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Abstract

Large multimodal models extend the impres-
sive capabilities of large language models by
integrating multimodal understanding abilities.
However, it is not clear how they can emulate
the general intelligence and reasoning ability of
humans. As recognizing patterns and abstract-
ing concepts are key to general intelligence,
we introduce PUZZLEVQA, a collection of
2000 puzzle instances based on abstract pat-
terns. With this dataset, we evaluate large mul-
timodal models with abstract patterns based on
fundamental concepts, including colors, num-
bers, sizes, and shapes. Through our experi-
ments on state-of-the-art large multimodal mod-
els, we find that they are not able to generalize
well to simple abstract patterns. Notably, GPT-
4V achieves a score of 46.4% on single-concept
puzzles, which shows that state-of-the-art mod-
els struggle on our dataset. To diagnose the
reasoning challenges in large multimodal mod-
els, we progressively guide the models with our
ground truth reasoning explanations for visual
perception, inductive reasoning, and deductive
reasoning. Our systematic analysis finds that
the main bottlenecks of GPT-4V are weaker
visual perception and inductive reasoning abili-
ties. Through this work, we hope to shed light
on the limitations of large multimodal models
and how they can better emulate human cogni-
tive processes in the future!.

1 Introduction

Rapid advances in large language models have
demonstrated remarkable capabilities across di-
verse language tasks and applications (Bubeck
et al., 2023; Brown et al., 2020; Touvron et al.,
2023b). To enable more general capabilities, large
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'0ur data and code are released at
https://github.com/declare-lab/LLM-PuzzleTest.

Model Input

A/

Question: What is the missing color of the part
denoted with a question mark?
Options: (A) purple (B) green (C) blue (D) yellow

Answer: Let's describe the image first and think
@p by step. /

Model Output

The image shows a hexagon divided into six
equal triangular sections. Each section is colored
differently, with the exception of the one with the
question mark, which is meant to be identified.
The colors visible are orange, green, and blue,

d aring

to it, ma ning

th ting c >. Given the options
provided: (A) purple (B) green (C) blue (D) yellow
The correct answer is (B) green, as it is the color

that would maintain the alternating pattern and is
not adjacent to the section in question. g

Figure 1: An example question which involves the color
concept in PUZZLEV QA, and an incorrect answer from
GPT-4V. There are generally three stages that can be ob-
served in the solving process: visual perception (blue),
inductive reasoning (green), and deductive reasoning
(red). Here, the visual perception was incomplete, caus-
ing a mistake during deductive reasoning.

multimodal models were introduced by integrat-
ing large language models with multimodal under-
standing (Yue et al., 2023; Yang et al., 2023; Ope-
nAl, 2023). However, it is not clear how large
multimodal models can emulate the general in-
telligence and reasoning ability of humans (Qiu
et al., 2024). Specifically, we aim to explore how
large multimodal models can emulate cognitive
processes to perceive and interpret information, ex-
trapolate from observations to broader generaliza-
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tions, and apply general principles to solve specific
problems (Piaget, 1976). Furthermore, we are in-
terested in understanding how well the models can
reason about fundamental concepts such as num-
bers, colors, shapes, and size (Tong et al., 2024;
Sharma et al., 2024).

As pattern recognition and and abstracting con-
cepts are at the heart of general intelligence (Tenen-
baum, 2018; Carey, 2000; Cole, 1996), we believe
that abstract patterns are a suitable testbed for evalu-
ating reasoning ability in large multimodal models.
As shown in Figure 1, abstract patterns enable us to
focus on one or more abstract concepts, and decom-
pose the multimodal reasoning process into sev-
eral stages that mimic human cognitive processes
(Piaget, 1976). Firstly, the model requires visual
perception to understand and interpret the abstract
image in the input. Secondly, the model requires in-
ductive reasoning to relate the observations shown
and form a hypothesis for the underlying pattern.
Thirdly, the model requires deductive reasoning to
apply the general principle of the pattern to solve
the specific problem at hand. While the abstract
patterns may seem simple, we surprisingly find
that even advanced large multimodal models such
as Gemini Pro (Gemini Team, 2023) and GPT-4V
(OpenAl, 2023) struggle to understand them.

Puzzles are problems that require ingenuity and
creativity to solve, and they can serve as valuable
tools for cognitive development and assessment
(Zhang et al., 2019). Hence, we propose the PUZ-
ZLEVQA dataset to systematically evaluate and
diagnose the reasoning challenges in large mul-
timodal models. Our dataset consists of diverse
multimodal puzzles that focus on abstract patterns
with fundamental concepts including numbers, col-
ors, shapes, and size. We design and automatically
construct the dataset through multimodal templates,
enabling us to generate large numbers of puzzles
without costly human annotation (Ding et al., 2022).
To support interpretability and systematic investi-
gation of reasoning challenges in multimodal mod-
els, we also construct the ground truth reasoning
explanations for each puzzle. Compared to exist-
ing datasets for visual question answering, PUZ-
ZLEV QA focuses specifically on how large mul-
timodal models can mimic general cognitive pro-
cesses such as inductive and deductive reasoning.
As we focus on how models can generalize to novel
problems, similar to fluid intelligence in humans
(Cattell, 1963), our dataset in the abstract domain
poses challenges for existing models without re-

quiring extensive world knowledge.

Through our investigation of leading large multi-
modal models, we find that existing models are not
able to generalize well to simple abstract patterns.
Notably, GPT-4V achieves a score of 46.4% on
single-concept puzzles, which shows that state-of-
the-art models struggle on our dataset. Our analysis
reveals that its main bottlenecks are weaker visual
perception and inductive reasoning abilities. Hence,
our main contributions include:

1. To investigate the cognitive and reasoning abil-
ities of large multimodal models, we propose
to leverage abstract patterns.

2. We introduce PUZZLEVQA, an automatically
generated and diverse dataset of 2000 multi-
modal samples with reasoning explanations.

3. Our experiments show that even advanced
large multimodal models do not generalize
well to abstract patterns, and we show how to
identify their reasoning bottlenecks.

2 Background: Cognitive Theories

To understand how large multimodal models can
better mimic human thought processes and general
intelligence, we first ground our study with relevant
cognitive theories.

2.1 Fluid and Crystallized Intelligence

The Cattell-Horn theory (Cattell, 1963) of cogni-
tive abilities distinguishes between two types of
intelligence: fluid intelligence, which involves the
ability to solve novel problems without relying on
previously acquired knowledge, and crystallized
intelligence, which involves the use of knowledge,
skills, and experience. Fluid intelligence in humans
could parallel large multimodal models’ ability to
solve new, unseen problems through pattern recog-
nition and problem-solving strategies. On the other
hand, crystallized intelligence could be akin to how
the models leverage accumulated world knowledge
from training data to understand and interact with
the world (Sumers et al., 2023). As many works
have focused on how models can leverage special-
ized knowledge (Yue et al., 2023), we instead focus
on how they may emulate fluid intelligence to solve
novel problems through abstract patterns.
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parts must have the
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What is the missing
color of the part denoted
with a question mark?

AN

-

There is a hexagon split into six
parts with the colors [green,
orange, ?, green, orange, blue

Visual Perception

Inductive Reasoning

We observe that a green part is
opposite another green part,
and a orange part is opposite

another orange part. Thus, the

pattern is that the colors in
opposite parts are the same.

Deductive Reasoning \

Based on the pattern that
spatially opposite parts have
the same color, the missing

color of the part which is
opposite a blue part should

also be blue.

in an anti-clockwise order.

Figure 2: Illustration example of components (top) and reasoning explanations (bottom) for abstract puzzles in
PUzzLEVQA. To construct each puzzle instance, we first define the layout and pattern of a multimodal template,
and populate the template with suitable objects that demonstrate the underlying pattern. For interpretability, we also
construct ground truth reasoning explanations to interpret the puzzle and explain the general solution stages.

2.2 Cognitive Development

Piaget’s Stages of Cognitive Development (Piaget,
1976) can provide a framework for progressing
from basic sensory experiences to complex abstract
reasoning and problem-solving. While we note that
the large multimodal models do not develop in the
same organic and experiential manner as humans,
we are guided to explore how the models can em-
ulate different stages of cognitive abilities. Con-
cretely, through abstract patterns, we can evaluate
how the models perceive multimodal information,
reason inductively to extrapolate from observations
to broader generalizations, and apply general prin-
ciples to deduce the solution for specific problems.

Sensorimotor. This stage underpins visual per-
ception, where individuals learn to coordinate sen-
sory experiences through interactions with the envi-
ronment. To emulate this cognitive stage, we would
expect models to identify simple shapes or colors
but lack higher-level reasoning. Hence, we set the
foundation for later stages by exploring abstract
patterns based on fundamental concepts including
colors, numbers, shapes, and size.

Preoperational. At this stage, individuals de-
velop symbolic thinking, which is crucial for un-
derstanding representations in visual contexts and
beginning to engage in simple, inductive reasoning
processes. Models that mimic this stage should be

able to perform basic reasoning about objects or
concepts, but with limited understanding of abstract
relationships or performing logical operations.

Concrete Operational. This stage is closely re-
lated to inductive reasoning, as individuals learn
to think logically about concrete events and solve
problems based on visible patterns and relation-
ships. We would expect models that are analogous
to this stage to have the ability to draw logical con-
clusions from specific instances and start to apply
these conclusions to solve problems. Hence, we
consider inductive reasoning as an integral part of
understanding abstract patterns.

Formal Operational. This stage is essential for
deductive reasoning and abstract thinking, allowing
individuals to hypothesize and think about theoreti-
cal scenarios, which are skills necessary for solving
complex problems. At this stage, we would expect
comparable models to effectively induce general
principles or hypotheses from observations and log-
ically deduce specific outcomes, even in abstract
or novel contexts. Thus, we consider deductive
reasoning as critical to solving abstract problems.

3 PuzzleVQA Dataset

Despite the impressive capabilities of large mul-
timodal models, we do not fully understand how
they solve multimodal problems through reasoning.
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Specifically, we focus on how well they can inter-
pret multimodal inputs, form generalizations from
observations, and apply the general principles to
solve specific cases. Furthermore, they may rea-
son differently about fundamental concepts such as
numbers, colors, shapes, and size. Hence, we pro-
pose PUZZLEVQA, a diverse collection of abstract
pattern puzzles to diagnose reasoning challenges in
multimodal models. The dataset is automatically
constructed through multimodal templates, and in-
cludes reasoning explanations for interpretability.

3.1 Puzzle Components

As shown in Figure 2, each puzzle in our dataset is
formulated with the following main components:

1. Objects: The conceptual elements that inter-
act within the puzzle, such as numbers, colors,
shapes, and size.

2. Layout: The spatial arrangement of objects
that provides visual context.

3. Pattern: The relationship that governs the
interaction amongst objects. For example, a
pattern may be that spatially opposite parts
must have the same color.

4. Demonstrations: Multiple instances of inter-
acting objects that collectively represent the
underlying pattern. Without demonstrations,
the pattern would become ambiguous.

5. Query: The natural language question that
directs the multimodal model how to solve the
puzzle by determining the missing object.

3.2 Design Considerations

We have three main design considerations for each
puzzle in our dataset:

Simplicity. As the focus is on evaluating how
large multimodal models reason about fundamental
abstract concepts, we do not deliberately make the
puzzles more complex than necessary. We also aim
to make the underlying patterns straightforward,
without requiring extensive world knowledge or
advanced theories.

Correctness. To avoid potentially noisy anno-
tations, we use an automatic approach with mul-
timodal templates to generate each puzzle. For
instance, given a visual layout and pattern of a tem-
plate, we can automatically populate the template

with the appropriate objects that demonstrate the
pattern. As each puzzle instance is created based
on the specific rules in the template, we can ensure
that they do not contain annotation mistakes.

Diversity. To investigate the multimodal reason-
ing capabilities across diverse abstract concepts,
we construct puzzles based on four main concepts:
numbers, colors, shapes, and size. Furthermore, to
evaluate how well the models can relate to multi-
ple concepts, we design both single-concept and
dual-concept puzzles.

3.3 Puzzle Construction

Multimodal Templates. To construct each ab-
stract puzzle, we leverage multimodal templates
based on fundamental concepts including numbers,
colors, shapes, and size. Following the formulation
and design considerations previously discussed, we
first define the layout and abstract pattern for the
puzzle. Each template can be randomly populated
with the specific objects to represent the underlying
pattern through demonstrations, forming a specific
puzzle instance. For example, to construct a color-
based puzzle instance shown in Figure 2, we focus
on the concept of colors and define the layout as
a hexagonal arrangement of six parts, with the ab-
stract pattern that spatially opposite parts must have
the same color. Thereafter, the template can be ran-
domly populated to satisfy the pattern with colors
from a predefined list of possible colors. Lastly,
the query is constructed based on the fundamental
concepts in the abstract pattern. To demonstrate
our puzzle generation pipeline, we include a de-
tailed implementation in Appendix A.4, based on
the puzzle in Figure 1.

Reasoning Explanations. To ensure that each
abstract puzzle can be easily understood, we also
construct reasoning explanations based on the three
problem solving stages: image descriptions for vi-
sual perception, pattern explanations for inductive
reasoning, and deductive reasoning steps. Specif-
ically, we leverage textual templates that can be
populated with details from the specific puzzle in-
stance, as shown in Figure 2. In our experiments
in Section 5, this enables us to identify reasoning
bottlenecks by progressively providing the expla-
nations of each stage to the model.

3.4 Multiple-Choice Format

While we use straightforward objects in our puz-
zles, there may be a degree of ambiguity in the an-
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Figure 3: Taxonomy of abstract puzzles in PUZZLEV QA with sample questions, based on fundamental concepts
such as colors and size. To enhance diversity, we introduce both single-concept and dual-concept puzzles.

swer regarding specific colors or sizes. Hence, we
standardize the puzzle format as multiple-choice
questions, where all questions are provided with
four options, with the exception of three options for
size (small, medium, and large). To generate the in-
correct choices for each question, we use heuristics
including randomly sampling numbers within the
same magnitude of the answer, and further details
can be found in the supplementary material. We
use the standard accuracy metric for evaluation.

3.5 Dataset Analysis

To ensure that the dataset contains diverse abstract
patterns, we provide a taxonomy of 10 puzzle cat-
egories based on fundamental concepts including
numbers, colors, shapes, and size. As shown in Fig-
ure 3, there are four categories of single-concept
patterns. To extend the depth of PUZZLEVQA, we
also include dual-concept patterns, which would
require models to relate two concepts in order to
solve the puzzle. Within each category, we design
two multimodal templates that can each be used

to generate many unique puzzle instances. The
full list of puzzle templates and examples of more
puzzle instances can be found in the supplemen-
tary material. To maintain a reasonable dataset
size for evaluating large multimodal models, we
generate 100 unique puzzle instances from each
template. Thus, there are 2000 test instances in
PUzZLEVQA in total. We conducted an analysis
in Appendix A.5 and found that the chosen dataset
size is large enough to be relatively robust to exper-
imental variance.

3.6 Implementation Details

We utilize Python code along with packages like
Pillow? to automatically generate puzzles. Leverag-
ing these tools, we are able to create many different
unique puzzle images and text questions for each
given puzzle type by augmenting the base template
and objects in the image. Example code snippets to
generate the puzzles are included in the supplemen-

Zhttps://pypi.org/project/pillow/
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Numbers Colors Size Shapes Average

Random Baseline 25.0 250 333 25.0 27.1

Qwen-VL-Chat 25.0 220 325 340 28.4
LLaVA-13B 26.0 29.0 290 260 27.5
Gemini Pro 325 320 335  40.0 34.5
Claude 3 Opus 47.0 325 335 445 39.4
GPT-4V 67.5 420 350 410 46.4

Table 1: Accuracy of large multimodal models for
single-concept abstract patterns in PUZZLEV QA.

tary material, and we plan to release the dataset
publicly with a permissive license such as MIT
license.

Each puzzle in PUZZLEVQA comprises of
an image ZTjmage, a Natural language question
T question, an image caption that describes the im-
age Tcaption. an explanation that explains the pat-
tern shown in the image Tciplanation, @ deduc-
tion statement that applies the pattern to the puz-
zle to derive the final answer % geduction, @ set of
multiple-choice answers Zoptions, and the final an-
SWer Tanswer. All of which are automatically gen-
erated during the puzzle creation process.

4 Experimental Setup

4.1 Inference Pipeline

To elicit reasoning steps from large multimodal
models, we leverage zero-shot chain of thought
(CoT) prompting (Kojima et al., 2022) with a
prompt similar to “Let’s think step by step”.
As the model may not always follow the same
multiple-choice answer format, we also employ
a model-based answer extraction stage. Detailed
examples of the prompts can be found in the sup-
plementary material. Please note that our main
experimental setting used in Table 1 and 2 involves
only the questions and images as multimodal in-
puts. On the other hand, we progressively provide
additional ground-truth information such as image
captions in Section 5.1 to diagnose the multimodal
reasoning bottlenecks.

Chain of Thought Prompting. In the first
prompting step, we construct a prompt & by modi-
fying the question using a specific prompt template:
"[I] Question: [X]. Options: [O]. Answer: [T]",
where [I] is the input slot for zjmqge, [X] is the
input slot for Zgyestion, [O] is the input slot for
Toptions» and [T'] is the input slot for the trigger sen-
tence ¢;1. To elicit reasoning over the multimodal in-
puts, we use “Let’s describe the image first
and think step by step” as our trigger sentence

t1. This modified prompt Z is then fed into a large
multimodal model, and a greedy decoding strat-
egy is utilized to generate the subsequent sentence
y1. If the letter answer can be extracted from ¥
with regular expressions, the prompting process
terminates. However, if the letter answer cannot be
extracted, we prompt the model itself to extract the
answer.

Answer Extraction. In the second prompting
stage, we use the generated sentence y; along with
the modified prompt & to extract the final answer.
We concatenate three elements to form "[X 1171
[A]" where [X ] is the input slot for &, [Z] is the
input slot for y;, and [A] is the trigger sentence
to to extract the final answer. We defined ¢y as
"Therefore, among (A) (B) (C) (D), the
answer 1is:"” or "Therefore, among (A) (B)
(C), the answer is:", for puzzles with four and
three multiple-choice questions respectively.

4.2 Models

To investigate the reasoning ability of large multi-
modal models, we select the best-performing open
and closed-source models (Yue et al., 2023):

1. Qwen-VL-Chat (7B) (Bai et al., 2024) is an
open-source large multimodal model designed
to perceive and understand both texts and im-
ages. We use the version with open model
weights and default chat template.

2. LLaVA-13B (Liu et al., 2023) is an large mul-
timodal model which is based on the popular
LLaMA (Touvron et al., 2023a) foundation
language model. We use the model weights
of the 1.5 version and default chat template.

3. Gemini Pro (Gemini Team, 2023) is a
highly capable multimodal model released by
Google, and we use their publicly available
API to query the “gemini-pro-vision” version
of the model.

4. Claude 3 Opus® is released by Anthropic
and the most highest-performing multimodal
model in their model family. We use their
publicly available API to query the “claude-3-
opus-20240229” version of the model.

5. GPT-4V (OpenAl, 2023) is released by Ope-
nAl and widely regarded as the most capable

3https: //www.anthropic.com/news/
claude-3-family
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Numbers Colors Numbers  Colors Size Colors
& & & & & & Average
Shapes Numbers Size Shapes  Shapes Size
Random Baseline 25.0 25.0 25.0 25.0 333 25.0 26.4
Qwen-VL-Chat 29.5 26.5 26.5 26.5 30.0 31.0 28.3
LLaVA-13B 20.0 30.0 31.5 36.0 39.0 30.0 31.1
Gemini Pro 29.0 21.0 29.5 27.5 36.5 37.0 30.1
Claude 3 Opus 48.0 54.5 34.0 42.5 33.0 50.0 43.7
GPT-4V 52.5 56.0 31.0 47.0 31.5 55.0 45.5

Table 2: Accuracy of large multimodal models for dual-concept abstract patterns in PUZZLEVQA.

multimodal model based on existing bench-
marks (Yue et al., 2023). We use their pub-
licly available API to query the “gpt-4-vision-
preview” version of the model.

5 Results

We report the main evaluation results on single-
concept and dual-concept puzzles in Table 1 and
Table 2 respectively. The evaluation results for
single-concept puzzles, as shown in Table 1 re-
veal notable differences in performance among the
open-source and closed-source models. GPT-4V
stands out with the highest average score of 46.4,
demonstrating superior abstract pattern reasoning
on single-concept puzzles such as numbers, colors,
and size. It particularly excels in the "Numbers"
category with a score of 67.5, far surpassing other
models, which may be due to its advantage in math
reasoning tasks (Yang et al., 2023). Claude 3 Opus
follows with an overall average of 39.4, showing its
strength in the "Shapes" category with a top score
of 44.5. The other models, including Gemini Pro
and LLaVA-13B trail behind with averages of 34.5
and 27.5 respectively, performing similarly to the
random baseline on several categories.

In the evaluation on dual-concept puzzles, as
shown in Table 2, GPT-4V stands out again with
the highest average score of 45.5. It performed
particularly well in categories such as "Colors &
Numbers" and "Colors & Size" with a score of
56.0 and 55.0 respectively. Claude 3 Opus closely
follows with an average of 43.7, showing strong
performance in "Numbers & Size" with the highest
score of 34.0. Interestingly, LLaVA-13B, despite
its lower overall average of 31.1, scores the highest
in the "Size & Shapes" category at 39.0. Gemini
Pro, on the other hand, has a more balanced perfor-
mance across categories but with a slightly lower
overall average of 30.1. Overall, we find that mod-

= Original prompt (Only question & image)
— w/ Guided perception

1 w/ Guided perception, induction

mm W/ Guided perception, induction, deduction

100

“al il 1

LLaVA-13B Gemini Pro Claude Opus

Accuracy

I
GPT-4V

Figure 4: Analysis on multimodal reasoning bottlenecks.
We progressively prompt models with ground-truth ex-
planations for visual perception, inductive reasoning,
and deductive reasoning.

els perform similarly on average for single-concept
and dual-concept patterns, which indicates that they
also struggle with puzzles that require reasoning
about multiple abstract concepts.

5.1 Analysis of Multimodal Reasoning
Bottlenecks

Given the lower performance of existing large mul-
timodal models, this raises the natural question of
why they are not able to reason well about abstract
patterns. As shown in Figure 2, the stages of solv-
ing abstract puzzles can be generally decomposed
into visual perception, inductive reasoning, and de-
ductive reasoning. Hence, we analyze their reason-
ing bottlenecks in Figure 4 by progressively provid-
ing the ground truth explanation in their prompts.
Note that we omit the final answer in the deductive
reasoning explanation to avoid making the question
trivial, and the detailed prompts can be found in
the supplementary material. Overall, we observe
that the models perform better when provided with
ground truth explanations, which suggests that they
are able to leverage the additional information.
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Figure 5: Comparison between average human perfor-
mance and large multimodal models on a subset of Puz-
ZLEVQA.

Notably, GPT-4V and Claude 3 Opus is able to
solve almost all cases when provided with both
visual perception and inductive reasoning explana-

tions. This suggests that the main bottlenecks for
GPT-4V and Claude 3 Opus are visual perception
and inductive reasoning to interpret the multimodal
information and recognize the pattern from observa-

tions. Howeyver, this is not the case for LLaVA-13B
and Gemini Pro, which demonstrate the largest
improvement when guided by visual perception,
inductive reasoning, and deductive reasoning to-
gether. This indicates that their main bottleneck is
deductive reasoning to apply general principles of
the pattern to solve specific cases. Note that these
results are intended to serve as an optimistic upper
bound of the model performance when provided
with ground truth partial information, and may not
indicate that the puzzles will become trivial.

5.2 Comparison to Human Performance

To further shed light on how the large multimodal
models compare to the reasoning ability of humans,
we conducted a human baseline study involving
23 university students*. Participants were allotted
30 minutes to solve 40 puzzle instances sampled
from our 20 puzzle categories, yielding an average
human baseline score of 91.6%, as shown in Figure
5. Note that the 20-24 age group of the participants
correspond to the formal operational stage of cog-
nitive development, as discussed in Section 2. In
contrast, the highest-performing model, GPT-4V
scored 47.5% on the same set of puzzle samples,
highlighting the specific bottlenecks causing mod-
els to fall short of human cognition: primarily in
visual perception and inductive reasoning, as dis-
cussed in Section 5.1.

“Note that the participants volunteered for the short study
and we obtained prior permission from their instructor.

50 -
2 40 -
g @/e‘e\e/@
3
8 30T
< GPT-4V
—6— Gemini Pro
20 + —4— LLaVA-13B
| | | T T

0 1 2 3 4
Number of Demonstrations

Figure 6: Analysis on the effect of few-shot demonstra-
tions on model performance for single-concept puzzles.

5.3 Effect of Few-Shot Demonstrations

While we focus on the zero-shot setting to investi-
gate how multimodal models handle novel reason-
ing challenges, we also explore how models may
use knowledge and strategies from other puzzles
to solve a new, specific puzzle. This is akin to ana-
logical reasoning, which involves using experience
from similar scenarios to make inferences about
a novel situation (Webb et al., 2022). Concretely,
we run an analysis to study the effect of in-context
learning (Brown et al., 2020) with few-shot demon-
strations of other puzzle instances when the model
is tasked to solve a specific puzzle. The demonstra-
tions consist of interleaved instances of multimodal
inputs of each puzzle image and question, as well
as the ground truth reasoning explanations. To en-
sure that the demonstrations are sufficiently diverse,
we randomly select puzzles of different categories
from the given puzzle. As shown in Figure 6, we
find a general trend of increasing performance with
respect to the number of demonstrations. Although
there are some cases of lower performance for GPT-
4V, we see that models generally achieve their best
performance with the most number of demonstra-
tions. This suggests that the models are indeed
capable of analogical reasoning, and in-context
learning may be a promising direction to enhance
the abstract reasoning abilities of multimodal mod-
els in the future.

In addition, while not the main focus of this
work, there may be other methods of improving
model performance, including model training or
different prompting methods. Hence, we have also
included preliminary studies on fine-tuning with
LLaVA-13B and comparison between chain-of-
thought and direct prompting in the supplementary
material. To consider the effect of other factors,
the supplementary material further includes an al-
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ternative setting with text-only models given the
ground-truth visual perception caption, and an anal-
ysis on the effect of evaluation dataset size.

6 Related Work

The recent surge in multimodal pretraining and
fine-tuning approaches (Liu et al., 2023; Bai et al.,
2024) has led to the creation of various bench-
marks. Benchmarks like VQA (Antol et al., 2015)
and OK-VQA (Marino et al., 2019) aim at evaluat-
ing the basic perception and reasoning abilities of
large multimodal models. Meanwhile, benchmarks
like MMMU (Yue et al., 2023) and ScienceQA
(Lu et al., 2022) offer an evaluation of LLMs’
proficiency across multiple disciplines requiring
domain-specific knowledge and multimodal under-
standing.

To investigate the fundamental challenges in
multimodal perception and reasoning, we deliber-
ately focus on the abstract domain, aiming to assess
how models emulate cognitive abilities, particu-
larly involving reasoning about abstract concepts
and relationships. However, we note that existing
benchmarks have limitations which make them less
suitable for studying large multimodal models. The
RAVEN dataset (Zhang et al., 2019) presents vi-
sual matrices with abstract patterns, challenging
models to identify patterns and complete missing
elements. However, we note that it has a specific
spatial layout and can be solved exactly with search
algorithms. Compared to CLEVR (Johnson et al.,
2017) which offers synthetic visual scenarios and
questions focusing on logic and commonsense, we
focus on exploring how large multimodal mod-
els perceive and reason about multimodal patterns,
which is more closely related to fundamental cog-
nitive processes in humans (Mattson, 2014). While
ConceptARC (Moskvichev et al., 2023) focuses
on specific spatial concepts such as inside-outside
and above-below, our dataset PUZZLEV QA stud-
ies how visual objects interact and relate based on
broader abstract concepts such as colors, shapes,
numbers, and size. Lastly, the MiniSCAN dataset
(Lake et al., 2019) presents patterns that map spe-
cial words to a sequence of color symbols, but is
limited to color-based patterns.

What distinguishes our dataset, PUZZLEVQA,
from the existing works is its systematic analysis
of multimodal reasoning through abstract patterns,
including perceptual, inductive, and deductive rea-
soning. Compared to the previous datasets, our

multimodal patterns encompass broad and funda-
mental abstract concepts such as numbers, colors,
shapes, and size. Notably, our dataset not only pro-
vides ground truth answers but also includes image
captions and pattern explanations that enable more
detailed and systematic diagnosis of the reasoning
bottlenecks for large multimodal models.

7 Conclusion

In this work, we introduced the PUZZLEVQA
dataset to investigate the reasoning challenges in
large multimodal models. Our experiments demon-
strated that, despite their sophistication, models
such as GPT-4V exhibit substantial challenges
when solving abstract pattern puzzles that require
visual perception, inductive reasoning, and deduc-
tive reasoning, falling short of cognitive processes
displayed by humans. Notably, our systematic anal-
ysis with ground truth explanations reveals that the
main reasoning bottlenecks for GPT-4V are weaker
visual perception and inductive reasoning capabili-
ties. On the other hand, we found that other large
multimodal models required more guidance with
ground truth explanations, pointing to a broader
range of reasoning challenges. Looking ahead, our
work points to exciting avenues for advancing the
reasoning abilities of large multimodal models. Fu-
ture research should focus on enhancing models’
understanding of multimodal information and re-
fining their abstract reasoning faculties, in order to
further enhance their general capabilities.
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Limitations

In this work, we mainly focus on the zero-shot
setting to investigate how large multimodal mod-
els face reasoning challenges in novel situations.
However, previous works have shown that prompt-
ing with demonstrations (Brown et al., 2020) may
improve the models ability to adapt to new tasks.
Hence, we also include experiments in the few-shot
setting in Section 5.3, which showed inconsistent
benefits, and we aim to explore this area in the
future works.
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Puzzle Multimodal Test

Category Templates  Instances
Numbers 2 200
Colors 200
Shapes 200
Size 200

Numbers & Shapes
Numbers & Colors
Numbers & Size
Shapes & Colors
Shapes & Size
Colors & Size

Total 20

200
200
200
200
200
200

2000

[\ST NS (O \S I NS 20N S (S I (O \S]

Table 3: Dataset statistics of PUZZLEVQA.

A Appendix
A.1 Multiple-Choice Format Details

To generate multiple choice options for numeric
puzzles, we use heuristics based on the range of the
number. For example, if the number is less than
10, then we sample from the range 1 to 9. If the
number if less than 100, we sample from the range
1 t0 99, and so on. For discrete option choices, we
sample from the possible objects in the image, such
as the list of predefined colors or sizes or shapes.

A.2 Dataset Details

We report the dataset statistics of PUZZLEVQA in
Table 3.

A.3 Prompt Examples

We show examples of the textual prompts in Figure
7. Note that the prompt examples correspond to the
image and puzzle in Figure 1. We use a consistent
prompt format across all abstract puzzles.

A.4 Code Implementation Example

import math
import random
from typing import List, Tuple, Dict

from PIL import Image, ImageDraw, ImageFont
from pydantic import BaseModel

class ColorHexagonPattern(BaseModel):

colors: Dict[str, str] = dict(
blue="#6fa8dc",
green="#93c47d",
yellow="#ffd966",
red="#e06666",
purple="#8e7cc3",
orange="#f6b26b",

)

image_size: int = 512

scale_factor: int = 4

path_font: str = "fonts/OpenSans-Medium.ttf"

@staticmethod
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def

def

def

get_centroid(points: List[Tuple[float, float]]l) ->
— Tuple[float, float]:

x = sum(p[@] for p in points) / len(points)

y = sum(p[1] for p in points) / len(points)

return x, y

sample_colors(self) -> Tuple[List[str], List[str]]
while True:
names = random.sample(list(self.colors), k=3)
if "orange” in names and "yellow” in names:
continue # Hard to distinguish
names = names + names
colors = [self.colors[n] for n in names]
return names, colors

make_sample (self):

# Set the size of the image

size = self.image_size * self.scale_factor

image = Image.new("RGB", size=(size, size), color="
< white”)

draw = ImageDraw.Draw(image)

center = size // 2

# Hexagon properties

length = size // 3 # Length of a side of the
< hexagon and triangles

triangle_height = math.sqrt(3) / 2 * length

# The vertices of the hexagon

hexagon = [
(center + length / 2, center - triangle_height),
(center - length / 2, center - triangle_height),
(center - length, center),
(center - length / 2, center + triangle_height),
(center + length / 2, center + triangle_height),
(center + length, center),

]

# Colors for the triangles
names, colors = self.sample_colors()

i_answer = random.randint(@, len(colors) - 1)
answer = names[i_answer]
colors[i_answer] = "#eeeeee"”" # Grey

# Draw the hexagon made of six triangles
for i in range(6):
# Coordinates of the triangle vertices
triangle = [hexagon[i], hexagon[(i + 1) % 61, (
< center, center)]
# Draw the triangle
draw.polygon(triangle, fill=colors[il)
# Draw the outline with custom width
points = [hexagon[i], hexagon[(i + 1) % 61, (
< center, center), hexagon[i]]
draw.line(points, fill="black"”, width=self.
< scale_factor * 4)
# Draw "?" on the missing answer part
if i == i_answer:
draw. text(self.get_centroid(triangle),
text="7?",
font=ImageFont. truetype(self.path_font,
<~ size=size // 10),
anchor="mm",

fill="black",
)
names[i_answer] = "?"
instances = sorted(set(n for n in names if n not in
< [answer, "?2"1))

image = image.resize((self.image_size, self.
< image_size), Image.LANCZOS)
return (
dict(
question="What is the missing color of the
< part denoted with a question mark?”
—
answer=answer,
options=sample_options(answer, options=1list(
< self.colors), k=4),
caption=f"There is a hexagon split into six
< parts with the colors {names} in an
< anti-clockwise order."”,
explanation=f"We observe that a {instances
[0]} part is opposite another {
instances[@]} part, and a {
instances[1]} part is opposite
another {instances[1]} part. Thus,
the pattern is that the colors in
opposite parts are the same."”,
deduction=f"Based on the pattern that
<> spatially opposite parts have the
<> same color, the missing color of
<> the part which is opposite a {
<> answer} part should be {answer}."”,

TLLred

image,




Textual Prompt

Question: What is the missing color of the part
denoted with a question mark?

Options: (A) purple (B) green (C) blue (D) yellow
Answer: Let's describe the image first and think
step by step.

Textual Prompt With Ground
Truth Visual Perception &
Inductive Reasoning

l/
J{

Question: There is a hexagon split into six parts
with the colors ['green’, 'orange’, '?', 'green’,
‘orange’, 'blue’] in an anti-clockwise order. We
observe that a green part is opposite another
green part, and a orange part is opposite another
orange part. Thus, the pattern is that the colors in
opposite parts are the same. What is the missing
color of the part denoted with a question mark?
Options: (A) purple (B) green (C) blue (D) yellow
Answer: Let's describe the image first and think
step by step.

Textual Prompt With Ground
Truth Visual Perception)

Question: There is a hexagon split into six parts
with the colors ['green’, 'orange’, '?', 'green’,
‘orange’, 'blue’l in an anti-clockwise order. What is
the missing color of the part denoted with a
question mark?

Options: (A) purple (B) green (C) blue (D) yellow
Answer: Let's describe the image first and think

\_ /

Qﬁep by step. /

Textual Prompt With Ground
Truth Visual Perception &
Inductive Reasoning &
Deductive Reasoning

Question: There is a hexagon split into six parts
with the colors ['green’, ‘orange’, '?', 'green’,
'orange’, 'blue] in an anti-clockwise order. We
observe that a green part is opposite another
green part, and a orange part is opposite another
orange part. Thus, the pattern is that the colors in
opposite parts are the same. What is the missing
color of the part denoted with a question mark?
Options: (A) purple (B) green (C) blue (D) yellow
Answer: Let's describe the image first and think
step by step. Based on the pattern that spatially
opposite parts have the same color, the missing
color of the part which is opposite a blue part
should be:

- /

Figure 7: Textual prompt examples for eliciting reasoning steps from large multimodal models.

A.5 Dataset Size Analysis

Regarding the dataset size and diversity, we set the
number of generated instances for each puzzle to
100, to reduce experimental variance and maintain
a reasonable evaluation cost. Hence, the current
dataset size is 2000 samples (20 templates with
100 instances each). As there are two templates
per puzzle category, this means there are 200 test
samples for each puzzle category. To observe the
impact of the number of test samples, we evalu-
ate the models on three different data settings as
shown in Table 4: 50, 100, and 200 test samples in
per puzzle, which correspond to 1000, 2000, and
4000 total samples respectively. In general, we
observe some variations in the average score for
single-concept puzzles, but it does not significantly
affect the comparison of performance between dif-
ferent models. Hence, we believe that the chosen
dataset size is large enough to be relatively robust
to experimental variance. To investigate the multi-

1000 2000 4000

292 345 322
48.8 464 484

Gemini Pro Avg. Score
GPT-4V Avg. Score

Table 4: Analysis of model performance with respect to
number of testing data samples.

modal reasoning capabilities across diverse abstract
scenarios, we construct the puzzles based on four
fundamental concepts: numbers, colors, shapes,
and size. Furthermore, to evaluate how well the
models can relate to multiple concepts, we design
both single-concept and dual-concept puzzles, and
the taxonomy of diverse puzzles is shown in Figure
3.
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Numbers Colors Size Shapes  Average

LLaVA-13B 25.5 290 37.0 390 32.6(+5.1)
Gemini Pro 16.0 285 350 49.0 32.1(-24)
GPT-4V 72.5 26.5 30.0 455 43.6 (-2.8)

Table 5: Results of direct prompting and change in
average performance compared to CoT prompting.

A.6 Comparison of CoT and Direct
Prompting

To investigate the effect of direct prompting with-
out chain of thought, we evaluated the models on
our main setting as shown in Table 1 and 2. The
results are shown in Table 5 for single-concept
puzzles and indicate that direct prompting is less
effective for Gemini Pro and GPT-4V models, com-
pared to CoT prompting in Table 1. This may be
due to differences in training data and alignment
methods between the models.

B Qualitative Analysis

To illustrate the reasoning bottlenecks of GPT-4V,
we include two case study samples in Figure 8. For
instance, the sample on the left is from the size &
shapes category of puzzles, for which the model
under-performed the random baseline. For visual
perception, we observe that the model presents se-
vere limitations, as it is unable to recognize simple
polygon shapes and hallucinated additional shapes
which are not in the image. Regarding inductive
reasoning, we observe that the model was able to
recognize the sizes of the different objects, but did
not recognize the correct pattern that the circles
directly adjacent to the center should be small in
size. Hence, we believe that there is ample area for
improvement for abstract reasoning ability in large
multimodal models.
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Options: (A) large (B) small (C) medium
Answer: Let's describe the image first and
think step by step.

O O ? Ground Truth: (A) large

GPT-4V: The image shows a sequence of shapes, each row containing
three shapes. The first row has a pentagon, hexagon, and heptagon (5,
6, and 7 sides respectively). The second row has triangles of increasing
size. Following the pattern, the shapes increase in the number of sides
and size from left to right. The missing shape in the third row should
logically be an octagon (8 sides), following the pattern of increasing
sides. Since the sizes also increase from left to right, the missing
octagon should be larger than the hexagon but smaller than the
heptagon. Therefore, the size of the missing part denoted by the
question mark is: (C) medium

Question: What is the size of the missing
O O part denoted by a question mark?
A AN

Question: What is the size of the missing part
Q o Q denoted with a question mark?
Options: (A) small (B) large (C) medium
? O o Answer: Let's describe the image first and think

step by step.
O -0

Ground Truth: (A) small
GPT-4V: The image shows a pattern of circles arranged in a 3x3 grid with one
circle missing, indicated by a question mark. The circles vary in size, with the top
row having a large circle on the left, a small circle in the middle, and a large circle
on the right. The middle row has a missing circle on the left, a medium-sized
circle in the middle, and a small circle on the right. The bottom row has a large
circle on the left, a small circle in the middle, and a large circle on the right. To
determine the size of the missing circle, we can observe the pattern. It seems
that each row and column contains one circle of each size: small, medium, and
large. Since the middle row already has a medium and small circle, the missing
circle (denoted by the question mark) should be a large one to complete the

pattern. Therefore, the size of the missing part denoted with a question mark is:
(A) small (B) large (C) medium The correct answer is: (B) large

Figure 8: Case study on two sample predictions from GPT-4V. The example on the left shows visual perception
failures and the example on the right shows the faulty inductive reasoning of the model which proposed a spurious

pattern in the image.
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