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Abstract

In psycholinguistics, the creation of controlled
materials is crucial to ensure that research out-
comes are solely attributed to the intended
manipulations and not influenced by extrane-
ous factors. To achieve this, psycholinguists
typically pretest linguistic materials, where a
common pretest is to solicit plausibility judg-
ments from human evaluators on specific sen-
tences. In this work, we investigate whether
Language Models (LMs) can be used to gen-
erate these plausibility judgements. We inves-
tigate a wide range of LMs across multiple lin-
guistic structures and evaluate whether their
plausibility judgements correlate with human
judgements. We find that GPT-4 plausibil-
ity judgements highly correlate with human
judgements across the structures we examine,
whereas other LMs correlate well with hu-
mans on commonly used syntactic structures.
We then test whether this correlation implies
that LMs can be used instead of humans for
pretesting. We find that when coarse-grained
plausibility judgements are needed, this works
well, but when fine-grained judgements are
necessary, even GPT-4 does not provide sat-
isfactory discriminative power.

1 Introduction

Psycholinguistic research explores humans’ ex-
ceptional language comprehension abilities, aim-
ing to uncover underlying mechanisms through
experiments and cognitive modelling (Frazier,
1987; Lewis and Vasishth, 2005; Gibson, 2000;
Levy, 2008; MacDonald et al., 1994; Futrell et al.,
2020; Tabor and Hutchins, 2004). Researchers
use measures such as reading times and compre-
hension accuracy to compare sentences with dis-
tinct processing demands. As an example, Ness
and Meltzer-Asscher (2019) investigated reading
times to determine if sentences with two animate
nouns (e.g., (1a), (2a)) pose greater processing
challenges than those with one animate and one
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Figure 1: Correlation between average human plau-
sibility ratings and average LLM plausibility ratings
across four pretesting datasets, along with the fitted
linear regression and Pearson correlation. We plot the
LLM with the highest correlation (GPT-4 in all cases,
except for the bottom right where GPT-3.5 is shown).

inanimate noun (e.g., (1b), (2b)). Longer reading
times in the (a) sentences would indicate that sim-
ilarity between the noun phrases interferes with
processing.

1. (a) The photographer that the manager sent
was helpful.

(b) The contract that the manager sent was
helpful.

2. (a) The worker that the contractor brought fell
down.

(b) The ladder that the contractor brought fell
down.

Careful construction of linguistic stimuli is cru-
cial in psycholinguistic studies to minimize con-
founding factors. Controlling sentence plausibility
ensures that processing differences stem from ex-
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perimental manipulations rather than external fac-
tors (plausibility, length of the sentence, grammat-
ically of the sentence)... In our example, making
sure that the sentences “the manager sent the pho-
tographer” and “the manager sent the contract”
have roughly the same plausibility, and likewise
that “The photographer was helpful” and “The
contract was helpful” have roughly the same plau-
sibility, is necessary to attribute processing vari-
ations to the similarity in animacy. Moreover,
maintaining overall high sentence plausibility pre-
vents unrelated processing difficulties and reduces
data noise.

Controlling sentence plausibility is therefore es-
sential in sentence processing experiments, and
is typically accomplished through pretests, where
participants rate sentence plausibility on a scale,
guiding the selection of materials for the main ex-
periment. However, plausibility pretesting is a
time- and resource-consuming process, involving
multiple iterations and prolonged data collection
with different participant groups.

Recently, Large Language Models (LLMs)
(Vaswani et al., 2017; Devlin et al., 2019; Lewis
et al., 2020; Raffel et al., 2020; Touvron et al.,
2023) have shown human-like performance on
various language understanding tasks without
task-specific training (Brown et al., 2020). Pre-
vious studies have established a strong correlation
between LMs’ predicted probabilities and human
reading time (Fernandez Monsalve et al., 2012;
Smith and Levy, 2013; Hofmann et al., 2020; Hao
et al., 2020; Hollenstein et al., 2021; Shain et al.,
2022). Thus, it is natural to ask – can LMs provide
plausibility judgements that are similar to human
judgments and consequently be used to reduce the
cost of psycholinguistic pretesting?

In this study, we investigate the correlation be-
tween LMs and human plausibility judgments. To
accomplish this, we examine four sets of sentences
that represent a variety of syntactic structures and
plausibility levels, for which human judgements
have been collected in prior work in the course of
pretesting (Chow et al., 2016; Rich and Wagers,
2020; Huang et al., 2023). We then gather multiple
LM judgements for these sets from a wide range
of LMs, and compare average human plausibility
ratings and average LLM plausibility ratings.

Our findings indicate that while several LLMs
exhibit high correlation with human judgments on
common syntactic structures, only GPT-4 shows

strong correlation on the rarer syntactic structures.
Figure 1 displays the average plausibility ratings
of the LLM with the highest correlation against
average human ratings, along with a linear re-
gression model. The Pearson correlation between
LLM and human judgments is consistently high
across all the datasets. Interestingly, the fitted lin-
ear regressions are quite similar across three of the
datasets, indicating robustness in the translation of
LLM judgements into human judgements.

Based on these findings, we examine if using
LLMs instead of humans can lead to similar out-
comes when filtering materials in the course of
pretesting. We find that when pretesting requires
coarse-grained plausibility judgements, i.e., when
it is used to filter out implausible sentences, LLMs
perform well. However, when fine-grained plausi-
bility judgements are needed, e.g., to ensure that
a pair of sentences has similar plausibilty ratings,
even GPT-4’s performance is not satisfactory yet.

To summarize, in this work we thoroughly in-
vestigate the correlation between human and LM
plausibility judgements across a wide range of
LMs and syntactic structures. We find that many
LLMs perform well on simple syntactic struc-
tures, and GPT-4 performs well across-the-board.
We translate this finding into a method for us-
ing LLMs to provide plausibility judgements, and
find that performance is high when coarse-grained
judgements are needed, but still lagging behind
when fine-grained judgements are necessary.

2 Experimental Setup

An experiment is defined by instantiating three
parameters: (a) the LM used for eliciting plausi-
bility judgements, (b) the prompt provided as in-
put to the LM, and (c) the linguistic dataset used.
We leverage data from existing pretests for which
human plausibility ratings were already collected
(Chow et al., 2016; Rich and Wagers, 2020; Huang
et al., 2023), and also create our own pretest ma-
terials and collect human plausibility judgements
for them.

In all experiments, we generate 20 plausibility
ratings per sentence per LM, using a scale from 1
to 7. We now describe the datasets (§2.1), LMs
(§2.2), and prompts (§2.3).

2.1 Datasets

We use four datasets, which cover a wide range of
linguistic phenomena. Table 1 provides examples
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Dataset Structure Plaus. Example Num.

Chow et al. (2016) Emb. Obj. Quest. Plaus The park ranger documented which eagle the hunter
had shot.

60

Emb. Obj. Quest. Implaus The park ranger documented which hunter the eagle
had shot.

60

Huang et al. (2023)

Emb. Decl. Plaus The suspect showed that the file deserved further
investigation during the murder trial.

24

Emb. Decl. Implaus The new doctor demonstrated that the melon ap-
peared increasingly likely to succeed.

24

Adj. Cl. Plaus Once the new chef started, the restaurant separated
mediocre cooks from gifted ones.

24

Adj. Cl. Implaus After the technician called, the smile stopped work-
ing almost immediately to his surprise.

24

Pass. Rel. Cl. Plaus The patient who was refused the treatment contin-
ued causing uncomfortable scenes in the ER.

24

Pass. Rel. Cl. Implaus The yoga instructor who was offered the beard de-
manded immense physical effort from everyone.

24

Adj. Cl. Plaus After the esteemed reviewer reads, the book gains
more attention due to his glowing praise.

18

Adj. Cl. Implaus Even if the mother calls, her boys continue causing
problems with the other kids on the playground.

18

Sim. Trans. Cl. Plaus The suspect changed the file. 108
Sim. Cl. w. Mod. Plaus The technician stopped working almost immedi-

ately after the argument.
81

Sim. Cl. w. Mod. Implaus The tournaments remain essentially the same for the
rest of the year.

18

Intrans. Cl. Plaus The producer starts. 24
Intrans. Cl. Implaus The dog hatched. 6
Ditrans. Pass. Plaus The operator was brought the machine. 42
Ditrans. Pass. Implaus The clerk was granted the finger. 6
Trans. Cl. Implaus The cleaner ate the book. 15
Mul. Mod. Implaus A prodigious profile quietly lay ahead of the unstop-

pable crowd.
11

Rich and Wagers (2020) Passive Plaus The knife had been recently sharpened. 144
Passive Implaus The shirt had been recently sharpened. 48

Ours Simple Plaus The nurse fetched the patient. 10
Simple Plaus The nurse fetched the intern. 40

Table 1: Breakdown of the data we used based on origin, syntactic structure, plausibility, and number of items,
along with examples for each type. Emb. : Embedded, Obj.: Object, Quest.: Question, Decl.: Declarative, Adj.:
Adjoined, Cl.: Clause, Pass: Passive, Rel.: relative, Sim.: Simple, Trans.: Transitive, Mod.: Modification, Mul.:
Multiple

from all datasets.

1. Chow et al. (2016): 60 sentence pairs from Ex-
periment 1 in Chow et al. (2016), consisting
of semantically plausible and implausible sen-
tences with an embedded object question struc-
ture. Each sentence has 30 plausibility ratings,
collected for a subsequent experiment.

2. Huang et al. (2023): 491 sentences from
the Syntactic Ambiguity Processing bench-
mark (Huang et al., 2023), consisting of dis-
ambiguated garden-path sentences or parts of
these sentences. Each sentence has 19.6 plau-
sibility ratings on average.

3. Rich and Wagers (2020): 48 sets of 4 sentences
each consisting of three semantically plausi-

ble and one semantically implausible sentences
with a common syntactic structure. Each sen-
tence has 10 plausibility ratings.

4. Our data: 50 plausible sentences with a sim-
ple syntactic structure, composed for a fu-
ture experiment on similarity-based interfer-
ence. These materials consist of 40 sentence
pairs (one sentence is shared among 4 pairs).
Each sentence has 40 plausibility ratings.

Table 1 showcases examples of sentences from the
different datasets for each syntactic structure and
plausibility variation that was tested. The table
also includes the corresponding item counts for
each sentence structure.
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2.2 Models

We test the following LMs:

Closed-source models:
• GPT-4 (OpenAI, 2023), a LLM released by

OpenAI, available through an API.1 This LM is
widely considered to be one of the best existing
LMs, if not the best (Bubeck et al., 2023).

• ChatGPT (GPT-3.5), a chat LLM released by
OpenAI, available through an API

• InstructGPT (text-davinci-003) (Ouyang et al.,
2022), an instruction-finetuned LLM released
by OpenAI, available through an API

The best results were achieved using OpenAI’s
GPT4. The cost of getting plausibility judge-
ments for a single sentence is 0.02$ on average.
Though not cost-free, this expense is substantially
lower compared to employing human evaluators
for judgements. The total cost of OpenAI calls for
this project was 2.7k $.

Open-source models: We also used several
open-source models available on the HuggingFace
Hub (Wolf et al., 2019), through the FastChat
(Zheng et al., 2023) servers (allowing simulating
the OpenAI API):
• LLaMa (Touvron et al., 2023), a foundation

model released by Meta Research, trained on
non-proprietary open-domain data.

• Alpaca (Taori et al., 2023), a model based on
LLaMa, instruction fine-tuned based on instruc-
tion data generated by InstructGPT.

• Vicuna (Chiang et al., 2023), a model based on
LLaMa, fine-tuned on chat data from ChatGPT,
available through ShareGPT.2

• Falcon-Instruct (Almazrouei et al., 2023),
based on the Falcon foundation model released
by Abu Dhabi TII, fine-tuned on a mix of chat
and instruction data.

• StableLM,3 a model released by Stability AI,
fine-tuned on instruction and chat data.

• MPT Chat,4 a model based on MosaicML’s
MPT foundation model, finetuned on chat and
instruction data.

1https://openai.com/blog/openai-api
2https://sharegpt.com/
3https://huggingface.co/stabilityai/

stablelm-tuned-alpha-7b
4https://huggingface.co/mosaicml/mpt-7b-chat

Data Best corr. Model Prompt SH

Chow et al. 0.850 GPT-4 Glob. 0.943
Rich et al. 0.793 GPT-4 Glob. 0.868
Huang et al. 0.835 GPT-4 Glob. 0.898
Ours 0.792 GPT-3.5 Glob. 0.912

Chow et al. 0.916 GPT-4 Spec. 0.943
Rich et al. 0.806 GPT-4 Spec. 0.868
Huang et al. 0.852 GPT-4 Spec. 0.898
Ours 0.778 GPT-4 Spec. 0.912

Table 2: Highest Pearson correlation achieved for each
of the datasets along with the split-half (SH) correla-
tion analysis of human judgements, which provides an
approximate upper bound. GPT-4 is the best LM in all
cases, except for our dataset with a global prompt. In
that case the correlation of GPT-4 is 0.761.

We decode from the LMs by sampling with a
temperature,which is set to 1.5 for closed-source
models and 0.3 for open-source models.

2.3 Prompts
Our prompts start with an instruction for the LM
to provide a plausibility score on a scale from 1 to
7 (see exact prompts in Appendix A). We then pro-
vide examples for plausibility judgements, which
are either global and fixed across datasets, or spe-
cific for each dataset:
• Global: We provide four examples for each

possible plausibility score (28 examples over-
all). Examples include a wide range of syntactic
structures, inspired by the four datasets, but in-
cluding additional structures.

• Specific: For each dataset, we provide three
examples (21 overall) that illustrate syntactic
structures that appear in this dataset.

3 Results

Table 2 presents the highest Pearson correlation
between average human and LLM ratings for
each dataset and each prompt. The top half
presents the highest correlation using the global
prompt, whereas the bottom half uses the specific
prompt. Additionally, the table includes the split-
half correlation of human plausibility judgments,
i.e, we randomly split human data in each exam-
ple into two halves and measure the correlation be-
tween simulated sets of humans. This provides a
rough upper bound on the correlation that can be
achieved with a model.

Overall, The correlation of the highest-scoring
model with human judgements is high, hovering
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Figure 2: A breakdown of the correlation for the specific prompt for a subset of the models.
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Figure 3: The correlation of the model that uses specific prompt when examples are included (full bar) versus when
they are excluded (hatched bar).

around 0.8-0.9. Moreover, this correlation is typi-
cally just a few points under the split-half correla-
tion.

Table 2 also shows that GPT-4 is a strong
and robust baseline for human judgements, since
it achieves the highest correlation in almost all
the setups. When using our dataset with global
prompts, the best model is GPT-3.5, where GPT-4
is slightly behind with a correlation of 0.761.

Finally, the results suggest an advantage to
the specific prompt, with the highest correlation
achieved by prompts with examples resembling
the judged sentences for almost all datasets.

Next, we will further analyse the performance
of the different models and the importance of hav-
ing examples in the prompt.

3.1 Model breakdown

Figure 2 shows the Pearson correlation with the
specific prompt for 7 selected models across our 4
datasets (Results for all models and for the global
prompt are provided in Appendix B).

First, as previously evidenced in Table 2, GPT-
4 is a strong baseline, with a high correlation with

human performance across all datasets. The other
models from OpenAI also perform well, except
on Chow et al. (2016) where a big drop in per-
formance is noted for all the models that are not
GPT-4. We conjecture that this is due to rarity of
the syntactic structure of the sentences from Chow
et al. (2016).

Figure 2 also shows that Alpaca and Vicuna
have a better performance than LLaMa, their base
model, at equivalent sizes, showing that instruc-
tion or chat fine-tuning improves correlation with
human judgements.

Falcon-40B-Instruct is the best open source
model, with performance comparable to text-
davinci-003 model which is 4.5 times larger.
Alpaca-65B, LlaMa-65B and Vicuna-13B also
have a decent correlation with human judgements
for the datasets with simple syntactic structures
but perform poorly on data from Chow et al.
(2016). The correlation of all the other open
source models with human judgements is rela-
tively low across all the datasets and is reported
in Appendix B.
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3.2 Importance of prompt examples

To analyze the importance of examples in the
prompt, we ran experiments on a prompt that
includes only the instruction, without examples,
and compared its correlation to the correlation
achieved with the specific prompt. Results for this
experiment are in Figure 3.

Unsurprisingly, for most of the models and
datasets, the prompt with examples has higher cor-
relation with human judgments than the prompt
without examples.
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3.3 Finetuning

One might hypothesize that finetuning the lan-
guage model on a small amount of plausibility la-
bels (in some labeled dataset) will lead to higher
correlation in plausibility judgements overall.

To test that, we perform a simple fine-tuning ex-
periment. We use GPT4, the model that demon-
strated the highest correlation, and fine-tune it
using the OpenAI fine-tuning API. We finetune
GPT4 on 3 out of the 4 different datasets and then
test it on the remaining dataset (using the prompt
that contains four in-context examples).

As depicted in Table 3, fine-tuning does not ap-
pear to be beneficial when transferring to the target
dataset, particularly for test sentences with highly
unique structures. Notably, psycholinguistic ex-
periments often involve sentences with distinctive
structures, and fine-tuning GPT4 on data from
other experiments may potentially impair down-
stream performance.
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Data ICL only Finetuned Diff.

Chow et al. 0.916 0.621 -0.295
Rich et al. 0.806 0.723 -0.083
Huang et al. 0.852 0.883 +0.031
Ours 0.778 0.525 -0.253

Table 3: Comparison of the Pearson correlations
achieved with a fine-tuned GPT4 vs. a base GPT4 (us-
ing a prompt that contains in-context examples). In
each line we finetune on three datasets and test on the
remaining one.

4 Methodology

In §3, we saw significant correlation between
plausibility judgments of humans and GPT-4. We
now evaluate directly the performance of LLM
judgments when replacing human judgements.
Plausibility judgements can be used in differ-
ent ways for constructing experimental materials.5

Three common uses are: (a) filtering out implau-
sible sentences by requiring a minimum average
plausibility rating, (b) filtering out plausible sen-
tences by requiring a maximum average plausibil-
ity rating, and (c) filtering out sentence pairs that
have dissimilar average plausibility ratings. We
evaluate the performance of LLMs across these
operations.

4.1 Mapping LLM judgements to human
judgements

We simulate using LLM judgements in two setups:
(a) assuming no human ratings are collected, and
(b) assuming a minimal amount of human ratings.
We then evaluate the performance of LLMs with
recall-precision curves, to see if we can achieve
high precision (i.e, accepting only “good” sen-
tences), while retaining high recall (i.e., keeping
most of the ‘good’ sentences).

No human ratings: We collect LLM ratings
from GPT-4 with the specific prompt. We then lin-
early map the LLM ratings into human ratings by
fitting for every dataset a linear regression model
on data from the other three datasets.

With human ratings: We assume access to a
small amount of human ratings. Specifically, if D
is the size of a dataset, we use human ratings for
max(0.1·D, 15) sentences. Then, we collect LLM

5In some cases, judgements are not used to control exper-
imental materials, but are rather entered as predictors in the
analysis of the main experiment, accounting for some of the
variability.
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Figure 7: Difference between the average plausibility
for pairs of sentences in our dataset. The blue boxes
represent pairs that the t-test did not reject, the red rep-
resents pairs the t-test rejected.

ratings with different OpenAI models and prompts
and select the model and prompt combination that
leads to the highest correlation with human rat-
ings. We can also learn a linear map from LLM
ratings to human ratings with this small amount of
data.

4.2 Filtering out implausible sentences

The first pretest use we discuss is filtering im-
plausible sentences by rejecting sentences under a
given threshold (e.g. 5, as in Huang et al. (2023).
We map LM ratings to human ratings with the lin-
ear regression model and then apply a threshold to
filter out implausible sentences.6

6Since we evaluate with a recall-precision curve, the lin-
ear mapping is not necessary but is helpful for having the
output label in a similar scale to humans.
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Figure 4 shows recall-precision curves for the
aforementioned datasets, varying the threshold for
classifying a sentence as plausible (the positive
class in the recall-precision curve is plausible sen-
tences). Overall, GPT-4 exhibits high performance
in this setup. For Chow et al. (2016) and Huang
et al. (2023), we can achieve very high precision,
while keeping most of the sentences. For Rich
and Wagers (2020), performance is lower, but still
we can cover roughly half the dataset with preci-
sion around 0.8-0.9. This aligns with the fact that
this dataset has the lowest correlation with human
judgments and includes rarer syntactic structures
compared to the other two datasets.

4.3 Filtering out plausible sentences

The second pretesting scenario is the opposite of
the first one – when the experiment requires im-
plausible sentences, plausible sentences are fil-
tered out by rejecting sentences with an average
rating over some threshold (e.g. 3). We apply the
same procedure for mapping LLM ratings to hu-
man ratings.

Figure 5 shows recall-precision curves for these
datasets, varying the threshold for classifying a
sentence as implausible (here the positive class are
implausible sentences). We observe high perfor-
mance overall, suggesting that predicting implau-
sibility is easier than predicting plausibility.

4.4 Comparing plausibility of sentence pairs

The last pretest use we examine is comparing the
plausibility of a pair of sentences and verifying
that it is roughly similar. This is typically done by
obtaining human ratings for both sentences, and
running a t-test to check if the null hypothesis that
they originate from the same underlying distribu-
tion is rejected, in which case the pair is filtered
out.7

Using a t-test with LMs is non-trivial, because
(as we discuss in §5) the variance in plausibility
ratings for LMs is dramatically lower compared
to humans, which in turn affects the t-test results.
Instead, we propose to set a threshold for the dif-
ference between the average plausibility ratings of
the two sentences, and examine if there exists a
threshold for which we can reject/accept the same
sentence pairs that are rejected/accepted using t-
test with human ratings. Specifically, we will draw
a recall-precision curve, where the positive class
are sentence pairs accepted according to the hu-
man rating t-test.

We apply this method for our dataset, using
GPT-3.5-Turbo with the global prompt, which ob-
tained the highest correlation with human judge-
ments (0.792). We find the performance is low
– we are unable to find a point on the recall-
precision curve where precision is high and recall
is substantial. Figure 6 shows the recall-precision
curve, and as is evident, precision quickly drops
to around 0.4-0.45, and the maximal F1 obtained
is 0.55, which is achieved when the difference be-
tween plausibility ratings is larger than 3.69.

To analyze this, we label each pair with its
human-based gold label, and plot in Figure 7 the
difference in average plausibility judgements for
both humans and our LM. Clearly, the difference
is a good discriminating feature for human ratings,
but is a bad discriminating feature for the LM. This
shows that while correlation between human rat-
ings and LM ratings is high (0.792), it captures
mostly coarse-grained structure, but is not power-
ful enough to make fine-grained distinctions like
predicting if two sentences have the same level of
plausibility. Moreover, when we measure the cor-
relation between the difference in average plausi-
bility ratings between humans and LMs, we find
only a moderate Pearson correlation of 0.312.

7It is also possible to use cumulative link models (Taylor
et al., 2021) to test the difference between sentences, but this
is currently less common
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5 Variance of Humans vs. LMs

Thus far, we saw that the average plausibility rat-
ings of humans and LLMs correlate well. It is im-
portant to note that this is not the case w.r.t vari-
ance. Explicitly, human variance is much higher
than the variance of LMs, despite the high tem-
perature used for sampling, which is 1.5. Fig-
ure 8 shows the standard deviation for GPT-4 and
GPT-3.5 on all the datasets when using the spe-
cific prompt, as well as the standard deviation for
human judgements. Standard deviation for these
LMs is dramatically lower than humans, i.e., we
obtain relatively similar plausibility judgements
when sampling multiple times from the model.

A possible theoretical explanation for this phe-
nomenon is that the outputs of LMs can be viewed
as an average over multiple samples, since pre-
training is done on texts from many authors. Thus,
when sampling plausibility ratings from a LM, we
are sampling from an average of plausibility rat-
ings. Let each human rating ri be a sample from
a distribution with mean µ and variance σ2. We
can view each sample from a LM as an average
of N human ratings: 1

N

∑N
i=1 ri. This is a ran-

dom variable with mean µ and variance σ2

N . This
observation can be used to estimate for a particu-
lar sentence what is the number N of humans that
the LM is averaging over, by computing the ratio
between the observed variance of humans and the
observed variance of the LM for that sentence.

6 Conclusion

We investigate the correlation between plausibility
judgements of humans and language models and
find high correlation for simple syntactic struc-
tures overall, and high correlation throughout for
GPT-4. We show language models can be used
to provide coarse-grained plausibility judgements,
which can reduce the cost of and accelerate psy-
cholinguistic research. We view this work as
a first step in this direction, where future work
can improve the correlation through finetuning
and prompt engineering and further investigate the
utility of language models for conducting psy-
cholinguistic research.

7 Future work and Limitations

While this study represents an initial exploration
into the feasibility of employing LLMs for psy-
cholinguistic pretesting, we acknowledge that the

primary advantage of LLM use might lie in low-
resource or less widely spoken languages, where
recruiting human labelers might be challenging.
That interesting question, though not covered in
this paper, presents a significant avenue for future
research.

As shown in Section 4, sentences judged as
plausible by the model may not align with human
judgments. Setting the threshold significantly in-
fluences the percentage of accepted data that hu-
mans might disagree with. It is at the researcher’s
discretion to determine the acceptable level noise
to include in their experiment.
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A Prompt examples

We experimented with various prompts, some spe-
cific for the syntactic structure under study and
one global prompt meant to range over a wide ar-
ray of syntactic structures and be general enough
to capture all of them. We also experimented
with a prompt without examples. The instruc-
tions remain the same across the prompts; the only
changed elements are the examples.
In all the showcased prompts we show only 1 ex-
ample per score.

A.1 Global prompt
We created a prompt showcasing a variety of syn-
tactic structures, in an attempt to create a general
prompt that will be diverse enough to fit a large
number of pretesting samples. There are at most 4
examples per score. Figure 9 shows an example of
the prompt.

A.2 Prompt for our data
For our data, we wrote a prompt using the specific
syntactic structure used in the materials. There are
at most 3 examples per score. Figure 10 shows a
prompt with 1 example per score.

A.3 Prompt for Chow et al.
For Chow et al. (2016) data, we wrote a prompt
using the specific syntactic structure used in the
materials. There are at most 3 examples per score.
Figure 11 shows a prompt with 1 example per
score.

A.4 Prompt for Huang et al.
For (Huang et al., 2023), given the wide array of
syntactic structures present in the data, we covered
the different types of syntactic structures in the ex-
amples for each of the scores. There are at most
3 examples per score. Figure 12 shows a prompt
with 1 example per score.

B Full results

The correlation for all the models and the datasets
are presented in Table 4.
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You will read sentences and judge how natural they sound. You will need to
judge, on a scale from 1 to 7, how natural/plausible the presented sentence
sounds, and explain yourself shortly.
All presented sentences will be grammatically correct.
Important: you are encouraged to use the whole scale.

Here are some examples:

They spent their week-end at the beach, sipping iced tea.
The plausibility score is 6 (it is plausible that people would spend their
week-end at the beach).

The farmer planted the fruits from which the seeds came.
The plausibility score is 3 (it’s more likely to plant seeds than fruits).

The table occupied most of the space in the kitchen.
The plausibility score is 5 (it is a somewhat plausible situation, maybe it is
a small kitchen).

Because he slept nine hours, he woke up completely exhausted.
The plausibility score is 1 (sleeping is not supposed to make you tired).

The policeman stopped the plane.
The plausibility score is 4 (it is a situation that might happen but is a bit
unlikely).

The witness observed which policeman the robber had caught.
The plausibility score is 2 (in general, policemen catch robbers, not the other
way around).

I’m so thirsty, can you please pour me a glass of water?
The plausibility score is 7 (it is highly plausible that someone thirsty would
like to drink water).

The sentence:
The chef prepared the meal

The plausibility score is:

Figure 9: Example of a global prompt
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You will read sentences and judge how natural they sound. You will need to
judge, on a scale from 1 to 7, how natural/plausible the presented sentence
sounds, and explain yourself shortly.
All presented sentences will be grammatically correct.
Important: you are encouraged to use the whole scale.

Here are some examples:

The librarian ordered the audio book.
The naturalness score is 5 (a librarian might order an audio book but in general
they order physical books)

The farmer bought a ski.
The naturalness score is 2 (it is an unnatural/implausible situation)

The handyman repaired the car.
The naturalness score is 3 (it is a somewhat unnatural, handymen repair things
in houses)

The barista prepared the cappuccino.
The naturalness score is 6 (it is likely that a barista would prepare a
cappuccino)

The teacher scolded the shoe.
The naturalness score is 1 (it is really unnatural/implausible situation)

The policemen caught the thief.
The naturalness score is 7 (it is highly likely that policemen would try and
catch a thief)

The cook prepared the cocktail.
The naturalness score is 4 (a cook might prepare a cocktail but it is a bit
unlikely)

The sentence: The nurse fetched the intern. The plausibility score is:

Figure 10: Example of a prompt for our data
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You will read sentences and judge how natural they sound. You will need to
judge, on a scale from 1 to 7, how natural/plausible the presented sentence
sounds, and explain yourself shortly.
All presented sentences will be grammatically correct.
Important: you are encouraged to use the whole scale.

Here are some examples:

The director recalled which scene the editor had cut.
The plausibility score is 6 (it is plausible that a director knows which scene
has been cut from the movie).

The tour guide guessed which landmark the visitor had photographed.
The plausibility score is 5 (it is relatively plausible that a tour guide might
guess which landmark a tourist might photograph).

The detective identified which officer the suspect had recognized.
The plausibility score is 4 (suspects might know some police officer and
recognize them)

The zoologist noted which lion the antelopes had hunted.
The plausibility score is 1 (lions hunts antelopes, not the other way around).

The journalist revealed which lobbyist the politician had influenced.
The plausibility score is 3 (it can happen that politicians influence lobbyists
but it’s supposed to be the other way).

The accountant knew which employee the CEO had promoted.
The plausibility score is 7 (it is highly plausible that an accountant would
know who got promoted since he handles the money).

The pilote remembered which plane the airline had represented.
The plausibility score is 2 (planes represent airlines in general, not the
opposite).

The sentence:
The park ranger documented which eagle the hunter had shot.

The plausibility score is:

Figure 11: Example of a prompt for Chow et al.’s data
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You will read sentences and judge how natural they sound. You will need to
judge, on a scale from 1 to 7, how natural/plausible the presented sentence
sounds, and explain yourself shortly.
All presented sentences will be grammatically correct.
Important: you are encouraged to use the whole scale.

Here are some examples:

The firefighter who was denied the transplant went to the moon.
The plausibility score is 2 (people really rarely go to the moon).

The prison guard, which the inmate despised, robbed a bank.
The plausibility score is 4 (a prison guard robbing a bank might happen but is
unlikely).

The firefighters put out the fire.
The plausibility score is 7 (it is really plausible, the role of firefighters
is to put out fires).

The mechanic fixed the problematic cars with his eyes closed.
The plausibility score is 1 (it is highly unlikely that a mechanic can fix cars
without seeing).

The teacher left.
The plausibility score is 5 (it is a somewhat plausible situation, maybe the
class is over).

The fish ate the sponge.
The plausibility score is 3 (it is somewhat unlikely that a fish would eat a
sponge but it might happen).

The scientist showed that the invention worked well.
The plausibility score is 6 (it is plausible that a scientist would show the
efficiency of an invention).

The sentence:
The new chef started.

The plausibility score is:

Figure 12: Example of a prompt for Huang et al.
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Model Prompt Chow et al. Rich et al. Huang et al. Ours

GPT4 Specific 0.916 0.806 0.852 0.778
Global 0.850 0.793 0.835 0.761

GPT3.5 Specific 0.517 0.644 0.753 0.788
Global 0.481 0.703 0.794 0.792

Davinci-003 Specific 0.475 0.637 0.713 0.629
Global 0.323 0.678 0.628 0.729

LlaMa-65b Specific 0.197 0.452 0.692 0.511
Global 0.130 0.608 0.634 0.641

Alpaca-65b Specific 0.278 0.554 0.673 0.570
Global 0.241 0.652 0.651 0.622

Falcon-40b Specific 0.379 0.566 0.746 0.675
Global 0.363 0.665 0.682 0.608

LlaMa-13b Specific -0.026 0.317 0.516 0.476
Global 0.157 0.521 0.464 0.263

Vicuna-13b Specific 0.107 0.473 0.605 0.525
Global 0.185 0.582 0.612 0.575

Alpaca-13b Specific 0.200 0.061 -0.005 -0.081
Global -0.140 0.057 -0.063 -0.021

LlaMa-7b Specific 0.066 0.171 0.248 0.324
Global 0.034 0.283 0.190 0.086

Vicuna-7b Specific 0.021 0.313 0.478 0.359
Global 0.072 0.473 0.496 0.336

Alpaca-7b Specific 0.067 0.292 0.299 0.409
Global -0.043 0.375 0.275 0.430

Falcon-7b Specific 0.148 0.237 0.238 0.358
Global 0.167 0.317 0.207 0.203

Mpt-7b Specific 0.111 0.331 0.395 0.432
Global 0.034 0.314 0.350 0.455

StableLM-7b Specific 0.006 0.157 0.000 -0.211
Global 0.062 0.066 -0.102 -0.123

Table 4: Correlation for all the tested models on all of the datasets
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