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Abstract
Large language models excel in text genera-
tion and generalization, however they face chal-
lenges in text editing tasks, especially in cor-
recting spelling errors and mistyping. In this
paper, we present a methodology for genera-
tive spelling correction (SC), tested on English
and Russian languages and potentially can be
extended to any language with minor changes.
Our research mainly focuses on exploring nat-
ural spelling errors and mistyping in texts and
studying how those errors can be emulated in
correct sentences to enrich generative models’
pre-train procedure effectively. We investigate
the effects of emulations in various text do-
mains and examine two spelling corruption
techniques: 1) first one mimics human behav-
ior when making a mistake through leveraging
statistics of errors from a particular dataset, and
2) second adds the most common spelling er-
rors, keyboard miss clicks, and some heuristics
within the texts. We conducted experiments
employing various corruption strategies, mod-
els’ architectures, and sizes in the pre-training
and fine-tuning stages and evaluated the mod-
els using single-domain and multi-domain test
sets. As a practical outcome of our work, we
introduce SAGE 1 (Spell checking via Augmen-
tation and Generative distribution Emulation).

1 Introduction

Recent advancements in large language models
(LLMs) have shown impressive text generation
and language understanding capabilities, evident in
benchmarks like SuperGLUE (Wang et al., 2019),
GEM (Gehrmann et al., 2021), BigBench (Srivas-
tava et al., 2023) etc. However, these models often
encounter challenges when it comes to effectively
addressing text editing tasks, particularly automatic
correction of misspellings and mistyping. The auto-
matic spelling correction (SC) task is well known,
with traditional approaches using rules, dictionar-
ies, or statistical models for spelling error detection

1https://github.com/ai-forever/sage

and correction. However, the emergence of LLMs
and generative techniques has introduced new pos-
sibilities and improved the effectiveness of SC.

Thus, this paper addresses the task of automatic
generative SC across various domains and proposes
the methodology tested on English and Russian
languages, which could potentially be extended to
any language with minor changes. Our research
primarily studies natural orthographic errors, text
misspellings, and their emulation during model pre-
training. We explore the impact of these emulations
on the model’s abilities across different domains
and model types.

We leverage two different spelling corruption
techniques. The first technique applies the statis-
tical analysis of common errors, aiming to mimic
natural human behavior when making mistakes.
The second technique introduces the most frequent
spelling errors, keyboard miss clicks, and a set of
heuristics within the texts.

We conduct experiments in both Russian and
English languages, employing different corruption
strategies and model sizes during pre-training and
fine-tuning. As a practical outcome of our work,
we introduce SAGE (Spellchecking via Augmen-
tation and Generative distribution Emulation) —
a comprehensive library for automatic generative
SC. SAGE incorporates various generative mod-
els trained with our proposed methodology and in-
cludes built-in augmentation techniques. Moreover,
we release the data hub within the SAGE project, a
valuable Russian language resource consisting of
novel open source datasets for spelling.

2 Related work

Spell checking is a fundamental task in natural lan-
guage processing (NLP) that aims to correct errors
and misspellings in text automatically. Multiple
approaches, namely rule-based, statistical, and gen-
erative SC methods, have been proposed to tackle
this task.
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Rule-based spell checking is one of the most
common approaches that rely on predefined rules
and dictionaries for detecting and rectifying mis-
spelled words. These resources can incorporate
algorithmic error models such as Longest Common
Subsequence (Taghva and Stofsky, 2001), Lev-
enshtein Distance (Van Delden et al., 2004), or
Phonetic Algorithms (Kondrak and Sherif, 2006).

Statistical spell checking approaches employ ma-
chine learning algorithms to learn from extensive
text corpora. These algorithms can identify com-
mon spelling errors and their corresponding cor-
rections. Some examples of statistical approaches
include n-gram models (Ahmed et al., 2009), Hid-
den Markov Models (Stüker et al., 2011), part-of-
speech tagging (Vilares et al., 2016) and Noisy
Channel Model (Kernighan et al., 1990).

Generative SC is a promising spell checking ap-
proach that has shown remarkable results in recent
years. Such systems take into account the context,
due to the architecture nature of LLMs such as
seq2seq Long Short-Term Memory (LSTM) (Ev-
ershed and Fitch, 2014), seq2seq Bidirectional
LSTM (Zhou et al., 2019), and state-of-the-art
transformer models like BERT (Sun and Jiang,
2019), BSpell (Rahman et al., 2022), etc.

The paper (Guo et al., 2019) presents multilin-
gual translation models for paraphrase generation
task. M2M100 models (Fan et al., 2020) (Many-
to-Many multilingual models) effectively trans-
late source language text into a target language
that aligns with the source language. Given the
M2M100 models’ comprehensive understanding of
multiple languages, their utilization in spell check-
ing tasks proves promising. In our research, among
other investigations, we explore the suitability of
the M2M approach for SC.

Datasets English spell checking research has
received significant attention due to widespread En-
glish use, which results in the creation of spell
checking datasets. Evaluation datasets such as
BEA-2019 shared task (Bryant et al., 2019), com-
prising corpora like FCE (Yannakoudakis et al.,
2011), W&I+LOCNESS, Lang-8 (Tajiri et al.,
2012), and NUCLE (Dahlmeier et al., 2013), pro-
vide valuable resources for assessing spell checking
and error correction tasks. NeuSpell (Jayanthi et al.,
2020) introduced the BEA60K natural test set and
the well-established JFLEG dataset (Napoles et al.,
2017), containing only spelling mistakes. Other
clean corpora, including the Leipzig Corpora Col-

lection (Biemann et al., 2007) and the Gutenberg
corpus (Gerlach and Font-Clos, 2020), offer diverse
sources such as news, web content, and books for
further exploration in spell checking research.

Among the standard open source datasets for the
Russian language is RUSpellRU 2, which emerged
after the competition on automatic SC for Rus-
sian social media texts (Sorokin et al., 2016).
Other open sources include the GitHub Typo Cor-
pus (Hagiwara and Mita, 2019), which contains the
Russian section, and the recent work (Martynov
et al., 2023), which introduces a multi-domain
dataset.

Text corruption methods For training genera-
tive SC models, building a parallel corpus is essen-
tial. There are several ways to emulate spelling er-
rors or augment the existing datasets. The example
is the GEM benchmark and its associated augmen-
tation library NL-Augmenter (Dhole et al., 2023)
and the work (Kuznetsov and Urdiales, 2021) with
the method for creating artificial typos. For the Rus-
sian language, the RuTransform framework (Takta-
sheva et al., 2022) presents adding noise into data
through spelling corruption and (Martynov et al.,
2023) proposes augmentation methods.

3 Methodology

In this work, we aim to design models that meet the
end users’ demands. The broad application areas of
SC tools, encompassing various orthographies and
styles, pose additional challenges for text editing
systems. We decided to enhance the conventional
approach of treating standard language as the only
correct spelling option.

3.1 Task Formalization

Before defining the SC task, we must establish the
correct spelling notion we employ in this work.
Instead of rigorously normalizing all supposedly
erroneous lexemes to the standard language, we
propose distinguishing unintentional spelling vio-
lations from intentional ones. Plain language, col-
loquialisms, dialectisms, and abbreviations are ex-
amples of the latter. They can express emotions
and endow a text with distinct stylistic features.
Since the act of intentional violation of spelling
can hardly be expressed in terms of strict rules, it
seems nearly impossible to distinguish intentional
errors automatically. Instead, following (Martynov

2https://www.dialog-21.ru/evaluation/2016/
spelling_correction/
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et al., 2023), we use manual labeling and consider a
sentence annotated and amended by native experts
as correct. Given a correct sentence, any sentence
obtained from the correct one by (probably) multi-
ple insertions, deletions, substitutions, or transpo-
sitions of characters is considered erroneous. This
leads to the following definition of SC task that we
use in this paper:

Let X = [x1, ..., xN ] = Xcorr. ∪
Xincorr., where x1, ..., xN is an ordered
sequence of lexemes, Xcorr. = {xi}ki=1

is a set of correct lexemes, Xincorr. =
{xj}pj=1 is a set of incorrect lexemes,
p + k = N, p ≥ 0, k > 0, be
the sentence that may contain spelling
errors. The system M then should
produce corresponding sequence (or-
dered) Y = [y1, ..., yM ] = Ycorr. ∪
Yincorr., Yincorr. = ∅ so that

1. Correct lexemes are not modified:
!∃f : {xi}ki=1 → Y, f−injective
and preserves order and f(xi) =
xi;

2. Original style of a sentence X is
preserved;

3. All the information is fully trans-
ferred from X to Y and no new in-
formation appears in Y ;

Basically, system M only corrects unintentional
errors and carries stylistic and factological pallet
the same from X to Y .

3.2 Overview
In this paper, we propose a methodology for genera-
tive SC, exploring the natural spelling errors across
multiple domains and assessing their influence on
spell checking quality during pre-training and fine-
tuning stages. The method can be summarized as
follows:

Corruption step: the paper explores the text
corruption techniques using two augmentation al-
gorithms described in Section 3.3.

Generation step: we pre-train the generative
models of different sizes and on the extensive syn-
thetic dataset of diverse domains. The error distri-
bution of the synthetic pre-train data is created by
emulating the natural distribution of the errors via
a statistic-based approach.

Fine-tune step: during the fine-tuning, we in-
vestigate the influence of corruption and domains

on the final results. The models are evaluated on
fixed single-domain and multiple-domain test sets.
The experiments involve training the pre-trained
models on various training data from single and
multiple domains, as well as using the same data
corrupted with the two aforementioned augmenta-
tion techniques.

The methodology is explored and tested in the
Russian and English languages but can be poten-
tially transferred to any language.

3.3 Augmentations Strategies
3.3.1 Heuristic-based spelling corruption
The first strategy represents spelling corruption
through exploiting various heuristics, common er-
ror statistics, and understanding of implicit me-
chanics of a language. Nlpaug (Ma, 2019) and
NeuSpell (Jayanthi et al., 2020) libraries for En-
glish and Augmentex (Martynov et al., 2023) for
Russian are notable examples of such strategy. In
this work, we choose Augmentex for experiments
with Russian LLMs. This library is accompanied
with proven effectiveness for the Russian language
(Martynov et al., 2023) and provides a flexible in-
terface to its interior methods. Each method is
responsible for modeling a specific type of error,
including inserting random characters, replacing
correctly spelled words with their incorrect coun-
terparts, inserting nearby keyboard characters, and
replacing a character with another based on the
probability of its erroneous use. Augmentex al-
lows researchers to control the distribution of error
noise on word and sentence levels as well. In our
experiments, we investigate Augmentex in depth
by augmenting fine-tune datasets and studying its
impact on models’ performance. See details of
its configurations used at the augmentation stage
in A.3.

3.3.2 Statistic-based spelling corruption
We choose statistic-based spelling corruption
(SBSC) from (Martynov et al., 2023) as an attempt
to reproduce errors from a particular piece of text.
The method mimics human behavior when com-
mitting an error by scanning distributions of er-
rors in a given text and then reapplying them on
correct sentences. The algorithm requires a paral-
lel corpus of sentence pairs (corrupted_sentence,
correct_sentence): it builds a Levenshtein matrix
between prefixes of sentences in each pair, then it
traverses this matrix back along the main diagonal
starting from the bottom right entry. At each step,
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the algorithm detects the position of an error in a
sentence and its corresponding type based on sur-
rounding entries. Our work employs statistic-based
spelling corruption to prepare pre-training datasets
for both English and Russian generative models.
The experiments’ results discussed in Section 5.2
suggest SBSC’s ability to be transferred to another
language other than Russian. We also investigate
the capacity of this noising strategy by experiment-
ing with augmentation through spelling corruption
while fine-tuning.

3.4 Datasets

For multi-domain spell checking experiments, we
developed three distinct data suites.

Golden Test Sets: Fixed datasets, including both
single-domain and multiple-domain texts, used for
evaluation purposes.

Pre-trained Data: Synthetic data generated to
emulate natural and random noise misspellings,
employed during the pre-training stage to assess
their impact on model performance.

Training Data for fine-tuning: Collected using
the same method as the test sets, also corrupted
with the proposed augmentation strategies to intro-
duce diverse errors. Used during the fine-tuning
stage to explore the impact of the different noises
on the model performance across domains.

3.4.1 Golden Test Sets
The datasets for the golden test set are chosen in
accordance with the specified criteria. First, do-
main variation: half of the datasets are chosen
from different domains to ensure diversity, while
the remaining half are from a single domain. This is
done separately for English and Russian languages.
Another criterion is spelling orthographic mistakes:
the datasets exclusively comprised mistyping, omit-
ting grammatical or more complex errors of non-
native speakers. This focus on spelling errors aligns
with the formalization of the task as described in
section 3.1.

For the Russian language, we choose four differ-
ent sets:

RUSpellRU – the single-domain open source
dataset for social media texts presented in the
Shared Task (Sorokin et al., 2016).

MultidomainGold – the dataset first presented
in the paper (Martynov et al., 2023). It’s a multi-
domain corpus comprising the domains: internet
domain presented by the Aranea web-corpus, lit-
erature, news, social media, and strategic docu-

ments. We followed the methodological criteria of
the paper and reproduced the two-stage annotation
project via a crowd-sourcing platform Toloka 3:
at the first stage, annotators are asked to correct
the mistakes, on the second – to validate the re-
sults from the previous step. The statistics and
details of the instructions and annotation schema
are presented in Appendix A.1 and A.2. Following
the annotation methodology, we extend the authors’
dataset with two more domains: reviews (the part of
the Omnia set (Pisarevskaya and Shavrina, 2022))
and subtitles (the part of the Russian part of the
OpenSubtitles set 4).

GitHubTypoCorpusRu – we take the Russian
part of the corpora introduced in work (Hagiwara
and Mita, 2019). Additionally, we validate the par-
allel data of this corpus by the same Toloka project,
but only the second step from the methodology.

MedSpellChecker 5 (Pogrebnoi et al., 2023) is
a single-domain set of a specific lexicon of the
medical domain; the multi-domain set above does
not cover that. The set contains the medical texts of
anamnesis. The data was verified via a two-stage
annotation pipeline as well.

For the English language, we used two sets:
BEA60K is a multi-domain dataset corpus for
spelling mistakes in English.

JHU FLuency-Extended GUG Corpus (JF-
LEG) is a single domain set, the spelling part. The
dataset contains 2K spelling mistakes (6.1% of all
tokens) in 1601 sentences.

The test datasets statistics are presented in the
Table 5 of the Appendix, the annotation details in
Appendix A.2.

3.4.2 Pre-training Data
To prepare pre-training datasets, we take correct
samples and then corrupt them employing augmen-
tation strategies described in 3.3. As for correct
samples for experiments in Russian, we use twelve
gigabytes (12GB) of raw Russian Wikipedia dumps
and an open source dataset of transcripted videos in
Russian 6 of three and a half million (3.5M) texts.
We remove all the sentences with characters other
than Russian and English alphabets, digits, and
punctuation or under forty characters. We balance

3https://toloka.ai/tolokers
4https://opus.nlpl.eu/OpenSubtitles-v2016.php
5https://github.com/DmitryPogrebnoy/

MedSpellChecker/tree/main
6https://huggingface.co/datasets/UrukHan/

t5-russian-spell_I
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both datasets to roughly 3.3 million sentences, re-
sulting in a pre-training corpus of 6.611.990 texts.
Then statistic-based spelling corruption is applied.
We scan statistics from the train split of RUS-
pellRU, multiply the number of errors per sentence
distribution by ten to ensure we induce a much
denser noise in the pre-training corpus than it is in
fine-tuning datasets, and apply to the pre-training
corpus to get corrupted sentences. As a result, the
pre-training dataset is a collection of 6.611.990 text
pairs, each consisting of corrupted sentences and
corresponding correct sentences.

For pre-training in the English language, we
combine clean Leipzig Corpora Collection 7 (News
domain) and English Wikipedia dumps, preprocess
them the way we applied for Russian and create
a parallel corpus using a statistic-based augmenta-
tion technique based on a 5k subset of BEA60K.
We result in six gigabytes (6GB) of data for pre-
training.

3.4.3 Training Data for fine-tuning
As for the datasets for fine-tuning, we use train
splits of RUSpellRU and MultidomainGold and
a combination of both (details in Table 6 of Ap-
pendix). We also employ spelling corruption meth-
ods from 3.3 for augmentation purposes in two
separate ways. First, we introduce misspellings in
erroneous parts of train splits of fine-tuned datasets,
inducing more errors without expanding the dataset
itself. In the second strategy, we expand train splits
of fine-tuned datasets. We obtain correct sentences
from a particular dataset, corrupt spelling, and ap-
pend pairs of corrupted sentences and correspond-
ing correct sentences to the same dataset. In Ta-
bles 4 and 10 of Appendix, the first strategy is
marked as Add and the second as Concat.

We do not prepare fine-tuned datasets for the
English language since we do not conduct fine-
tuning in our experiments.

4 Experiments

We conducted a comprehensive series of experi-
ments involving diverse spelling corruption strate-
gies over the encoder-decoder generative models of
different sizes throughout the pre-training and fine-
tuning phases as well as zero-shot evaluation of the
pre-trained models. The models’ statistics are pre-
sented in Table 8. We compared performance based
on single-domain and multi-domain test sets. Fur-

7https://corpora.uni-leipzig.de

thermore, we conducted a comparative evaluation
of the OpenAI models utilizing different prompts
and standard open source models.

4.1 Models

The generative models of different sizes used as pre-
trained models in the experiments are the following
for the Russian language:

M2M1001.2B
8 (Fan et al., 2020) M2M100 is a

multilingual encoder-decoder (seq-to-seq) model
primarily intended for translation tasks proposed
by the Meta team. The model contains 1.2B param-
eters.

M2M100418M
9 is a 418M parameters model of

the M2M100 models family.
Fred-T5 10 (Full-scale Russian Enhanced De-

noisers T5) (Zmitrovich et al., 2023) is a Russian
820M parameters generative model. The model is
trained on a mixture of 7 denoisers like UL2 on
extensive Russian language corpus (300GB). The
model is inspired by the ideas from the work (Tay
et al., 2022) and one of the top 11 generative mod-
els according to the RussianSuperGLUE bench-
mark (Shavrina et al., 2020).

In the case of the English language, the utiliza-
tion of only one pre-trained model was decided due
to the considerable environmental impact caused
by the training process (see section 6 Energy Effi-
ciency and Usage for details).

T5large
12 is the English encoder-decoder 770M

parameters model introduced by Google’s AI re-
search team (Raffel et al., 2020).

4.2 Russian experiments

For each of the three models M2M100418M,
M2M1001.2B, FredT5large, the performance on the
SC task was compared with and without pre-
training, and using different training data for fine-
tuning.

Pre-training. We use the same data and pre-
training scheme for each model. We train our mod-
els in sequence-to-sequence manner with corrupted
sentence as an input and correct sentence as label
with a standard Cross Entropy loss.

We pre-train FredT5large model with a total batch
size of 64, AdamW optimizer (Loshchilov and Hut-

8https://huggingface.co/facebook/m2m100_1.2B
9https://huggingface.co/facebook/m2m100_418M

10https://huggingface.co/ai-forever/
FRED-T5-large

11https://russiansuperglue.com/leaderboard/2
12https://huggingface.co/t5-large
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Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

59.4 43.3 50.1 56.4 44.8 49.9 63.7 57.8 60.6 45.7 41.4 43.5
17.8 38.6 24.4 9.7 37.5 15.4 15.6 36.6 21.9 19.4 36.8 25.4
82.9 72.5 77.3 53.3 57.8 55.5 55.9 57.8 56.9 39.3 41.5 40.4
68.8 42.6 52.6 17.9 25.2 21.0 16.3 17.7 17.0 15.1 14.9 15.0
84.9 65.0 73.7 62.5 60.9 61.7 76.3 73.9 75.1 47.9 43.3 45.5
75.4 35.7 48.5 46.5 39.9 43.0 69.1 31.0 42.8 27.4 18.6 22.1
88.8 71.5 79.2 63.8 61.1 62.4 78.8 71.4 74.9 47.1 42.9 44.9
81.2 47.4 59.9 45.8 37.0 40.9 71.8 39.1 50.7 26.1 17.4 20.9

57.7 61.2 59.4 32.8 56.3 41.5 23.2 64.5 34.1 27.5 42.6 33.4
10.6 30.4 15.7 6.1 30.4 10.1 6.8 36.1 11.4 12.8 33.2 18.5
81.8 63.4 71.4 45.3 55.9 50.0 40.8 52.2 45.8 29.5 36.6 32.7
66.5 38.5 48.8 20.9 26.0 23.2 22.3 14.8 17.8 11.4 13.2 12.2
81.3 55.4 65.9 57.9 56.5 57.2 73.5 66.0 69.5 40.3 39.2 39.8
63.5 31.6 42.2 39.5 34.9 37.0 55.2 32.5 40.9 23.1 15.5 18.5
87.6 64.4 74.2 60.3 56.6 58.4 73.1 62.4 67.3 42.8 37.8 40.2
74.0 45.2 56.1 39.8 34.4 36.9 59.5 38.4 46.7 24.7 18.0 20.8

58.5 42.4 49.2 42.5 42.0 42.2 37.2 51.7 43.3 52.7 41.7 46.6
1.3 3.4 1.9 1.9 6.0 2.9 0.6 3.2 0.9 2.9 5.7 3.9

55.1 73.2 62.9 26.7 55.1 36.0 12.9 49.6 20.4 26.2 40.5 31.8
40.7 50.4 45.0 20.5 42.4 27.6 6.9 26.0 11.0 15.2 23.8 18.6
67.7 60.2 63.8 61.7 60.5 61.1 39.5 60.4 47.7 69.3 44.6 54.3
49.6 39.9 44.2 48.1 43.4 45.6 43.2 41.2 42.2 50.8 25.7 34.1
74.5 73.4 73.9 58.3 63.1 60.6 37.5 59.3 45.9 61.2 45.4 52.1
56.3 56.2 56.3 48.2 48.5 48.3 42.5 42.7 42.6 49.4 26.9 34.8

Model RUSpellRU MultidomainGold MedSpellChecker GitHubTypoCorpusRu

M2M1001.2B
Pre-train (PT.)
No Pre-train

RUSpellRU (+PT.)
RUSpellRU
MultidomainGold (+PT.)
MultidomainGold
RUSpellRU+MDG (+PT.)
RUSpellRU+MDG

M2M100418M
Pre-train (PT.)
No Pre-train

RUSpellRU (+PT.)
RUSpellRU
MultidomainGold (+PT.)
MultidomainGold
RUSpellRU+MDG (+PT.)
RUSpellRU+MDG

FredT5large
Pre-train (PT.)
No Pre-train

RUSpellRU (+PT.)
RUSpellRU
MultidomainGold (+PT.)
MultidomainGold
RUSpellRU+MDG (+PT.)
RUSpellRU+MDG

Table 1: The models’ performance in experiments configurations for the Russian language. For each model, the
experiments are reported for the raw (No Pre-train) model on zero-shot, the pre-train model on zero-shot, the
raw model fine-tuned on the specific train set, and the pre-train model (+PT.) fine-tuned on the specific train set.
Metrics are reported in Precision / Recall / F1-measure format from (Sorokin et al., 2016).

Prec. Rec. F1 Acc. Cor. rate Prec. Rec. F1 Acc. Cor. rate
65.8 79.6 72.0 0.98 0.79 78.5 85.4 81.8 0.98 0.85
59.7 76.0 66.8 0.96 0.76 76.8 81.1 78.9 0.98 0.80
61.7 77.1 68.6 0.96 0.77 77.6 82.1 79.8 0.98 0.82
63.1 77.7 69.7 0.96 0.77 78.7 82.7 80.6 0.98 0.82

66.2 77.5 71.4 0.98 0.77 78.1 83.0 80.5 0.98 0.83
64.1 76.7 69.8 0.97 0.76 78.3 83.2 80.6 0.98 0.83
62.3 80.4 72.0 0.96 0.80 80.6 86.1 83.3 0.98 0.85
60.4 76.5 67.5 0.96 0.77 77.7 82.5 80.0 0.98 0.82

66.9 84.1 74.5 0.84 0.77 77.8 88.6 82.9 0.87 0.78
57.1 83.5 67.8 0.36 0.34 73.3 87.9 80.0 0.34 0.32

68.6 85.2 76.0 0.84 0.77 77.9 88.3 82.8 0.86 0.77
58.4 84.5 69.1 0.36 0.35 73.5 87.7 80.0 0.35 0.32

67.8 83.9 75.0 0.83 0.76 76.8 88.5 82.2 0.87 0.78
57.6 83.3 68.1 0.35 0.34 72.7 87.9 79.6 0.34 0.32
66.5 83.1 73.9 0.83 0.71 83.4 84.3 83.8 0.74 0.69
2.6 4.7 3.4 0.01 0.0 3.0 4.3 3.6 0.01 0.0

Model BEA60K JFLEG

BERT
CNN-LSTM
SC-LSTM
Nested-LSTM
SC-LSTM

+BERT (at input)
+BERT (at output)
+ELMO (at input)
+ELMO (at input)

gpt-3.5-turbo-0301
W/O Punctuation
With Punctuation

gpt-4-0314
W/O Punctuation
With Punctuation

text-davinci-003
W/O Punctuation
With Punctuation

T5large (+PT.)
T5large

Table 2: The models’ performance for the English language on BEA60K and JFLEG datasets. We report the
comparative results of our best model (+PT ), bare T5-large model, OpenAI models and the open source standard
solutions for the English language. Metrics are reported in Precision / Recall / F1-measure and Accuracy /
Correction rate formats from (Sorokin et al., 2016) and (Jayanthi et al., 2020) respectively.
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Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1
83.0 59.8 69.5 52.9 51.4 52.2 80.6 47.8 60.0 67.7 37.5 48.3
42.1 32.8 36.9 25.7 30.6 28.0 24.6 29.7 26.9 49.5 29.9 37.3
31.3 34.9 33.0 16.2 40.1 23.0 10.3 40.2 16.4 28.5 30.7 29.6

55.8 75.3 64.1 33.8 72.1 46.0 53.7 66.1 59.3 43.8 57.0 49.6
55.3 75.8 63.9 30.8 70.9 43.0 53.2 67.6 59.6 43.3 56.2 48.9

57.0 75.9 65.1 34.0 73.2 46.4 54.2 67.7 60.2 44.2 57.4 50.0
56.4 76.2 64.8 31.0 72.0 43.3 54.2 69.4 60.9 45.2 58.2 51.0

55.9 75.3 64.2 33.6 72.0 45.8 48.0 66.4 55.7 45.7 57.3 50.9
55.4 75.8 64.0 31.2 71.1 43.4 47.8 68.4 56.3 46.5 58.1 51.7
88.8 71.5 79.2 63.8 61.1 62.4 78.8 71.4 74.9 47.1 42.9 44.9

Model RUSpellRU MultidomainGold MedSpellChecker GitHubTypoCorpusRu

Yandex.Speller
JamSpell
Hunspell
gpt-3.5-turbo-0301

With Punctuation
W/O Punctuation

gpt-4-0314
With Punctuation
W/O Punctuation

text-davinci-003
With Punctuation
W/O Punctuation

M2M1001.2B

Table 3: The results of the models on different golden tests. We report the comparative results of our best model,
which is pre-trained M2M1001.2B fine-tuned on RUSpellRU and MultidomainGold, OpenAI models and the open
source standard solutions for the Russian language. Metrics are reported in format Precision, Recall, F1-measure
from (Sorokin et al., 2016).

ter, 2017) with an initial learning rate of 3e-04 and
linear decay with no warm-up steps and weight
decay 0.001 applied to all the parameters but those
in LayerNorm (Ba et al., 2016) and biases, and two
steps to accumulate gradients for 5 epochs. The
pre-train procedure took 180 hours on eight Nvidia
A100 GPUs.

Both M2M100418M and M2M1001.2B were pre-
trained with a total batch size of 64, AdamW op-
timizer (Loshchilov and Hutter, 2017) with an
initial learning rate of 5e-05, weight decay of
0.001 applied to all the parameters but those in
LayerNorm (Ba et al., 2016) and biases, and
linear decay for learning rate without warm-up
steps. We also used 8 and 2 gradient accumula-
tion steps for M2M100418M and M2M1001.2B ac-
cordingly. M2M100418M pre-training procedure
took five epochs and 332 hours on two Nvidia
A100 GPUs, and the corresponding procedure for
M2M1001.2B lasted for seven epochs and 504 hours
on eight Nvidia A100 GPUs.

Fine-tuning. We fine-tune pre-trained and
non-pre-trained models using one of three sets:
RUSpellRU , MultidomainGold(MDG), and
RUSpellRU +MDG. We also use the augmen-
tation strategies for the training data presented in
section 3.3 and obtain additional training data to
fine-tune the pre-trained models (see section 3.4
Training Data for fine-tuning for details).

We fine-tune models and take the best-
performing checkpoint according to the metrics on
the corresponding development set. The models’
metrics on the development set are presented in the
Appendix A.4. We also used the development set to

select the optimal hyperparameter values. We use
AdamW optimizer (Loshchilov and Hutter, 2017)
with β1 = 0.9, β2 = 0.99 and ϵ = 1e−8 and
a linear learning rate scheduler to fine-tune mod-
els. All hyperparameters for fine-tuning models are
contained in Appendix A.7.

Model comparison. We compare the perfor-
mance of fine-tuned models with pre-trained mod-
els in a zero-shot setting, Yandex.Speller 13, Jam-
Spell 14, Hunspell 15, and OpenAI 16 models
via API (namely, gpt-3.5-turbo-0301, gpt4-0314,
text-davinci-003) with different prompts (see Ap-
pendix A.6 for the details) using single-domain and
multi-domain test sets (see section 3.4 Golden Test
Sets for the details).

4.3 English experiments

We pre-train T5large model as described in 3.4.2
with the following hyperparameters: batch size
64, learning rate 3e-04 with linear decay and no
warm-up steps, weight decay 0.001 applied anal-
ogously as in experiments with the Russian lan-
guage, 2 gradient accumulation steps, 5 epochs.
Pre-training is done in mixed-precision with data
type bfloat16 17. The procedure took 360 hours on
eight Nvidia A100 GPUs.

We compare the performance of several mod-
els on two datasets: BEA60k and JFLEG. The
models are as follows: eight NeuSpell models:

13https://yandex.ru/dev/speller/
14https://github.com/bakwc/JamSpell
15https://github.com/hunspell/hunspell
16https://chat.openai.com/
17https://pytorch.org/docs/stable/generated/

torch.Tensor.bfloat16.html
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Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

88.8 72.5 79.2 63.8 61.1 62.4 78.8 73.9 75.1 47.9 43.3 45.5

70.6 74.0 72.3 46.7 59.0 52.1 48.5 63.2 54.9 40.9 44.7 42.7
73.7 67.4 70.4 58.1 62.0 60.0 69.4 74.2 71.7 47.8 47.1 47.5
75.9 75.7 75.8 57.4 64.8 60.9 63.3 72.9 67.8 48.0 48.1 48.1

72.8 75.4 74.0 48.4 60.3 53.7 49.9 63.7 56.0 41.5 45.7 43.5
76.7 68.6 72.4 60.8 63.0 61.9 69.4 71.9 70.6 48.4 45.5 46.9
79.3 76.5 77.9 59.6 63.6 61.5 68.5 72.1 70.2 48.4 47.0 47.7

79.0 74.2 76.6 52.0 59.2 55.4 53.0 58.8 55.8 37.7 42.7 40.0
86.0 60.6 71.1 63.7 63.1 63.4 77.4 75.2 76.3 47.5 41.4 44.2
84.0 74.7 79.1 61.2 64.4 62.8 73.3 72.4 72.8 47.2 43.3 45.2

83.3 72.3 77.4 54.0 59.4 56.6 64.7 56.3 60.2 41.7 41.8 41.7
82.8 66.3 73.6 63.5 63.3 63.4 74.3 71.6 72.9 48.6 44.5 46.5
85.9 72.5 78.6 62.5 63.3 62.9 73.9 68.0 70.8 47.7 43.1 45.3

87.6 64.4 74.2 60.3 56.6 58.4 73.5 66.0 69.5 42.8 42.6 40.2

60.1 71.2 65.1 35.2 64.1 45.5 24.0 58.6 34.1 28.3 45.8 35.0
61.2 66.6 63.8 49.0 61.1 54.4 48.4 70.1 57.3 41.0 46.3 43.5
63.1 70.8 66.7 47.4 60.4 53.1 48.6 68.5 56.8 41.3 47.0 44.0

65.5 71.3 68.3 38.0 64.5 47.8 28.1 60.1 38.3 29.8 44.4 35.7
68.7 64.9 66.7 54.2 60.2 57.0 58.1 66.8 62.1 42.9 43.3 43.1
73.1 70.2 71.7 55.0 60.3 57.5 56.1 68.3 61.6 42.9 42.8 42.8

75.7 67.5 71.4 43.2 59.9 50.2 36.9 56.0 44.5 31.8 41.5 36.0
75.5 61.2 67.6 55.1 57.9 56.5 65.0 67.0 66.0 42.4 42.0 42.2
78.2 67.7 72.6 56.4 59.9 58.1 64.5 67.3 65.8 42.1 40.3 41.2

79.5 65.8 72.0 46.4 58.5 51.8 43.8 53.2 48.0 31.4 37.2 34.0
75.2 56.5 64.5 55.9 54.0 55.0 64.9 61.4 63.1 42.1 41.2 41.6
83.6 65.6 73.5 58.7 55.4 57.0 66.8 64.5 65.6 42.5 39.0 40.7

74.5 73.4 73.9 61.7 63.1 61.1 43.2 60.4 47.7 69.3 45.4 54.3

51.9 74.6 61.2 25.0 57.5 34.9 12.3 51.4 19.8 25.4 43.7 32.2
67.4 67.4 67.4 55.8 62.6 59.0 36.6 60.1 45.5 61.4 47.7 53.7
72.0 77.9 74.8 51.9 66.6 58.3 36.5 61.4 45.8 56.7 49.3 52.7

53.3 75.6 62.5 26.6 59.2 36.7 12.5 51.7 20.1 26.1 44.0 32.8
66.1 67.2 66.7 55.5 65.7 60.2 36.6 64.5 46.7 64.4 47.9 54.9
71.1 75.0 73.0 51.1 62.6 56.3 34.9 58.1 43.6 60.3 48.0 53.5

54.5 73.4 62.5 27.1 57.0 36.8 13.0 51.2 20.8 25.9 41.3 31.8
73.5 59.3 65.7 61.5 60.5 61.0 47.6 57.0 51.9 66.8 44.6 53.5
77.4 71.4 74.3 57.8 61.5 59.6 41.6 57.5 48.3 60.1 46.0 52.1

55.0 69.8 61.5 26.0 53.5 35.0 12.8 47.1 20.1 27.4 41.3 32.9
64.8 63.1 64.0 59.0 62.7 60.8 38.6 65.2 48.5 62.6 46.0 53.0
72.4 74.6 73.5 61.7 60.2 61.0 42.7 58.6 49.4 65.4 46.2 54.1

Model RUSpellRU MultidomainGold MedSpellChecker GitHubTypoCorpusRu

M2M1001.2B
Best-of-FT/PT.
Augmentex (Add)

RUSpellRU
MultidomainGold
RUSpellRU+MDG

Augmentex (Concat.)
RUSpellRU
MultidomainGold
RUSpellRU+MDG

SBSC (Add)
RUSpellRU
MultidomainGold
RUSpellRU+MDG

SBSC (Concat.)
RUSpellRU
MultidomainGold
RUSpellRU+MDG

M2M100418M
Best-of-FT/PT.
Augmentex (Add)

RUSpellRU
MultidomainGold
RUSpellRU+MDG

Augmentex (Concat.)
RUSpellRU
MultidomainGold
RUSpellRU+MDG

SBSC (Add)
RUSpellRU
MultidomainGold
RUSpellRU+MDG

SBSC (Concat.)
RUSpellRU
MultidomainGold
RUSpellRU+MDG

FredT5large
Best-of-FT/PT.
Augmentex (Add)

RUSpellRU
MultidomainGold
RUSpellRU+MDG

Augmentex (Concat.)
RUSpellRU
MultidomainGold
RUSpellRU+MDG

SBSC (Add)
RUSpellRU
MultidomainGold
RUSpellRU+MDG

SBSC (Concat.)
RUSpellRU
MultidomainGold
RUSpellRU+MDG

Table 4: Pre-trained models’ performance on test datasets for the Russian language after fine-tuning on augmented
datasets. Augmentex and SBSC represent different methods of augmentation described in 3.3. Add and Concat.
represent different strategies of augmentation described in 3.4 in the section Training Data for fine-tuning. Metrics
reported in format Precision, Recall, F1 from (Sorokin et al., 2016).
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BERT, CNN-LSTM, SC-LSTM, Nested-LSTM,
SC-LSTM + BERT at input/output, and SC-LSTM
+ ELMO at input/output. Additionally, we eval-
uate OpenAI models via API (namely, gpt-3.5-
turbo-0301, gpt4-0314, text-davinci-003) with dif-
ferent prompts: Full, Short, and Cut (see Ap-
pendix 9 for the details). Finally, we compare the
obtained results on the Full prompt with models
from NeuSpell and T5large model.

5 Evaluation

5.1 Metrics

For the evaluation, we use the script from the Dia-
logue Shared Task (Sorokin et al., 2016).

As a result, the F1-measure as the harmonic
mean between Precision and Recall is calculated.
Precision amounts for the number of correct lex-
emes the spellchecker system has not altered, while
Recall reflects the share of appropriately rectified
errors. The evaluation script reported all three met-
rics.

We also evaluated models for the English lan-
guage with accuracy (correct words among all
words) and correction rate (misspelled tokens cor-
rected), as it was proposed by (Jayanthi et al.,
2020).

5.2 Results

Table 1 presents the results of experiments con-
ducted on the Russian language. The findings in-
dicate superior dominance of pre-trained (+PT.)
models over the bare fine-tuning. Moreover, larger
models generally perform better though this trend
is only observed for M2M100 models. The Fred-
T5 model, despite its larger size compared to the
M2M100418M model, demonstrates poorer quality
on RuspellRU and MedSpellChecker datasets.
This difference in performance may be attributed to
the multilingual architecture of the M2M100 model.
In our experimental setup, we emulated errors
in the pre-trained models using the RuspellRU
dataset. This may cause the scores of the models
on this specific domain to be substantially higher
than those obtained on other datasets.

Including corruption strategies (Table 4) during
the fine-tuning stage improves scores. This trend
persists consistently across different domains. In
the case of the heuristic-based approach, Add strat-
egy celebrates most of the performance improve-
ments. In contrast, the statistic-based approach
manifests equal contribution of both strategies.

Table 3 demonstrates that non-generative mod-
els in the Russian language perform compara-
bly to generative OpenAI models, but they are
lightweight and more efficient. However, our best
M2M100 model configuration significantly outper-
forms these solutions.

According to Table 2, the pre-trained T5 model
shows comparable with OpenAI models results.
We emulated the error distribution based on the
BEA60K set during pre-training. However, the
final evaluation of the JFLEG set is slightly better
than the BEA60K.

The Tables 9,11 presented in the Appendix A.4
demonstrate a notable gap in performance be-
tween OpenAI models for English and Russian. In
English, the results indicate higher performance
when punctuation is not considered. Further-
more, three models demonstrate comparable perfor-
mance across all models, employing more specific
prompts shows better results. However, for Rus-
sian the text-davinci-003 model with punctuation
performs better. While analyzing the results, we
observed that the generated outputs are sensitive to
the prompts. The results contain clichés phrases,
forcing additional filtering to obtain accurate re-
sults. The observed discrepancy can be attributed
to the pre-trained nature of the OpenAI models
primarily trained on English language data.

6 Conclusion

In this paper, we have presented a novel method-
ology for generative SC. The approach involves
emulating natural spelling errors during large gen-
erative model pre-training and has shown state-of-
the-art results in addressing text editing tasks. We
use two augmentation techniques for text corrup-
tion to improve the results. Conducting the experi-
ments in two languages, we have demonstrated the
effectiveness of these techniques and the impact
of different corruption strategies across different
domains. As for the research’s practical impact,
we proposed the library SAGE for automatic SC,
including the Russian data hub, proposed methods,
and the family of generative models. The work
contributes significantly to the SC field and opens
routes for further exploration.

Limitations

The proposed generative methodology of SC and
the created models have certain limitations that
should be considered:
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Decoding strategies and parameters. The
choice of the decoding strategy affects the quality
of generated texts (Ippolito et al., 2019). However,
our current methodology only comprises part of the
spectrum of decoding strategies, limiting our eval-
uation’s extent. During the pre-training and fine-
tuning stages, the choice of each model’s parame-
ters is limited due to the significant computational
costs associated with training and processing.

Text Corruptions and data. A limitation of our
study is the availability of different data and the
variety of specific domains for the training, fine-
tuning stages, and annotated data. We tried to ad-
dress the issue of data diversity by incorporating
single-domain and multi-domain datasets in the
proposed research. As for data augmentation, the
heuristic approach covers only limited augmenta-
tion methods.

Context. The SC model may struggle with word
context due to the two main factors: 1) the model’s
context length is constrained (for example, T5 is
limited for 512 sequence length); 2) the data used
for the fine-tuning is limited to the text’s length of
the examples in the dataset, which can lead to bad
performance on longer texts if the models saw only
short ones. We added the domains of various text
lengths to address this problem in the Multidomain-
Gold set.

Languages. The methodology employed in our
study primarily focuses on investigating the appli-
cability of our spell SC methodology within the
Russian language, examining its transferability to
the English language. The generalizability of the
method across diverse language families remains
to be determined. We leave these aspects for future
work.

Ethics Statement

In our research on generative SC, we prioritize ad-
dressing ethical implications and ensuring respon-
sible technology use.

Datasets and Crowdsourcing annotation. Re-
sponses of human annotators are collected and
stored anonymously, eliminating personally iden-
tifiable information. The annotators are warned
about potentially sensitive topics in data (e.g., pol-
itics, culture, and religion). The average annota-
tion pay rate exceeds the hourly minimum wage
in Russia twice. The data are published under an

MIT license. We secured access to public datasets,
adhering to relevant terms of service and usage
policies.

Energy Efficiency and Usage. Training large-
scale LLMs consumes significant computational
resources and energy, producing substantial car-
bon emissions. The decision was made to limit
the number of pre-trained models employed for
English to minimize the ecological footprint of the
research. The CO2 emission of pre-training the
M2M100 (Fan et al., 2021) and T5 (Raffel et al.,
2020) models in our experiments is computed as
Equation 1 (Strubell et al., 2019):

CO2 =
PUE ∗ kWh ∗ ICO2

1000
(1)

The resulting CO2 emissions are listed below:

1. M2M1001.2B = 87.09 kg;

2. M2M100418M = 57.37 kg;

3. T5large = 62.21 kg;

4. FredT5large = 31.11 kg;

Data centers’ power usage effectiveness (PUE)
is at most 1.3. Despite the costs, spelling models
can efficiently adapt to users’ needs, bringing down
potential budget costs in modern applications.

Biases. Our datasets reflecting the Internet do-
main may contain stereotypes and biases similar to
the pre-trained models. Risks of misuse in genera-
tive LLMs are a well-discussed concern (Weidinger
et al., 2021; Bommasani et al., 2021). We recog-
nize the potential for biases in both training data
and model predictions. Proper evaluation is crucial
to uncover any vulnerabilities in generalizing new
data.

Possible Misuse. We are aware that the results
of our work could be misused for harmful con-
tent. We emphasize that our research should not
harm individuals or communities through legisla-
tion, censorship, misinformation, or infringing on
information access rights. We offer a novel, broadly
applicable methodology that is especially valuable
for Russian. While it can enhance written commu-
nication, ongoing ethical evaluation is crucial to
address emerging challenges.
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A Appendix

A.1 Data
The information of the collected data for the train
set and expansion of the gold sets are presented in
Tables 6 and 5.

Datasets 1S-A 2S-A Size Length
Web (Aranea) + + 756 133.8
Literature + + 260 194.3
News + + 245 278.7
Social media + + 200 149.6
Strategic Doc + + 250 182.9
Reviews + + 586 678.9
OpenSubtitles + + 1810 44.2
RUSpellRU - - 2008 87
GitHubTypoCorpusRu - + 868 156
MedSpellChecker + + 1054 135
BEA60k - - 63044 79.1
JFLEG - - 1601 109

Table 5: The test golden sets statistics. The sizes of
the test sets parts in the number of examples (mostly
sentences). 1S − A represents if the dataset was vali-
dated on the first annotation step. 2S − A represents
if the dataset was validated on the second annotation
step. Length is the average number of symbols in one
dataset’s example.

Datasets 1S-A 2S-A Size Length
Web (Aranea) + + 386 108.4
News + + 361 268.1
Social media + + 430 163.9
OpenSubtitles + + 1810 45.3
Reviews + + 584 689.1
RUSpellRU - - 2000 77.9

Table 6: The train sets statistics. The sizes of the train
sets parts in the number of examples (primarily sen-
tences). 1S−A represents if the dataset was validated on
the first annotation step. 2S−A represents if the dataset
was validated on the second annotation step. Length is
the average number of symbols in one dataset’s exam-
ple.

A.2 Annotation
For the extension of the gold test set and the Mul-
tidomainGold train part, we use the two-stage
annotation setups via a crowd-sourcing platform
Toloka19 (Pavlichenko et al., 2021) similarly to the
work (Martynov et al., 2023):

1. Data gathering stage: the texts with possible
mistakes are provided, and the annotators are
asked to write the sentence correctly;

19https://toloka.ai/tolokers

2. Validation stage: the pair of sentences
(source and its corresponding correction from
the previous stage) are provided, and the an-
notators are asked to check if the correction is
right.

The annotation costs and the details for the cre-
ated sets in the current work are presented in Ta-
ble 7.

Params S1.Tr S2.Tr S1.Te S2.Te
IAA 82.06 85.20 82.34 91.78
Total 720$ 451$ 732$ 947$
Overlap 3 3 3 3
NT 7 7 8 8
Npage 4 5 4 5
NC 50 46 50 46
NU 12 10 10 9
ART 102 71 95 60

Table 7: Details on the data collection projects for the
Golden Test sets and the Train MultidomainGold for
both parts of the annotation pipeline (S1.T r is the first
annotation stage of train set; S2.T e is the second anno-
tation step of the test set respectively). IAA refers to
the average IAA confidence scores, %. IAA of the first
step is calculated as the expected value of annotators’
support of the most popular correction over all labeled
texts. IAA of the second step is calculated as an average
value of confidence scores overall labeled texts. Total
is the total cost of the annotation project. Overlap is
the number of votes per example. NT is the number of
training tasks. Npage denotes the number of examples
per page. NC is the number of control examples. NU

is the number of users who annotated the tasks. ART
means the average response time in seconds.

Model Speed Size Params
M2M1001.2B 175.73 4.96 1.2B
M2M100418 326.16 1.94 418M
Fred-T5large 177.12 3.28 820M
T5large 190.96 2.95 770M

Table 8: The Models’ statistics. Speed is the speed
of the model on inference on a single Nvidia A100 in
symbols per second. Params represents the number of
the models’ parameters. Size is the size of the models’
checkpoint weights in GB.

A.3 Augmentation strategies details

In the diverse array of settings available within Aug-
mentex, customization options include the percent-
age of phrase changes, the maximum and minimum
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Pr. Rec. F1 Pr. Rec. F1 Pr. Rec. F1 Pr. Rec. F1 Pr. Rec. F1 Pr. Rec. F1

66.9 84.1 74.5 77.8 88.6 82.9 68.7 85.3 76.1 77.9 88.3 82.8 67.7 84.0 75.0 76.8 88.5 82.2
57.1 83.5 67.8 73.3 87.9 80.0 58.6 84.5 69.2 73.5 87.7 80.0 57.6 83.3 68.1 72.7 87.9 79.6

38.7 86.3 53.5 43.5 89.5 58.6 39.0 85.5 53.5 39.5 90.3 55.0 38.6 86.5 53.4 40.1 90.5 55.6
34.4 85.5 49.0 41.9 89.0 57.0 34.7 84.9 49.2 37.9 89.7 53.3 34.7 85.9 49.4 38.6 90.0 54.0

22.6 80.3 35.3 20.5 80.8 32.7 22.7 80.2 35.4 21.5 83.7 34.3 22.3 80.2 34.9 21.1 83.1 33.7
20.6 79.6 32.8 19.9 79.9 31.9 20.8 79.5 33.0 20.8 82.9 33.3 20.4 80.1 32.6 20.7 82.5 33.1

Prompt
gpt-3.5-turbo-0301 gpt-4-0314 text-davinci-003

BEA60K JFLEG BEA60K JFLEG BEA60K JFLEG

Full Prompt
W/O Punctuation
With Punctuation

Short Prompt
W/O Punctuation
With Punctuation

Cut Prompt
W/O Punctuation
With Punctuation

Table 9: OpenAI models’ performance on SC tasks in English. W/OPunctuation and WithPunctuation reflect
the absence and presence of punctuation in the sentence, respectively. Metrics are reported in format Precision,
Recall, F1-measure from (Sorokin et al., 2016).

number of errors, and the proportion of phrases eli-
gible for modifications. Among its various aug-
mentation strategies, we choose the word-level
approach (replacing the symbols with a probabil-
ity of their mistaken use) and the sentence-level
approach (substituting words with frequent incor-
rect alternatives). We configured the first setup
with the parameters: aug_rate=0.1, min_aug=1,
max_aug=3, mult_num=5, action="orfo" and
aug_prob=0.7, and the second: aug_rate=0.6,
min_aug=1, max_aug=5, action="replace" and
aug_prob=0.7.

A.4 Experiments evaluation results

The evaluation of all the experiments discussed in
the section 4 that are not covered in the main text
are presented in the Tables 9, 11. The evaluation on
development sets during the training is presented
in Table 10.

Figure 1: The architecture overview of the SAGE li-
brary.

A.5 SAGE library

As the practical result of the introduced methodol-
ogy, we present SAGE 20 (Spell checking via Aug-

20https://github.com/ai-forever/sage

mentation and Generative distribution Emulation).
The library consists of three parts: data hub, aug-
mentation strategies, and the family of the models.
The architecture is presented on a Figure 1. The
data hub includes the whole collection of natural
parallel datasets for SC in Russian that were cre-
ated within the frame of our research. The family
of pre-trained generative models for SC involves all
the best models trained during the current research
for the Russian and English languages. The mod-
els are assessed with the inference code from the
HuggingFace library 21 and the evaluation script.
The last part is the augmentation methods included
in SAGE. The statistic-based approach is presented
for emulating the user’s parallel corpus distribution
and provides the emulation algorithm on new data.
The heuristic-based approach is presented for pro-
ducing the noise via different strategies on a word
and sentence level in the non-labeled text data.

A.6 OpenAI models prompts experiments

We conduct experiments 9, 11 varying different
prompts OpenAI models to evaluate their perfor-
mance on Golden test sets in Russian and English.
For both English and Russian sets, we try three
types of prompts: 1) Cut prompt for Russian:
"Perepishi tekst bez orfograficheskih, grammatich-
eskih oshibok i opechatok, sohranjaja ishodnyj stil’
teksta, punktuaciju, ne raskryvaja abbreviatur i ne
izmenjaja korrektnyj tekst:"; for English: "Cor-
rect spelling and grammar in the following text:".
2) Short prompt for Russian: "Perepishi tekst
bez orfograficheskih, grammaticheskih oshibok i
opechatok, sohranjaja ishodnyj stil’ teksta, punk-
tuaciju, ne raskryvaja abbreviatur i ne izmenjaja
korrektnyj tekst:"; for English: "Correct spelling

21https://github.com/huggingface/transformers
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Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

70.8 53.1 60.6 70.5 50.0 58.5 35.6 58.2 44.2
40.0 41.2 40.6 34.7 40.5 37.4 51.3 52.8 52.1
51.9 45.6 48.5 46.7 45.8 46.3 48.5 57.0 52.4

88.5 82.7 85.5 80.2 72.5 76.1 46.7 80.1 59.0
60.2 67.8 63.8 52.5 59.8 55.9 62.1 69.8 65.7
72.2 73.6 72.9 64.2 64.2 64.2 62.9 75.7 68.7

82.7 82.7 82.7 66.1 76.5 70.9 44.7 78.1 56.9
58.3 68.8 63.1 44.2 63.3 52.1 56.7 70.1 62.7
67.5 78.5 72.6 53.1 71.3 60.9 56.6 77.3 65.4

82.7 82.7 82.7 71.2 78.1 74.5 46.4 81.6 59.2
58.8 69.8 63.8 48.3 61.8 54.2 54.1 73.1 62.2
68.7 76.9 72.6 56.7 68.0 61.9 56.7 76.3 65.0

88.6 83.2 85.8 77.5 79.1 78.3 46.3 78.6 58.2
57.5 68.8 62.6 50.3 63.1 56.0 63.5 72.8 67.8
69.8 76.9 73.2 59.4 69.8 64.2 63.3 76.7 69.3

86.8 84.2 85.5 79.7 76.0 77.8 45.2 78.6 57.4
59.8 69.1 64.1 51.1 60.5 55.4 61.2 71.7 66.1
68.4 76.5 72.2 62.5 65.8 64.1 66.0 76.7 71.0

M2M1001.2B M2M100418M FredT5large

Fine-tuning
without Pre-training

RUSpellRU
MultidomainGold
RUSpellRU+MDG

with Pre-training
RUSpellRU
MultidomainGold
RUSpellRU+MDG

Augmentations
Augmentex (Add)

RUSpellRU
MultidomainGold
RUSpellRU+MDG

Augmentex (Concat.)
RUSpellRU
MultidomainGold
RUSpellRU+MDG

SBSC (Add)
RUSpellRU
MultidomainGold
RUSpellRU+MDG

SBSC (Concat.)
RUSpellRU
MultidomainGold
RUSpellRU+MDG

Table 10: The evaluation of models’ configurations with fine-tuning and the augmentations on dev sets. Metrics are
reported in format Precision, Recall, F1-measure from (Sorokin et al., 2016)

W/O Punctuation With Punctuation W/O Punctuation With Punctuation W/O Punctuation With Punctuation

55.3 / 75.8 / 63.9 55.8 / 75.3 / 64.1 56.4 / 76.2 / 64.8 57.0 / 75.9 / 65.1 55.4 / 75.8 / 64.0 55.9 / 75.3 / 64.2
30.8 / 70.9 / 43.0 33.8 / 72.1 / 46.0 31.0 / 72.0 / 43.3 34.0 / 73.2 / 46.4 31.2 / 71.1 / 43.4 33.6 / 72.0 / 45.8
53.2 / 67.6 / 59.6 53.7 / 66.1 / 59.3 54.2 / 69.4 / 60.9 54.2 / 67.7 / 60.2 47.8 / 68.4 / 56.3 48.0 / 66.4 / 55.7
44.5 / 58.1 / 50.4 43.8 / 57.0 / 49.6 45.2 / 58.2 / 51.0 44.2 / 57.4 / 50.0 46.5 / 58.1 / 51.7 45.7 / 57.3 / 50.9

23.1 / 63.9 / 34.0 23.8 / 63.5 / 34.7 22.3 / 60.7 / 32.7 23.2 / 60.5 / 33.6 24.3 / 63.5 / 35.2 25.2 / 63.6 / 36.1
12.7 / 54.4 / 20.6 15.0 / 55.8 / 23.6 13.5 / 55.6 / 21.7 15.4 / 55.9 / 24.1 13.8 / 56.5 / 22.2 16.1 / 57.7 / 25.2
30.7 / 76.1 / 43.8 29.2 / 77.9 / 42.5 29.0 / 78.6 / 42.4 30.6 / 76.9 / 43.8 29.8 / 76.4 / 42.9 28.4 / 77.9 / 41.7
18.4 / 45.8 / 26.3 18.8 / 46.9 / 26.9 17.1 / 46.0 / 25.0 17.7 / 47.1 / 25.7 19.7 / 47.1 / 27.8 20.1 / 47.1 / 28.2

37.9 / 70.3 / 49.3 38.8 / 70.1 / 50.0 35.6 / 64.1 / 45.8 36.4 / 64.0 / 46.4 37.0 / 69.5 / 48.3 37.9 / 69.4 / 49.0
7.2 / 46.4 / 12.5 7.5 / 49.1 / 13.1 10.5 / 62.1 / 18.0 7.6 / 46.3 / 13.0 10.6 / 60.6 / 18.0 12.3 / 62.0 / 20.6
5.5 / 52.2 / 10.0 5.3 / 56.3 / 9.7 4.7 / 49.7 / 8.6 5.6 / 51.9 / 10.2 5.9 / 59.9 / 10.8 6.5 / 57.6 / 11.7
17.0 / 50.4 / 25.4 17.2 / 50.3 / 25.7 18.0 / 52.7 / 26.8 18.4 / 53.5 / 27.4 18.7 / 53.0 / 27.7 18.6 / 53.3 / 27.6

Prompt gpt-3.5-turbo-0301 gpt-4-0314 text-davinci-003

Full Prompt
RUSpellRU
MultidomainGold
MedSpellChecker
GitHubTypoCorpusRu

Short Prompt
RUSpellRU
MultidomainGold
MedSpellChecker
GitHubTypoCorpusRu

Cut Prompt
RUSpellRU
MultidomainGold
MedSpellChecker
GitHubTypoCorpusRu

Table 11: OpenAI models’ performance on SC task in Russian. W/OPunctuation and WithPunctuation reflect
the absence and presence of punctuation in the sentence, respectively. Metrics are reported in format Precision,
Recall, F1-measure from (Sorokin et al., 2016).

and grammar in the following text: . Do not pro-
vide any interpretation of your answer.". 3) Full
Prompt for Russian: "Perepishi tekst bez orfo-
graficheskih, grammaticheskih oshibok i opecha-
tok, sohranjaja ishodnyj stil’ teksta, punktuaciju,
ne raskryvaja abbreviatur, ne izmenjaja korrektnyj
tekst. Napishi tol’ko pravil’nyj otvet bez dopolni-
tel’nyh ob"jasnenij."; for English: "Rewrite text
without spelling errors, grammatical errors, and

typos, preserve the original text style and punctua-
tion, do not open abbreviations, and do not change
the correct text. Do not provide any interpretation
of your answer.".
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learning rate weight decay warm-up steps batch size epochs

8.62e-5 0.0288 5 16 7
4.96e-5 0.0135 5 16 8
6.48e-5 0.0416 10 16 7

8.62e-5 0.0288 5 16 7
4.96e-5 0.0135 5 16 8
6.48e-5 0.0416 10 16 7

2e-5 0.01 0 8 7
2e-5 0.01 0 4 7
2e-5 0.01 0 4 7

8.62e-5 0.0288 5 16 7
4.96e-5 0.0135 5 16 8
6.48e-5 0.0416 10 16 7

4.56e-5 0.0493 5 16 7
3.39e-5 0.0182 7 16 7
2.66e-5 0.0314 15 8 7

4.56e-5 0.0493 5 16 7
3.39e-5 0.0182 7 16 7
2.66e-5 0.0314 15 8 7

2e-5 0.01 0 16 7
2e-5 0.01 0 8 7
2e-5 0.01 0 8 7

4.56e-5 0.0493 5 16 7
3.39e-5 0.0182 7 16 7
2.66e-5 0.0314 15 8 7

2e-4 0.01 0 8 10
2e-4 0.01 0 8 10
2e-4 0.01 0 8 8

2e-4 0.01 0 8 10
2e-4 0.01 0 8 10
2e-4 0.01 0 8 8

2e-4 0.01 0 8 10
2e-4 0.01 0 8 10
2e-4 0.01 0 8 8

2e-4 0.01 0 8 10
2e-4 0.01 0 8 10
2e-4 0.01 0 8 8

Model Hyperparameters

M2M1001.2B
Fine-tuning

RUSpellRU
MultidomainGold
RUSpellRU+MDG

Pr. + Fine-tuning
RUSpellRU
MultidomainGold
RUSpellRU+MDG

Augmentex
RUSpellRU
MultidomainGold
RUSpellRU+MDG

SBSC
RUSpellRU
MultidomainGold
RUSpellRU+MDG

M2M100418M
Fine-tuning

RUSpellRU
MultidomainGold
RUSpellRU+MDG

Pr. + Fine-tuning
RUSpellRU
MultidomainGold
RUSpellRU+MDG

Augmentex
RUSpellRU
MultidomainGold
RUSpellRU+MDG

SBSC
RUSpellRU
MultidomainGold
RUSpellRU+MDG

FredT5large
Fine-tuning

RUSpellRU
MultidomainGold
RUSpellRU+MDG

Pr. + Fine-tuning
RUSpellRU
MultidomainGold
RUSpellRU+MDG

Augmentex
RUSpellRU
MultidomainGold
RUSpellRU+MDG

SBSC
RUSpellRU
MultidomainGold
RUSpellRU+MDG

Table 12: The hyperparameters of models’ configurations (pre-trained, fine-tuning, augmentation).
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