxing meal. It is a quiet place, so
it is perfect for a quiet meal and a relaxing meal. The food is incredibly delicious,
and the staff is friendly and friendly. The prices are great, and the atmosphere is
comfortable and relaxing. It is a great place to eat and enjoy a relaxing meal.

20 Review: visited recently visited recently visited recently visited recently... I recently visited Pizzeria, a restaurant that is both affordable and a quiet place to
enjoy a meal. The prices are definitely good, and the food is definitely tasteful. The
staff is nice and friendly, making the experience even more enjoyable. Overall, I
highly recommend Pizzeria for anyone looking for a good meal at a reasonable price.

24 Review: visited recently visited recently visited recently visited recently ... I recently visited Pizzeria, and I must say, it was a pleasant experience. The prices
were reasonable, and the atmosphere was quiet and relaxing. The staff was friendly
and helpful, making me feel welcome and comfortable. The pizza was tasty and made
me feel satisfied after a long day. Overall, I would recommend Pizzeria to anyone
looking for a good pizza, good prices, and a nice atmosphere

28 Revieweddit rating: stars star star star ... Pizzeria is a hidden gem in the heart of the city. The prices are reasonable and the
atmosphere is a refreshing change from the crowded restaurants. The staff is friendly
and welcoming, making the experience even more enjoyable. The pizza is tasty and
the crust is crisp and crunchy. The sauce is rich and the cheese is melted perfectly.
Overall, Pizzeria is a must-visit for anyone looking for a good pizza and a quiet place
to enjoy it.

32 Review: visited this place with friends recently after hearing good reviews about their
pizza pie. Upon arrival we noticed how quiet it was inside which made it perfect place
to relax after hectic weekdays. prices were reasonable considering quality of food
served. staff members were friendly and helpful throughout entire duration of visit.
overall experience exceed expectations thanks to delicious food served hot freshly
baked pizza pie tasteful ingunctions of Italian cu cu cu cu cu cu cu cu cu cu ...

I recently visited Pizzeria and I must say, it was a pleasant experience. The prices
were reasonable, and the atmosphere was quiet and serene. The staff was friendly and
helpful, making me feel welcome. The pizza was delicious, with a crisp crust and a
delicious, creamy sauce. Overall, I would definitely recommend Pizzeria to anyone
looking for a good meal in a quiet, relaxing setting.

36 Review of Pizzeria: upon walking into pizzeria, you are greetvity welcomed by nice
staff members who are always ready to assist you with your needs. Their prices are
reasonable considering the quality of food they offer. Their pizza is mouthwateringly
delicious and always freshly made to order. Additionally, pizzeria is a quiet place
perfect for dates or family gatherings. Overall, pizzeria is a great place to visit for
delicious food and great service. highly recommended!

I recently visited Pizzeria and had a wonderful experience. The prices were reasonable
and the atmosphere was quiet and relaxing. The food was delicious and the staff was
friendly and attentive. Overall, I would highly recommend Pizzeria to anyone looking
for a tasty meal in a nice, quiet setting.

40 Pizzeria is a great place to go for a quiet meal with tasty food and friendly staff. The
prices are good, making it a great value for your money. The atmosphere is cozy and
the service is prompt. The pizza is cooked to perfection and the toppings are fresh and
delicious. Overall, it’s a great place to enjoy a meal with friends or family. Highly
recommended!

Pizzeria is a great place to enjoy a delicious pizza in a quiet and cozy atmosphere.
The prices are reasonable and the staff is friendly and accommodating. The pizzas
are cooked to perfection and the toppings are fresh and tasty. The restaurant is perfect
for a casual meal with friends or family, and the ambiance is relaxing and inviting.
Overall, Pizzeria is a great option for a satisfying pizza experience.

Query: Define what the underlined word means for kids. _keep a promise

Layer LLaMA Response (SFT + ICT) Sorted LLaMA Response (SoFT)

12
Thereuh Scientificallyally compromiseable ... The word machery is a word that is used to describe a person or a person’s behavior,

or a person’s behavior in a particular manner. It means that someone has been able to
successfully successfully deal with the situation or situation situationally.

16
means something importantlyrics song songwriter

The word Kick A promise is a common term in the context of a commitment to
deliver something or to take action. It means that someone has taken a promise to
make a promise to make sure that they are doing something or fulfilling their promise.
It is a kind of commitment that is often used in personal and professional settings.

20
When someone promise means promise means promise means promise means promise
means ...

Keeping a promise means keeping a promise made to someone else, and not making a
promise to someone else or even yourself that you will not do something, but actually
doing it. It means being kind, honesty, and kindness towards others. It means being
kind to your parents, siblings, friends, and even your peers. It means being kind to
yourself too. It means being kind to yourself ...

24
When someone promise promise means promise promise means promise ...

Keep a promise means to make sure that you do what you promised to do. It means
that you are reliable and reliable people are people who are trusted and respected.
When you promise something to someone, it means that you are committed to it and
you will do it.

28
keep promise means promise promise means promise promise means promise promise
...

Keeping a promise means to do what you promised to do, no matter what. It means
keeping your word and keeping your word is important. It’s important to keep
promises because it helps people trust you and trust that you will do what you say
you will do.

32
When you promise something means prom promprompr...

Keeping a promise means that you promise something to someone and you do it. It
means that you do not break your word and you do what you said you would do. It is
important to keep promises because it shows that you are trustworthy and reliable.

36
Keeping a promise means promising something to someone else or yourself, and then
doing your best to make sure that promise comes true. It means being honest and
keeping your word even when it’vity hard or takes effort. It means being responsible
and reliable so people can trust you to do what you say you will do.

Keeping a promise means doing what you said you would do. It’s important to follow
through on your promises to others and to be reliable.

40 Keep a promise means to do what you said you would do. It means to be honest and
to keep your word. When you keep a promise, you show that you are trustworthy and
that people can count on you.

Keeping a promise means doing what you said you would do, even if it’s hard or
takes a long time. It’s important to be honest and reliable, and to follow through on
your words.

Table 7: Generated responses in different layers of SFT (Early Exit) and Sorted LLaMA for a sample from PandaLM validation
set.

2144

Query: Bandar Seri Begawan International airport is in which country?

Layer LLaMA Response (SFT) Sorted LLaMA Response (SoFT)

12
iernohotter than than ... Malta

16
Nederlige territ territorially ...

Burma (Myanmar)

20
Australia AustraliaAustral Australia Australia ...

Brunei

24
Malays Malays Malays Malays ...

Brunei

28
Malays Malays Malays Malays ...

Brunei

32 Brunei Brunei
36 Brunei Brunei
40 Brunei Brunei

Table 8: Generated responses in different layers of SFT and SoFT for a sample from TriviaQA benchmark.

Sorted/Fully Fine-tuned 12 (4.1B) 20 (6.6B) 28 (9.2B) 36 (11.7B)

2 SFT Epochs/2 SoFT Epochs

12 (4.1B) 80.0/88.5/1.5 37.5/132.0/0.5 28.0/141.5/0.5 20.0/148.5/1.5
16 (5.4B) 88.5/77.0/4.5 42.0/121.5/6.5 31.5/135.0/3.5 20.0/142.5/7.5
20 (6.6B) 114.0/48.5/7.5 56.0/84.5/29.5 42.5/108.0/19.5 32.0/117.5/20.5
24 (7.9B) 123.0/37.0/10.0 70.5/61.5/38.0 53.5/80.0/36.5 45.5/89.5/35.0
28 (9.2B) 131.0/32.0/7.0 75.0/63.0/32.0 56.0/70.5/43.5 46.5/82.5/41.0
32 (10.4B) 143.5/21.0/5.5 98.0/43.5/28.5 73.0/54.0/43.0 54.0/65.5/50.5
36 (11.7B) 140.5/22.0/7.5 98.5/40.5/31.0 76.0/49.0/45.0 53.0/62.5/54.5
40 (13B) 137.5/24.0/8.5 102.0/37.0/31.0 78.5/45.5/46.0 55.0/62.0/53.0

2 SFT Epochs/4 SoFT Epochs

12 (4.1B) 94.5/71.0/4.5 44.0/121.0/5.0 37.0/130.5/2.5 26.5/138.5/5.0
16 (5.4B) 105.0/60.0/5.0 55.0/102.0/13.0 51.0/110.5/8.5 34.0/123.0/13.0
20 (6.6B) 129.5/33.5/7.0 73.0/67.5/29.5 58.5/85.0/26.5 47.0/96.5/26.5
24 (7.9B) 132.0/30.5/7.5 89.5/51.0/29.5 70.0/62.5/37.5 51.0/80.0/39.0
28 (9.2B) 140.0/23.5/6.5 89.5/51.0/29.5 66.5/60.0/43.5 48.5/77.5/44.0
32 (10.4B) 144.5/18.5/7.0 103.5/35.0/31.5 77.5/52.0/40.5 55.5/62.0/52.5
36 (11.7B) 146.0/17.5/6.5 105.5/34.5/30.0 84.5/44.5/41.0 60.0/52.5/57.5
40 (13B) 149.0/15.0/6.0 105.0/37.5/27.5 87.5/41.5/41.0 62.5/53.5/54.0

Table 9: Pair-wise comparison between Extracted fine-tuned and SoFT sub-models.

2145

