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Abstract

Understanding context is key to understanding
human language, an ability which Large Lan-
guage Models (LLMs) have been increasingly
seen to demonstrate to an impressive extent.
However, though the evaluation of LLMs en-
compasses various domains within the realm
of Natural Language Processing, limited atten-
tion has been paid to probing their linguistic
capability of understanding contextual features.
This paper introduces a context understand-
ing benchmark by adapting existing datasets to
suit the evaluation of generative models. This
benchmark comprises of four distinct tasks and
nine datasets, all featuring prompts designed to
assess the models’ ability to understand context.
First, we evaluate the performance of LLMs un-
der the in-context learning pretraining scenario.
Experimental results indicate that pre-trained
dense models struggle with understanding more
nuanced contextual features when compared to
state-of-the-art fine-tuned models. Second, as
LLM compression holds growing significance
in both research and real-world applications,
we assess the context understanding of quan-
tized models under in-context-learning settings.
We find that 3-bit post-training quantization
leads to varying degrees of performance reduc-
tion on our benchmark. We conduct an exten-
sive analysis of these scenarios to substantiate
our experimental results.1

1 Introduction

Discourse understanding, as one of the fundamen-
tal problems in NLP, focuses on modeling linguis-
tic features and structures that go beyond indi-
vidual sentences (Joty et al., 2019). Understand-
ing discourse requires resolving the relations be-
tween words/phrases (coreference resolution) and
discourse units (discourse parsing and discourse re-
lation classification) in the previous context, iden-

∗Work performed during an internship at Apple.
1The code is publicly available at https://github.com/

apple/ml-llm-contextualization-eval.

tifying carry-over information for the following
context (dialogue state tracking), and recognizing
discourse-specific phenomena (ellipsis).

LLMs have garnered substantial attention from
both academia and the industry due to their remark-
able capability in comprehending language and
world knowledge. Their unparalleled performance
across a diverse range of benchmarks and datasets
has firmly established their significance in a rel-
atively short period of time. As LLMs continue
to push the boundaries of scale and capability, the
evaluation of their multifaceted abilities becomes
an equally vital endeavor. Consequently, the devel-
opment of robust evaluation methodologies to as-
sess specific aspects of LLMs becomes imperative.
In addition, these methodologies should focus on
helping achieve a comprehensive understanding of
their advancement while clearly delineating their
limitations. However, recently published LLMs,
such as OPT (Zhang et al., 2022), LLaMA (Tou-
vron et al., 2023) and GPT-4 (OpenAI, 2023), are
only evaluated on limited benchmarks, and have a
significant drawback: they neglect the inclusion of
discourse-related datasets for evaluation, thereby
limiting the comprehensive assessment of their lan-
guage understanding capabilities.

To provide a comprehensive evaluation, plenty
of benchmarks and datasets address various
facets of language understanding, including bench-
marks that delve into common sense knowledge
(Hendrycks et al., 2021a; Kwiatkowski et al., 2019),
as well as linguistic capabilities like sentiment anal-
ysis, natural language inference, summarization,
text classification, and more (Bang et al., 2023b;
Liang et al., 2022). These general benchmarks and
specific dataset evaluations exhibit certain limita-
tions. Despite the requirement for contextual infor-
mation in these benchmarks to effectively tackle
tasks (for example, sentiment analysis requires an
understanding of polarities within the given text),
none of these benchmarks cater to tasks that de-
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Figure 1: Tasks and datasets in the context understanding benchmark.

mand a nuanced comprehension of linguistic fea-
tures within a provided context.

On the other hand, recent LLMs, by virtue of
possessing billions of parameters, have led to an ex-
ponential surge in computational and storage costs
(Brown et al., 2020b), which hinders the deploy-
ment of large models to personal devices and re-
stricts the on-device performance of language un-
derstanding tasks. To address this challenge, model
compression methods, which can reduce memory
and disk requirements of both model training and
inference, have gained attention. Existing compres-
sion techniques, such as 3-bit quantization (Frantar
et al., 2022), have demonstrated the potential to re-
duce model sizes with only marginal performance
trade-offs. However, the evaluation of quantiza-
tion methods suffers from two deficiencies. Firstly,
quantization methods are primarily evaluated on
limited benchmarks and datasets, such as Lambada
(Paperno et al., 2016), ARC (Boratko et al., 2018),
PIQA (Tata and Patel, 2003), BoolQ (Clark et al.,
2019), and StoryCloze (Mostafazadeh et al., 2017).
It is not yet clear whether large, compressed mod-
els out- or under-perform their smaller counterparts
when understanding context. Secondly, previous
work has not delved into a linguistic analysis to
identify where the model efficacy wanes.

Given the above shortcomings, this paper evalu-
ates LLMs on a context understanding benchmark
constructed from varied discourse understanding
datasets. We conduct an extensive analysis of LLM
performance on this benchmark, including models
of varying sizes and those subjected to compres-
sion techniques, aiming to provide a more com-
prehensive understanding of context understanding

capability of the LLMs. The contributions of this
paper can be summarized as follows:

• Our work introduces a contextual understand-
ing benchmark, including four tasks, for the
evaluation of LLMs. We also present prompts
designed for in-context learning on each task.

• We evaluate LLMs of varying sizes from dif-
ferent model families and provide an analysis
on these models’ capability for context under-
standing.

• We evaluate post-training compressed models
in ICL settings and conduct an analysis of the
reduction in context understanding capability
compared to dense models.

2 Related Work

2.1 In-context Learning Evaluation

The paradigm of ICL (Brown et al., 2020a) is
rapidly gaining importance. Studies have demon-
strated that the generalization of LLMs to var-
ious downstream NLP tasks, such as MMLU
(Hendrycks et al., 2021b), is significantly enhanced
when provided with a small number of examples
as prompts (Brown et al., 2020a; Chowdhery et al.,
2022; Hoffmann et al., 2022; Rae et al., 2022; Anil
et al., 2023; Touvron et al., 2023; OpenAI, 2022,
2023). Recent research has extensively evaluated
the performance of LLMs across a spectrum of
language-related tasks, spanning from text genera-
tion to understanding input sequences. This assess-
ment contains a wide array of benchmarks, includ-
ing SUPER-GLUE (Wang et al., 2019; Laskar et al.,
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2023), and tasks such as question answering, in-
formation retrieval, sentiment analysis (Bang et al.,
2023b; Liang et al., 2022), dialogue (Heck et al.,
2023), and text classification (Yang and Menczer,
2023).

2.2 Model Compression for LLMs

Model compression techniques can be broadly cat-
egorized into three main approaches: compression
during training, compression associated with fine-
tuning, and post-training methods. In terms of
quantization during training, this technique enables
LLMs to adapt to low-precision representations dur-
ing the training process (Liu et al., 2023). Model
compression with fine-tuning involves quantization
awareness into the fine-tuning stage (Kim et al.,
2023; Dettmers et al., 2023). Post-training tech-
niques, on the other hand, are applied after the com-
pletion of an LLMs training phase and typically
involve the use of calibration data. This category
comprises two primary approaches: pruning, which
removes redundant or non-salient weights to induce
sparsity (Frantar and Alistarh, 2023), and quantiza-
tion, which employs low-precision numeric repre-
sentations of weights and activations (Nagel et al.,
2020; Frantar et al., 2022; Yuan et al., 2023). Prior
research shows that quantization outperforms prun-
ing in several settings (Kuzmin et al., 2023), thus
in this work, we focus on model quantization and
its impact on the selected context-aware tasks.

3 Task Selection & Design

Our contextual understanding benchmark includes
four tasks with nine datasets, as presented in Figure
1. In the following sections, we provide detailed
explanations of each task and the corresponding
datasets, along with the designed prompts for ICL
evaluations.

3.1 Coreference Resolution

The coreference resolution (CR) task contributes to
achieving a coherent understanding of the overall
meaning conveyed within the text. Thus, it plays a
critical role in diving into language models’ capa-
bility to grasp coreference relations as well as con-
textual nuances within documents. We select two
coreference datasets: WSC273 (Levesque et al.,
2012) and OntoNotes 5.0 (Pradhan et al., 2013).

WSC273, which contains the first 273 examples
from the Winograd Schema Challenge, is a dataset
that requires the system to read a sentence with

Instruction: Please carefully read the following passages.
For each passage and the options, you must identify which
option the mention marked in *bold* refers to. If the
marked mention does not have any antecedent, please se-
lect “no antecedent”.
Context: ... To express *its* determination ... the Chinese
securities regulatory department ... this stock reform ...
Choices:
A. no antecedent
B. the Chinese securities regulatory department
C. this stock reform
...
Question: What does *its* refer to?
Answer: B

Table 1: An OntoNotes example of prompt and answer.

an ambiguous pronoun and select the referent of
that pronoun from two choices. OntoNotes is a
human-annotated corpus of documents annotated
with multiple layers of linguistic information in-
cluding syntax, propositions, named entities, word
sense, and in-document coreference. As it is one
of the most frequently used datasets for training
coreference models, prior research has achieved
significant advancements under the supervised fine-
tuning paradigm (Lee et al., 2017; Joshi et al., 2020;
Bohnet et al., 2023). However, these model designs
cannot be extended to generative models under ICL
settings. Recently, Le and Ritter (2023) have lever-
aged document templates for LLMs; however, their
evaluation is confined to prominent models such as
InstructGPT (Ouyang et al., 2022), neglecting the
fact that smaller models lack the generative capac-
ity required to accomplish such tasks. Due to these
limitations, we propose a novel multiple-choice
task design. In this design, we provide the men-
tions and evaluate the model on resolution. Each
option represents a potentially markable span.2 Ta-
ble 1 presents an example of the input to the model3.
The entire prompt consists of five parts: (1) an in-
struction that provides guidance to the model for
the task, (2) a document containing plain text with
a selected mention span highlighted using a bold
symbol, (3) a list of choices, which includes all
the gold mentions present in the document, (4) a
question that directs the model’s attention, and (5)
a guiding word answer that prompts for the out-
put. We experiment with multiple instructions and
prompts and provide the one with the best perfor-
mance. Linking scores are computed for each ques-

2Considering the inferior performance of small models on
the mention detection task, we utilize gold markable spans
coreference linking.

3Detailed examples for each task design can be found in
Appendix A.
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Ontology:
{“slots”: {“restaurant-pricerange”: “price budget for the
restaurant”, ... },
“categorical”: {“restaurant-pricerange”: [‘cheap’, ‘expen-
sive’, ‘moderate’], ...} }
Instruction: Now consider the following dialogue be-
tween two parties called the “system” and “user”. Can you
tell me which of the “slot” was updated by the “user” in
its latest response to the “system”? Present the updates in
JSON format. If no “slots” were updates, return an empty
JSON list. If you encounter “slot” that was requested by
the “user” then fill them with “?”. If a user does not seem
to care about a discussed “slot” fill it with “dontcare”.
[Previous Dialogue State]
[Conversation]:
“system”: “”
“user”: “I’m looking for a moderately priced place to eat
that’s in the centre of town.”
Output: {“restaurant-pricerange”: “moderate”,

“restaurant-area”: “centre”}

Table 2: A DST example of prompt and answer.

tion and the results are subsequently aggregated for
evaluation. We utilize the official evaluation met-
rics from the CoNLL-2012 shared task (Pradhan
et al., 2012), which employs the CoNLL F1 score,
derived from the averaging of three coreference
metrics: MUC, B3, and CEAFϕ4.

3.2 Dialogue State Tracking
Dialogue state tracking (DST) is an important task
in the area of task-oriented dialogue (TOD) model-
ing (Young et al., 2013), where the dialogue agent
tracks the key information provided by the user as
the conversation progresses. Table 2 provides an
example from MultiWOZ (Budzianowski et al.,
2018) where the user expresses the constraints
when looking for a restaurant. The output of DST
is typically maintained in slot-value pair format.

Previous research has explored ICL capabilities
on MultiWOZ and demonstrated promising results
compared to fine-tuning models (Hu et al., 2022;
Heck et al., 2023). However, these studies either
involve partial training or are untested with smaller
and quantized models. Here we adopt a straight-
forward and simplified ICL approach proposed by
Heck et al. (2023), and test it on MultiWOZ v2.2
(Zang et al., 2020). The prompt to the model con-
sists of domain knowledge from ontology, an in-
struction, previous dialogue state (the belief state
accumulated until the previous user turn) and the
conversation proceeding to the current turn. The
ontology could be lengthy if considering all do-
mains in the dataset. Thus, given the input length
constraint of LLMs, only the knowledge relevant to
the conversation is provided. Following literature,

Instruction: Given two arguments and a list of connective
words, please select the most likely connective between
two arguments.
[Relation Description]
Input:
Arg 1: Amcore, also a bank holding company, has assets
of $1.06 billion.
Arg 2: Central’s assets are $240 million.
Question: What is the connective that best describes the
relation between two arguments?
Choices:
A. Temporal B. Contingency C. Comparison D. Expansion
Answer: C

Table 3: A PDTB example of prompt and answer.

we report joint goal accuracy (JGA) (Mrkšić et al.,
2017) for evaluating the performance of DST.

3.3 Implicit Discourse Relation Classification
Discourse demonstrates its importance beyond in-
dividual sentences, which emphasizes the ways
in which different segments of a text interconnect
and structure themselves to convey a coherent and
meaningful message. The PDTB-3 corpus, as intro-
duced by Webber et al. (2019), annotates implicit
discourse relations across elementary discourse
units (EDUs)4. These relations imply connections
between EDUs and may be made explicit by in-
serting a connective. Within the context of the
understanding benchmark, we opt for the implicit
discourse relation classification task for two pri-
mary reasons. Firstly, the order of the two EDUs is
provided, enabling the model to directly utilize this
information. Secondly, the connective triggering
the relation is implicit, increasing the task’s com-
plexity. In this task, two EDUs are fed as input,
and the objective is to correctly identify the rela-
tion between them. Due to the nuanced differences
between each relation and the demand for annota-
tors with rich linguistic knowledge and extensive
annotation training, the classification task poses
challenges to fine-tuned classification models.

The PDTB3 corpus classifies discourse relations
into four categories - Temporal, Contingency,
Comparison, and Expansion. We convert this task
into a multiple-choice question and experiment
with classes as options. In the classes scenario, the
task offers four options, each representing a distinct
discourse relation class. Table 3 exhibits the com-
ponents of the prompt. It includes an instruction
at the beginning, followed by a concise description
of each relation, a context with two arguments, a

4EDU refers to the smallest segment of a text that conveys
a complete and coherent meaning within larger discourse.
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Instruction: Rewrite the last query following interaction
into a well-formed, context independent query. Resolve
any disfluencies or grammatical errors in the query.
Input:
User: Try to reach Forbes now .
Bot: Forbes at Washington Post ? Or Forbes of Publishing
Division ?
User: Publishing Division .
Rewrite: Forbes of Publishing Division

Table 4: A query rewriting example of prompt and an-
swer.

question along with answer choices, and a trigger
word. We evaluate each model’s performance on
this dataset using accuracy as the metric.

3.4 Query Rewriting

While document-based CR (OntoNotes, Section
3.1) covers various types of coreference relations
across multiple genres, it does not allow the ability
to evaluate certain aspects which are important to
understand context. Firstly, the CR task typically
focuses on document-based coreference chains, ne-
glecting mention resolution in dialogues. Secondly,
ellipsis, which is the omission of one or more words
from a clause, is a crucial linguistic phenomenon
in speech and conversation. It is essential for lan-
guage models to grasp and accurately identify el-
lipses within context. Incorporating these features
into the benchmark is thus pivotal when evaluating
context understanding.

Query Rewriting (QR) is a task of rewriting the
last utterance of a user in a conversation into a
context-free, independent utterance that can be in-
terpreted without dialog context. It requires the
model to identify the entity or events references
from context and further generate a complete utter-
ance with resolved coreference or ellipsis.

We incorporate five QR datasets in the proposed
benchmark: MuDoCo with QR annotations (Martin
et al., 2020; Tseng et al., 2021), QReCC (Anantha
et al., 2021), InCar (Regan et al., 2019), GECOR
(Quan et al., 2019), and CANARD (Elgohary et al.,
2019). These datasets span multiple genres and
domains in dialogues. We experiment with various
prompts used for fine-tuning models and present
the results with the best selections. Table 4 presents
a concise prompt comprising an instruction along
with context for each dialogue. To assess the qual-
ity of generated queries, we follow the metrics from
previous research, particularly BLEU (Papineni
et al., 2002) and ROUGE (Lin, 2004).

4 Experiments

4.1 Implementation Details

Evaluation was conducted on a computational in-
frastructure comprising 8 × A100 GPUs. We ex-
periment with three model families. For smaller
models, we consider OPT (Zhang et al., 2022),
ranging from 125M to 2.7B. Although OPT also
offers larger models, we opt for LLaMA (Touvron
et al., 2023) as the mid-sized LMs, spanning from
7B to 65B parameters, due to showcased superior
performance by prior works. For large-scale LMs,
we leverage GPT-3.5-turbo5. For each model,
on every dataset, we assess five different settings:
zero-shot, one-shot, 5-shot, 8-shot, and 10-shot.
We randomly select the examples from the training
set for the few-shot prompting.6

4.2 Dense Model

Results of the three model families are reported
in Table 5, along with results of fine-tuned (FT)
models to help better interpret how well the pre-
trained models behave with ICL. Figure 2 also vi-
sualizes the gap between various commercial/non-
commercial language models and fine-tuning mod-
els that achieve the best performance on these tasks.
For each, we present the N-shot setting that yields
the highest score (see Appendix B for details).
Overall, performance improves as the model size
increases and pre-trained models with ICL struggle
to catch up with FT models on most tasks.

Coreference Resolution Larger models exhibit
promising performance on the WSC273 task, indi-
cating that LLMs can effectively handle "simple"
coreference relations within limited contexts and
mentions. However, when it comes to document-
based CR with complex clusters, their performance
substantially drops 7. Even on providing ground-
truth mentions, the highest-performing GPT is only
on par with rule-based coreference systems (Man-
ning et al., 2014) and is far from the end-to-end
fine-tuned SpanBERT (Joshi et al., 2020). The gap

5https://platform.openai.com/docs/models/
gpt-3-5

6WSC273 itself is a test set and thus has no fine-tuning
results. We only report the zero-shot results.

7Note that the OntoNotes dataset is substantially larger
than the others. We observe that inference on the entire test
set becomes extremely time-consuming, particularly with the
larger models; further, the cost of running inference on GPT-
3.5 starts becoming non-negligible. Consequently, we propose
limiting the OntoNotes test set to a 10% sub-sample, which is
the setting we consistently adopt.
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Task Dataset Metrics OPT LLaMA GPT FT
125M 350M 1.3B 2.7B 7B 13B 30B 3.5-turbo

CR

WSC273 Acc 58.24 66.67 76.19 77.66 86.81 89.38 89.01 88.64 N/A

OntoNotes

MUC 12.66 7.58 13.21 8.29 10.31 31.80 33.56 56.32 77.26
B3 53.80 52.26 53.54 52.41 52.20 58.43 58.66 68.20 73.43

CEAFϕ4 31.09 29.49 31.40 30.10 32.63 38.00 39.27 50.72 74.46
Avg. F1 32.52 29.78 32.72 30.27 31.71 42.74 43.83 58.41 76.03

DST MultiWOZ JGA 11.11 27.96 26.61 28.08 32.30 28.12 42.24 57.40 63.79
Disc. PDTB-3 Acc 10.04 10.04 10.04 16.15 17.16 26.01 39.77 43.83 76.23

QR

MuDoCo BLEU 0.46 0.36 7.02 49.20 41.12 61.15 66.51 57.14 80.31
ROUGE 1.52 12.18 10.98 65.61 56.07 74.78 77.88 79.37 92.01

QReCC BLEU 4.53 31.27 26.35 40.09 28.19 38.64 58.68 55.24 58.67
ROUGE 13.91 58.18 53.10 68.32 48.27 56.40 78.74 79.98 81.75

InCar BLEU 0.00 7.66 12.71 27.42 28.20 42.13 48.58 63.66 88.45
ROUGE 3.41 28.76 30.45 49.63 49.96 56.73 64.18 83.51 95.24

GECOR BLEU 0.20 26.40 26.32 49.99 53.27 66.30 73.80 63.34 82.56
ROUGE 4.06 42.13 42.57 65.89 69.23 80.99 86.03 79.00 92.63

CANARD BLEU 2.61 19.39 24.24 34.66 21.34 29.32 47.24 47.12 57.46
ROUGE 9.82 45.63 49.36 62.73 38.17 46.61 69.73 74.61 81.06

Table 5: Few-shot results of two open-sourced models and GPT-3.5 on the context understanding benchmark. The
results with the best number of few-shot examples are reported for each task. Fine-tuning (FT) results serves as a
reference when evaluating LLMs’ capability under ICL setup.

between ICL and FT results highlights that under
the ICL setting, LLMs struggle to build coreference
chains without adequate domain-specific examples.
Specifically, models except GPT perform signifi-
cantly worse on the MUC metric. Error analysis re-
veals that these models are inclined to create more
clusters, including singleton clusters. This implies
that pre-trained LLMs encounter difficulties in un-
derstanding long-range contextual information.

DST A similar trend is observed as CR where
OPT and LLaMA models fall behind GPT-3.5 sig-
nificantly. This suggests that these models fail to
extract key information as the conversation pro-
ceeds, even with the provision of 5 to 10 demon-
strations and the distilled relevant domain ontology
in prompt. Our error analysis indicates that most of
the errors happen due to the misdetection of slots
or the wrong predicted value in a slot-value pair.
Only GPT-3.5 reaches the level of FT results which
is a fine-tuned T5 base model (Bang et al., 2023a).

Implicit Discourse Relation Classification We
observe an increase in scores when the model size
exceeds 7B. However, even the best-performing
LLM, GPT, performs worse than the SOTA fine-
tuned model (Liu and Strube, 2023) with the drop
of 32% accuracy. We carefully examine the pre-
dictions for each model and found that all models
tend to predict the same relation class for every
example, albeit with their individual preferences

for the selected relation. In addition, because of
an imbalanced distribution of classes, these mod-
els potentially perform worse than random chance
(25%). This suggests that the models struggle to
distinguish the nuances between different relation
classes and fail to correctly identify relations across
EDUs within context.

Query Rewriting The gap between small and
large models is significantly huge, compared to the
other tasks. For instance, OPT-125M cannot even
complete the rewriting task. Analysis on predic-
tions of small models indicates that the model is not
capable of following the instructions or learning
patterns from the few-shot examples. We identify a
few major error types: (1) generating the next sen-
tence, instead of rewriting; (2) rewriting the wrong
user turn from the conversation; (3) copying the last
user utterance without any rewriting. These errors
get reduced as the model size increases. However,
similar to the previous three tasks, the best ICL
results achieved by GPT is far from the fine-tuned
models.8 It is worth noting that OPT-2.7B performs
on par or notably better than LLaMA-7B, which is
somewhat not aligned with the findings in Beeching
et al. (2023) where LLaMA-7B even outperforms
OPT-66B in many tasks, including ARC (Clark

8In literature, the best FT results come from different mod-
els across five QR datasets, where some are not even LLM
based. To ensure fair comparison, we fine-tuned a T5 large
model on each QR dataset.
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Figure 2: Comparison between commercial/non-
commercial models and fine-tuning models for each
task in the context understanding benchmark.

et al., 2018), HellaSwag (Zellers et al., 2019), and
MMLU (Hendrycks et al., 2021b).

All in all, this section presents a holistic compar-
ison of LLMs’ behaviors on the target context un-
derstanding tasks. On the tasks with structured out-
puts such as CR or DST, even small models show
a certain level of context understanding and seem
to follow the task instruction. Classification tasks
such as discourse relation selection are deemed the
easiest among all tasks; however, the small mod-
els are even worse than a random guess (25%).
As for the generative task, the ability to complete
query rewriting can be only observed in the case
of larger models, as the model has the freedom
to generate arbitrary content that does not follow
the prompt. We notice that OPT-2.7B outperforms
LLaMA-7B in multiple QR datasets, including Mu-
DoCo, QReCC, and CANARD. We carefully com-
pare the outputs between the two models. As an ex-
ample, QReCC, a QA-based conversational dataset,
consists of several QA pairs as context and a last
query to be rewritten. We observe that LLaMA-
7B tends to rewrite the question in context instead
of rewriting the last target query, which is not fre-
quent in OPT-2.7B. It is also noted that except for
DST, FT models demonstrate marked superiority
over pre-trained models, highlighting the potential
for improving LLMs’ competence on these context
understanding tasks.

Dataset Metrics 7B-D 30B-Q 30B-D
WSC273 Acc 86.81 87.18 89.01

OntoNotes

MUC 10.31 25.37 33.56
B3 52.20 56.80 58.66

CEAFϕ4 32.63 36.93 39.27
Avg. F1 31.71 39.70 43.83

MultiWOZ JGA 32.30 41.99 42.24
PDTB-3 Acc 17.16 31.29 39.77

MuDoCo BLEU 41.12 59.22 66.51
ROUGE 56.07 71.38 77.88

QReCC BLEU 28.19 53.72 58.68
ROUGE 48.27 74.13 78.74

InCar BLEU 28.20 39.69 48.58
ROUGE 49.96 56.32 64.18

GECOR BLEU 53.27 70.41 83.36
ROUGE 69.23 73.80 86.03

CANARD BLEU 21.34 45.07 47.24
ROUGE 38.17 67.15 69.73

Table 6: Comparison between dense and quantized mod-
els. Dense LLaMA-7B and 3-bit quantized LLaMA-
30B share similar memory and disk requirements. D
represents dense model and Q denotes quantized model.

4.3 Model Compression Technique

As we focus on evaluating context understanding
of LLMs in an ICL setup, we evaluate models quan-
tized using GPTQ (Frantar et al., 2022), which is
an efficient one-shot weight quantization algorithm
based on approximate second-order information
that compresses the model post-training. It enables
a reduction in memory and disk requirements by
up to 80%, compared to the pre-quantized model.

4.4 Quantized Model Results

GPTQ (Frantar et al., 2022) has been shown to
effectively reduce the model size to 3 bits with-
out incurring substantial performance losses across
a range of NLP tasks, such as MMLU, ARC,
StoryCloze. However, whether this performance
preservation can be extended to contextual under-
standing was unclear.

Table 6 presents the comparison between the
dense and 3-bit quantized LLaMA models. In
contrast to previous studies on 3-bit quantization,
we observed that quantization leads to fluctuated
drops in performance across the four tasks. Specif-
ically, in WSC273, MultiWOZ, and CANARD,
post-training quantization incurs only a marginal
performance drop (∼1.7 points). However, in the
remaining datasets, quantization results in signifi-
cant performance drops.

The results further show that the quantized
LLaMA-30B model consistently outperforms the
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dense LLaMA-7B model across all tasks despite be-
ing comparable in disk and memory requirements.
For CR, the 30B quantized model achieves sig-
nificantly higher scores on the OntoNotes dataset
across all metrics. The MUC metric shows the
most substantial improvement, indicating that the
quantized 30B model partially overcomes the ten-
dency to create small clusters for mentions. For
DST on MultiWOZ, the 30B quantized model show
a 30% relative improvement over the 7B model in
JGA. On discourse parsing with PDTB-3, the ac-
curacy of quantized 30B model is almost double,
17.16% vs 31.29%. Across all QR datasets, the
quantized 30B model substantially improves NLG
scores compared to the dense 7B model, with rela-
tive gains ranging from 15-50%. The largest gap is
observed on GECOR.

In general, we show that the quantized 30B
LLaMA model consistently and significantly out-
performs the dense 7B model as a result of the
increased scale, despite using 3-bit quantization.
The benefits of greater model scale thus outweigh
the impacts of quantization in understanding dis-
course. We believe this finding would be beneficial
when deploying LLMs in real-world applications
with disk and runtime constraints.

5 Case Study: Query Rewriting

In this section, we provide in-depth analysis by
comparing the two open-sourced model families
OPT and LLaMA, and the impact of quantization,
using query rewriting as the target task.

We conduct a careful inspection of the query
rewriting task because of three reasons: (1) by the
nature of the task, query rewriting is the only one
with free-form generation, while the others effec-
tively are either classification-based tasks or heav-
ily constrained in their possible output predictions.
The generation task allows us to explore the LLMs’
output in more detail, and to provide more interest-
ing insights; (2) the manual analysis of errors is a
time-consuming process, making it challenging to
conduct such an in-depth analysis across all four
tasks; (3) the query rewriting task covers a diverse
range of five datasets, enabling us to compare dif-
ferences between each dataset and to thereby gain
a deeper understanding.

5.1 OPT vs. LLaMA

Prior works (Beeching et al., 2023) have consis-
tently shown that, under the same model size,

Dataset 6.7/7B 13B 30B
O. L. O. L. O. L.

Mudoco 53.1 41.1 55.2 61.1 55.2 66.5
71.8 56.0 72.1 74.7 71.5 77.8

QReCC 46.6 28.1 43.7 38.6 43.8 58.6
73.4 48.2 71.6 56.4 71.9 78.7

InCar 40.3 28.2 41.9 42.1 44.6 48.5
64.8 49.9 62.6 56.7 65.3 64.1

GECOR 58.8 53.2 60.9 66.3 58.2 73.8
75.7 69.2 78.3 80.9 76.1 86.0

CANARD 43.8 21.3 37.5 29.3 41.3 47.2
72.0 38.1 66.0 46.6 69.3 69.7

Table 7: Comparison between OPT (O.) and LLaMA
(L.) across five query rewrite datasets. For each dataset,
the first and second rows represent BLEU and ROUGE
scores respectively.

Context
User: what is the name of india pakistan border line
Bot: The Radcliffe Line was the boundary demarcation

line between the Indian and Pakistani portions of the
Punjab and Bengal provinces of British India.

User: who created the radcliffe line
Bot: The Radcliffe Line was named after its architect, Sir

Cyril Radcliffe, who was the joint chairman of the two
boundary commissions for the two provinces.

User: when was the line published

Gold answer: when was the radcliffe line published

Prediction 1 (repeat the last query): when was the line
published

Prediction 2 (language modeling): 1947

Table 8: An example of two major types of errors found
in the query rewriting task.

LLaMA outperforms OPT. However, their perfor-
mance on QR, as shown in Table 7, does not follow
this pattern.

When the model size is around 7B, OPT consis-
tently performs better than LLaMA by a significant
margin across the five QR datasets. The two mod-
els perform on par with each other at 13B. The
superiority of LLaMA is only obvious with 30B
model size. From another perspective, although we
expect performance to improve as model size in-
creases, we observe this trend on LLaMA, but not
on OPT. These results suggest that it may not be
correct to conclude the overall superiority between
two model families by only comparing on a certain
range of model sizes or on a certain set of tasks.

5.2 Dense vs. Quantized

We conduct a quantitative analysis on the error
types of query rewriting to investigate the perfor-
mance gap between dense and quantized models.
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Type Dataset 7B D 30B Q 30B D

Repeat

MuDoCo 260 247 194
QReCC 86 90 26
InCar 17 15 8

GECOR 59 62 37
CANARD 47 44 32

Total 469 458 297

LM

MuDoCo 71 29 16
QReCC 80 28 16
InCar 19 20 15

GECOR 6 1 0
CANARD 127 76 59

Total 232 125 106

Table 9: Number of the major two types errors on three
LLaMA models (7B dense, 30B quantized, and 30B
dense) found in query rewriting. Repeat stands for
repeat-the-last-query error and LM denotes language
modeling error.

Across the five datasets, we identify two main er-
ror types that account for nearly 80% of the to-
tal errors, with examples shown in Table 8. First,
the model repeats the last query without resolv-
ing any referred entity or ellipsis. In this case, the
model seems to understand the instruction but fails
at rewriting. This type of error can be primarily
associated with the model’s context understanding
capability. Second, the model treats the task as a
language modeling (LM) task, where it provides
a response to the last query. In this scenario, the
model appears to struggle to understand the task
instruction, even with several few-shot examples.
We classify this error type as more related to the
model’s ICL ability.

We perform manual error annotations on the five
QR datasets9. Table 9 illustrates the number of er-
rors of the three selected models on each dataset. A
consistent trend is observed across all QR datasets.
In terms of repeat errors, the 30B dense model ex-
hibits significantly fewer errors compared to the 7B
dense model (297 vs. 469). However, 3-bit GPTQ
quantization leads to an increase in this type of er-
ror, reaching a similar error count to the 7B dense
model (458 vs. 469). This implies that 3-bit quan-
tization reduces the model’s ability to comprehend
the context. Regarding LM errors, the 30B dense
model also significantly outperforms the 7B dense
model, with 106 errors compared to 232. It is to be
noted that the quantized model generates only 125
LM errors, slightly more than the 30B dense model.
However, it generates significantly fewer (around

910% test data on QReCC and CANARD was graded.

50%) errors compared to the 7B dense model (125
vs. 232). This indicates that 3-bit quantization
maintains the ICL capability that allows models
to rewrite the user query successfully rather than
performing language modeling task.

6 Conclusion

This paper introduces a contextual understanding
benchmark designed to assess the performance of
LLMs. We collect nine existing datasets spanning
four tasks, each carefully tailored to suit generative
models. This benchmark encompasses essential
elements for assessing linguistic comprehension
within context, including both document and dia-
log based contextual understanding. Experimental
results reveal that LLMs under in-context learning
struggle with nuanced linguistic features within
this challenging benchmark, exhibiting inconsisten-
cies with other benchmarks that emphasize other
aspects of language. To the best of our knowledge,
we are also the first to compare dense models and
post-training quantization models in contextual un-
derstanding tasks. This comparison highlights that
3-bit post-training quantization reduces the general
understanding capacity of context to different ex-
tent across the 4 tasks. The proposed contextual
comprehension benchmark thus provides a unique
perspective on the contextual dimension of lan-
guage understanding and offers a valuable addition
to existing LLM evaluations.

Limitations

This work provides an evaluation of various pre-
trained LLMs, including OPT, LLaMA, and GPT,
on our understanding benchmark. However, we
have not evaluated other LLMs designed for longer
input scenarios, such as LongLLaMA (Tworkowski
et al., 2023).

In our evaluation, we focus on the GPTQ quan-
tization method, analyzing its performance on our
benchmark. We do not include other post-training
quantization techniques, such as RPTQ (Yuan et al.,
2023), in this work.

Our evaluation concentrates on English datasets,
primarily utilizing LLMs pre-trained with English
data. All of the four tasks on our benchmark have
datasets from other languages. The coreference
dataset OntoNotes 5.0 contains annotations of Ara-
bic and Chinese. In addition, recent releases such
as CorefUD (Nedoluzhko et al., 2022) promote
standardization of multilingual coreference anno-
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tations. In DST, CrossWOZ (Zhu et al., 2020) is
a cross-domain wizard-of-oz task-oriented dataset.
Long et al. (2020) develop TED-CDB, a Chinese
discourse relation dataset. The query rewriting
task also has datasets in other languages, such as
REWRITE (Su et al., 2019) and Restoration-200K
(Pan et al., 2019). Finally, specific LLMs opti-
mized for individual languages, such as ChatGLM
(Du et al., 2022), exist and are not a part of our
evaluation.
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Steve Young, Milica Gašić, Blaise Thomson, and Ja-
son D Williams. 2013. Pomdp-based statistical spo-
ken dialog systems: A review. Proceedings of the
IEEE, 101(5):1160–1179.

Zhihang Yuan, Lin Niu, Jiawei Liu, Wenyu Liu, Xing-
gang Wang, Yuzhang Shang, Guangyu Sun, Qiang
Wu, Jiaxiang Wu, and Bingzhe Wu. 2023. Rptq:
Reorder-based post-training quantization for large
language models.

Xiaoxue Zang, Abhinav Rastogi, Srinivas Sunkara,
Raghav Gupta, Jianguo Zhang, and Jindong Chen.
2020. Multiwoz 2.2: A dialogue dataset with addi-
tional annotation corrections and state tracking base-
lines. In Proceedings of the 2nd Workshop on Natu-
ral Language Processing for Conversational AI, ACL
2020, pages 109–117.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence?

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi-
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu
Wang, and Luke Zettlemoyer. 2022. Opt: Open pre-
trained transformer language models.

Qi Zhu, Kaili Huang, Zheng Zhang, Xiaoyan Zhu, and
Minlie Huang. 2020. CrossWOZ: A large-scale Chi-
nese cross-domain task-oriented dialogue dataset.
Transactions of the Association for Computational
Linguistics, 8:281–295.

A Task Design Examples

Table 10 presents the input example for each task.
For CR, we only show examples from OntoNotes.

B Few-shot Settings

Table 11 shows the number of examples for each
dataset that yields the best scores. All datasets
except WSC273 and PDTB3 use randomly selected
examples from the training set. Since WSC273
does not include any train or validation set, we use
the zero-shot setting, as scores presented in Table
5. For each class in PDTB3, we randomly select
two examples from the training set for prompting.
For some particular datasets, such as OntoNotes,
experiments are only performed in the zero-shot
and one-shot settings due to the limitation on input
length.

C Reliability of Experiment Results

For each task, we have randomly run several exper-
imental setups with multiple rounds, with over 10
settings in total. However, due to the challenges
posed by limited time, budget, and computing re-
sources, it is very difficult to run multiple rounds
for every single experiment, given the complexity
of our experimental setup. In addition, for exist-
ing experiments with multiple rounds, we empiri-
cally observe that there is low variance across the
rounds, which leads us to assume that performing
the remaining experiments with a single run does
not significantly impact the arguments presented in
this paper.
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Coreference Resolution
Instructions: Please carefully read the following passages. For each passage and the options, you must identify which option the mention marked in *bold* refers to. If the marked mention
does not have any antecedent, please select “no antecedent”.

[Few-shot examples]

Context: — basically , it was unanimously agreed upon by the various relevant parties . To express *its* determination , the Chinese securities regulatory department com-
pares this stock reform to a die that has been cast . It takes time to prove whether the stock reform can really meet expectations , and whether any deviations that arise during the stock
reform can be promptly corrected . Dear viewers , the China News program will end here . This is Xu Li . Thank you everyone for watching . Coming up is the Focus Today program
hosted by Wang Shilin . Good-bye , dear viewers .
Choice:
A. the Chinese securities regulatory department
B. this stock reform
C. the stock reform
D. you
E. everyone
F. no antecedent
Question: What does *its* refers to?
Answer: A

Dialogue State Tracking
Consider the following list of concepts, called "slots" provided to you as a json list.

“slots”: {“restaurant-pricerange”: “price budget for the restaurant”,
“restaurant-area”: “area or place of the restaurant”,
“restaurant-food”: “the cuisine of the restaurant you are looking for”,
. . .
“hotel-postcode”: “postal code of the hotel”,
‘hotel-ref”: “reference number of the hotel booking”

}

Some “slots” can only take a value from predefined list:

“categorical”: {“restaurant-pricerange”: [‘cheap’, ‘expensive’, ‘moderate’],
“restaurant-area”: [’centre’, ’east’, ’north’, ’south’, ’west’],
“restaurant-bookday”: [’monday’, ’tuesday’, ’wednesday’, ’thursday’, ’friday’, ’saturday’, ’sunday’],
. . .
“hotel-internet”: [’free’, ’no’, ’yes’], “hotel-area”: [‘centre’, ‘east’, ‘north’, ‘south’, ‘west’]

}

Now consider the following dialogue between two parties called the “system” and “user”. Can you tell me which of the “slot” was updated by the “user” in its latest response to the
“system”? Present the updates in JSON format. If no “slots” were updates, return an empty JSON list. If you encounter “slot” that was requested by the “user” then fill them with “?”. If a
user does not seem to care about a discussed “slot” fill it with “dontcare”.

Input:
Previous state: {}
“system”: “”
“user”: “I’m looking for a moderately priced place to eat that’s in the centre of town.”
Output: {“restaurant-pricerange”: “moderate”, “restaurant-area”: “centre”}

Implicit Discourse Relation Classification
Instructions: Given two arguments and a list of connective words, please select the most likely connective between two arguments.

Below are the descriptions of four discourse relation labels. Please find the correct label for each example.

Temporal: The tag temporal is used when the situations described in the arguments are intended to be related temporally.
Contingency: The tag Contingency is used when the situation described by one argument provides the reason, explanation or justification for the situation described by the other.
Comparison: The tag Comparison is used when the discourse relation between two arguments highlights their differ- ences or similarities, including differences between expected
consequences and actual ones.
Expansion: The label Expansion is used for relations that expand the discourse and move its narrative or exposition forward.

[Few-shot examples]

Input:
Arg 1: Amcore, also a bank holding company, has assets of $1.06 billion.
Arg 2: Central’s assets are $240 million.
Question: What is the connective that best describes the relation between two arguments?
A. Temporal
B. Contingency
C. Comparison
D. Expansion
Answer: C

Query Rewrite
Instructions: Rewrite the last query following interaction into a well-formed, context independent query. Resolve any disfluencies or grammatical errors in the query.

[Few-shot examples]

Input:
User: Try to reach Forbes now .
Bot: Forbes at Washington Post ? Or Forbes of Publishing Division ?
User: Publishing Division .
Rewrite: Forbes of Publishing Division

Table 10: Examples of task design for each task in the context understanding benchmark.

Task Coreference DST Discourse Query Rewriting
Dataset WSC273 OntoNotes MultiWOZ PDTB3 MuDoCo QReCC InCar GECOR CANARD
N-shot Zero-shot One-shot 5-shot 8-shot 10-shot 5-shot 10-shot 10-shot 5-shot

Table 11: N-shot settings for each task & dataset that yields the highest scores. For each task and model, we use
consistent N-shot settings for comparison.
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