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Abstract

Leveraging external knowledge is crucial for
achieving high performance in knowledge-
intensive tasks, such as question answer-
ing. The retrieve-and-read approach is widely
adopted for integrating external knowledge
into a language model. However, this ap-
proach suffers from increased computational
cost and latency due to the long context length,
which grows proportionally with the number
of retrieved knowledge. Furthermore, exist-
ing retrieval-augmented models typically re-
trieve information from a single type of knowl-
edge source, limiting their scalability to diverse
knowledge sources with varying structures. In
this work, we introduce an efficient memory-
augmented transformer, called MATTER, de-
signed to retrieve relevant knowledge from mul-
tiple heterogeneous knowledge sources. Specif-
ically, our model retrieves and reads from both
unstructured sources (paragraphs) and semi-
structured sources (QA pairs) in the form of
fixed-length neural memories. We demon-
strate that our model outperforms existing ef-
ficient retrieval-augmented models on popu-
lar QA benchmarks in terms of both accuracy
and speed. Furthermore, MATTER achieves
competitive results compared to conventional
retrieve-and-read models while having 100x
throughput during inference.

1 Introduction

Retrieval-augmented models have enhanced per-
formance in various natural language processing
tasks, such as open-domain question answering
(Izacard et al., 2020; Lewis et al., 2020b). These
models leverage a two-step process: an initial re-
trieval phase to gather relevant information from
a knowledge source (retrieve), followed by a read-
ing or comprehension phase to generate responses
based on the retrieved context and input (read).

∗This work was done while Dongkyu was a summer intern
at Amazon AGI

However, the strong performance of retrieval-
augmented QA models is offset by a substantial
drawback of high inference latency (Wu et al.,
2022; Chen et al., 2023). (Wu et al., 2022; Izacard
et al., 2020) demonstrate that even with relatively
small reader models, such as T5-base, retrieve-
and-read QA models struggle to process more than
10 questions per second. Recent studies attribute
the problem to the increase in context length for a
reader to condition on (de Jong et al., 2023; Hof-
stätter et al., 2023; Wu et al., 2022). For instance,
the Fusion-in-Decoder model (Izacard et al., 2020)
retrieves 100 documents, each comprising of 250
tokens, resulting in the reader model attending to
25,000 tokens during answer generation; this poses
a significant bottleneck during inference.

To address this limitation, (Wu et al., 2022)
transforms the retrieved texts as neural memories.
A neural memory is an efficient way of storing
knowledge with a fixed length latent representa-
tion (Khandelwal et al., 2020; Cai et al., 2021).
As a result, memory-augmented QA models gen-
erate an answer conditioned on retrieved neural
memories, rather than retrieved raw text. This
approach shortens the context length, enabling
memory-augmented models to respond to several
hundred questions per second (Wu et al., 2022).
While this improves the throughput compared to
conventional retrieval-augmented models, there is
still room for improvement in performance.

Another critical drawback of existing retrieval-
augmented models, both conventional and memory-
based approaches, is their narrow focus on a sin-
gle type of knowledge source, either QA pairs or
Wikipedia articles (Lewis et al., 2021; Wu et al.,
2022; Chen et al., 2023). External knowledge
sources come in various formats, such as unstruc-
tured, semi-structured, and structured, each with
its own merits and use cases. For instance, unstruc-
tured data, like a Wikipedia paragraph, is easily
accessible and often covers a broad range of topics.
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However, it may suffer from noise and a lack of
precision. In contrast, semi-structured knowledge,
such as a question-answer pair (QA), is concise
and clear but can be challenging to gather. Pre-
vious retrieve-and-read approaches have mainly
utilized a single type of knowledge source, and this
limited focus results in reduced scope and coverage
of knowledge. A potential approach to overcome
this limitation is by synchronizing the knowledge
structure, such as converting a Wikipedia paragraph
into QA pairs using a QA generation pipeline, as
demonstrated in (Chen et al., 2023). However, this
format transformation process comes with signif-
icant computational cost and the potential risk of
introducing noise or corrupting knowledge during
the transformation.

To address these limitations, we introduce MAT-
TER, a novel memory-augmented QA model de-
signed to retrieve information from diverse knowl-
edge sources. Unlike existing retrieval models,
MATTER retrieves from multiple heterogeneous
knowledge sources. This allows our model to main-
tain a comprehensive and type-agnostic knowledge
index, enabling retrieval and conditioning on a
broader range of knowledge snippets in response
to questions. Moreover, our model cross-encodes
a given question and retrieved neural memories,
ensuring a comprehensive understanding of input
and context. With this efficient cross-encoding ca-
pability and access to heterogeneous knowledge
sources, our model significantly outperforms ex-
isting efficient QA models in both zero-shot and
fine-tuned settings. Furthermore, it achieves a re-
markable 100x throughput improvement over raw
text-augmented QA models like FiD (Izacard et al.,
2020), while maintaining competitive performance.
Overall, our approach strikes a balance between
speed and performance demonstrated over popular
QA benchmarks and supported by in-depth analy-
sis.

2 Related Work

Question answering is a central task in the NLP
community, and various approaches have emerged
to address it, falling into three main categories.
Firstly, closed-book approaches like T5 (Raffel
et al., 2020) and BART (Lewis et al., 2020a) have
gained prominence relying solely on the input ques-
tion and parametric knowledge to generate an an-
swer. These QA models remain suboptimal as they
rely exclusively on parametric knowledge (Roberts

et al., 2020).
The second category comprises retriever-only

models, where a retriever fetches a relevant QA pair
based on the input question, often with a reranker
to enhance QA performance (Lewis et al., 2021;
Karpukhin et al., 2020; Seonwoo et al., 2022). This
approach restricts the knowledge source to QA
pairs and relies on strong overlap between the can-
didate question and QA pairs in the index.

The third category is the retrieve-and-read
pipeline models, which have become the standard
for building QA models with strong performance
(Izacard et al., 2020; Yu et al., 2022; Lewis et al.,
2020b). This method involves a retriever fetch-
ing pertinent knowledge, followed by a separate
reader model that generates answers based on the
acquired context. However, it’s worth noting that
while these retrieve-and-read models excel in per-
formance and combat hallucination, they are no-
torious for their slow inference speed (Hofstätter
et al., 2023; de Jong et al., 2023; Wu et al., 2022).
To address this issue, various strategies have been
proposed, such as (Guan et al., 2021) and (Wu
et al., 2020), that dynamically determine which
retriever results to read, aiming to reduce compu-
tational overhead during inference. Additionally,
(de Jong et al., 2023) eliminates cross-attention
from most decoder layers and incorporates multi-
query attention. EMAT (Wu et al., 2022) takes a
novel approach by having the retriever fetch neu-
ral memories, significantly accelerating the answer
generation process.

3 Approach

3.1 Task Definition

Let D be a QA dataset consisting of n question-
answer pairs (D = {(q, a)ni=1}), where q and a
denote a question and an answer respectively. In
this work, we are interested in open-domain ques-
tion answering, in which a model has access to a
single or multiple knowledge sources. In this set-
ting, a model conditions on both an input question
and additional contexts retrieved from a knowledge
source when generating an answer.

P (a|q, C; θ), where C = top-k(P (·|q;K;ϕ))

θ and ϕ denote reader and retriever1 parameters
respectively, and C is the k retrieved knowledge
records from a knowledge source, K.

1this work assumes a dense retriever.
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Figure 1: The proposed model with memories retrieved from two different types of knowledge sources: semi-
structured (QA) and unstructured (paragraph). In the figure, a memory is represented with two length vectors, and k
is set to 4; the model is retrieving a total of 4 memories for inference, 2 from QA knowledge source and 2 from
paragraph knowledge source.

3.2 Overview
Our work sheds light on two aspects in open-
domain QA: inference latency and extension to
multiple knowledge sources with different types.
Our model achieves fast inference by incorporat-
ing neural memory into the framework. Unlike
previous retrieve-and-read approaches, our model
does not read retrieved knowledge represented in
text. Instead, it conditions on the neural memory
representations of the knowledge, retrieved using
an off-the-shelf retriever. Most importantly, our
model can incorporate memories from different
types of knowledge sources, enriching context in-
formation and lifting the restriction on the format
of knowledge. Our model is a retrieve-and-read
approach with memory, and thus we discuss the
reader, retriever, and neural memory in the follow-
ing sections.

3.3 Reader
We utilize the T5-base (Raffel et al., 2020) encoder-
decoder model for a reader.

3.3.1 Encoder
Encoding a Question A question is fed to the
encoder as in standard practice, yet the core differ-
ence is that the question representations are mapped
with only the first j layers of the encoder.

Hq = ENC1:j(tq(q); θenc) (1)

tq is a template for formatting an input ques-
tion, i.e. “Question: <q> Answer:”, which is fur-

ther described in Appendix E. ENC1:j indicates
the first j encoder layers. Hq indicates the j-
th layer question representations with length |q|,
Hq = {hq1, hq2, · · · , hq|q|}, where |q| is equivalent
to the length of the question.

Cross Encoding Question and Memories Af-
ter obtaining the question representation and top-
k memories with a retriever, the encoder cross-
encodes the latent representations in the remaining
encoder layers to create H̃ .

H̃ = ENCj+1:L([M : Hq]; θenc),

where M = [m∗
1 : m

∗
2 : · · · : m∗

k]
(2)

[:] indicates concatenation and m∗
i indicates a neu-

ral memory of varying knowledge formats. We
concatenate the retrieved memories M and the la-
tent question representation Hq on the j-th layer,
and the remaining encoder layers cross-encode the
representations. H̃ is the final encoder representa-
tions mapped by the remaining layers, from j + 1
to L encoder layers.

3.3.2 Decoder
The cross-encoded representations hold both a
question and retrieved context information. The de-
coder then creates a prediction based on the fused
representations in an auto-regressive fashion. Sup-
pose ât is an answer prediction at time step t, then

ât = DEC(H̃, â<t; θdec) (3)
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where DEC is a decoder parameterized with learn-
able parameters θdec.

3.4 Neural Memory
Our system uses a neural representation of knowl-
edge, and thus we utilize a model to map raw text
knowledge into latent representations. To be spe-
cific, we utilize the same encoder that is used to
encode questions, with the only difference being
that a memory is represented with only a fixed
length of latent vectors.

m∗ = Hc∗
1:l, where Hc∗ = ENC1:j(t∗(c∗); θenc)

Here c∗ denotes knowledge with any type of struc-
ture, which is formatted with a knowledge-type-
specific template. The first j layers of the encoder
are utilized to obtain latent representations of the
knowledge, denoted as Hc∗ . Then, the first l vec-
tors of the latent representation are taken as the
memory representation of the knowledge. There-
fore, knowledge is represented with only l latent
vectors, reducing the sequence length.

Distinct from existing memory-based ap-
proaches, such as EMAT (Wu et al., 2022), our
framework does not take structure of knowledge
into account when mapping to a memory; for in-
stance, Wu et al. (2022) build question and an-
swer memory separately, yet we simply view a QA
pair as a single sequence and map it as a single
memory. This approach lifts restrictions on the for-
mat of knowledge that can be stored as memories.
Therefore, our framework can maintain multiple
and varying types of knowledge sources, which is
hardly feasible with existing methods.

3.5 Retriever
Given a question, a retriever maps the question to a
single latent representation, and the latent vector is
used to search for relevant knowledge in a knowl-
edge pool, stored as (key, value) pairs. Specifi-
cally, the search is done in two steps as in Figure
1: 1) find the index of relevant knowledge snippets
through similarity matching of the given question
and keys of the knowledge pool with maximum
inner product search (MIPS), and 2) retrieve corre-
sponding neural memory knowledge of the top-k in-
dices and pass on the memories for cross-encoding
as in Equation 2. The typical item being retrieved
in a text-augmented QA model is raw text knowl-
edge (Izacard et al., 2020; Yu et al., 2022; Lewis
et al., 2020b; Chen et al., 2023), whereas our re-
triever fetches knowledge in the form of a neural

memory. Furthermore, a distinction from existing
memory-based methods (Wu et al., 2022; Chen
et al., 2023) is that our framework utilizes an off-
the-shelf retriever, thereby eliminating retriever
training which leads to several benefits such as ex-
tensiblity which we discuss later in detail. Lastly
and most importantly, our retriever retrieves from
multiple heterogeneous knowledge sources, one
sharp contrast from existing QA models.

3.5.1 Training
Memory Learning Loss Our model conditions
on retrieved memories during inference for effi-
ciency, and hence, a memory representation is ex-
pected to hold salient encoded information of the
retrieved knowledge snippet. Therefore, we intro-
duce an auto-encoding loss, L∗

ae.

L∗
ae = − logP (c∗|m∗; θ) (4)

θ is a set of learnable parameters of the reader
model. The objective is to train the model to recon-
struct the original knowledge c∗ from its memory
representation m∗.

Memory-Augmented Generation Loss The
model is trained to utilize retrieved memories when
generating an answer, and thus we define memory-
augmented generation loss, Lg, as follows.

Lg = − logP (a|q,M ; θ) (5)

M is a set of memories retrieved.

MATTER-QA and MATTER-QA/PRG The
proposed framework leverages multiple hetero-
geneous knowledge sources with varying struc-
tures. As a result, we propose two model vari-
ants: 1) MATTER-QA, the proposed model with
QA knowledge source similar to existing memory-
based models, and 2) MATTER-QA/PRG, the
proposed QA model with multiple heterogeneous
knowledge sources, namely QA pairs (QA) and
Wikipedia paragraphs (PRG).

The loss for MATTER-QA is as follows:

L(θ) = λgLg + λaeLqa
ae (6)

where λi is a hyper-parameter to balance the two
loss components.

For MATTER-QA/PRG, an extra loss term is
added due to the additional knowledge source.

L(θ) = λgLg + λqa
aeLqa

ae + λprg
ae Lprg

ae (7)

Auto-encoding loss on paragraphs, denoted as Lprg
ae ,

is added to Equation 6 to handle the additional
unstructured knowledge source.
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3.6 Discussion on Model Framework
Shared Encoder Utilizing separate encoders for
encoding questions and knowledge is a viable op-
tion, yet cross-encoding is the core deciding factor
why a single encoder is used for both tasks. We
take the nature of self-attention into consideration;
self-attention is known to attend to similar repre-
sentations with the use of dot-product. By sharing
parameters of the encoder, the latent question rep-
resentations and related knowledge in neural mem-
ories are likely to share similar representations, and
hence they are likely to attend to each other dur-
ing cross-encoding. Empirical results show this to
be true as a single encoder approach outperforms
separate encoder approach by a meaningful margin.

Attention Complexity With the neural memory
module, attention complexity significantly drops,
leading to a significant boost in speed and less GPU
memory2. Numerous studies have found that a de-
coder takes up majority of time during inference,
specifically due to cross-attention (Izacard et al.,
2020; Hofstätter et al., 2023); a decoder attends to
encoder representations at every time step and at
every decoder layer. Our approach greatly reduces
the length of encoder representations with the intro-
duction of a memory module. For instance, encoder
representations with the popular FiD (Izacard et al.,
2020) model have the length of O(k|c|), where k is
the number of retrievals and |c| is a length of knowl-
edge. FiD uses 100 Wikipedia documents, with
each document consisting of 250 tokens, resulting
in an encoded representation of length 25,000. On
the other hand, with the same k and memory size
set to 2, our approach results in 200 latent vectors
in our encoded representation, which is only 0.8%
of tokens used by FiD. The cross-attention has a
linear complexity, and thus the time complexity of
the proposed model shrinks down proportional to
the reduced amount. Lastly, our approach utilizes
less GPU memory, as fewer latent vectors from the
encoder are stored for computation. The reduced
time and space complexity improve the inference
speed and GPU usage, respectively.

Benefits of the Off-the-Shelf Retrieval There
are several benefits that come from the introduc-
tion of an off-the-shelf retriever, of which, the
first is faster training. Recent retriever augmented
QA models (Wu et al., 2022; Chen et al., 2023)
jointly train retriever and reader models, which re-

2or CPU memory

quire considerable amount of computation and time.
Specifically, as training progresses, the knowledge
index as a whole is periodically refreshed with new
vector representations as the retriever is updated
with hard negative sampling. A large knowledge
base, such as PAQ (Lewis et al., 2021), includes
millions of knowledge records. Hence, updating
such a large search index introduces significant
slowdown in training time. With an off-the-shelf
retriever, retriever training and index updates are
eliminated, reducing training time and computation
cost noticeably.

Furthermore, a plug-and-play approach becomes
feasible. With an off-the-shelf retriever, one can
switch out different retrievers to trade-off speed and
performance based on the use-case at hand. For
instance, we show in later sections that our reader
model can be combined with a smaller retriever,
doubling inference throughput for a small drop in
performance.

A Single Retrieval with Multiple Heterogeneous
Knowledge Sources As this work deals with
multiple knowledge sources with varying struc-
tures, the simplest way is to utilize multiple re-
trievers, one for each knowledge source. However,
this approach costs time and resources; multiple
retrievers map a question to its own space, and each
retriever retrieves from its designated knowledge
pool. In this work, we mitigate the limitation and
utilize a single off-the-shelf retriever model, hence
reducing the cost. The intuition is from the recent
finding that a well-trained retriever can be used as
an universal retriever for varying structures (Baek
et al., 2023). This aspect of ours has largely re-
duced the inference time and computation cost that
otherwise would have been required to maintain
multiple retrievers.

4 Experiment

4.1 Model

MATTER-QA and MATTER-QA/PRG are based
on the T5-base model (Raffel et al., 2020). Follow-
ing prior works (Chen et al., 2023; Wu et al., 2022),
we train them in two phases: pre-fine-tuning and
fine-tuning. During pre-fine-tuning, our models are
trained on the PAQ-L1 dataset (Lewis et al., 2021),
which is a subset of the PAQ dataset consisting of
14.1 million QA pairs. After pre-fine-tuning, the
models are further trained on the corresponding
downstream dataset. Both memory learning loss

16114



and memory-augmented generation loss are used
in both pre-fine-tuning and fine-tuning. Model and
training hyperparameters are reported in Appendix
A for reproducibility.

4.2 Knowledge Source

For our experiment, we employ two knowledge
sources:

Semi-Structured Knowledge (QA Pairs) We
use the PAQ dataset, which contains 64.9 million
question-and-answer pairs (Lewis et al., 2021).

Unstructured Knowledge (Plain Text) We
leverage Wikipedia paragraphs, the same set used
in previous works3 (Izacard et al., 2020; Karpukhin
et al., 2020; de Jong et al., 2023). This unstructured
knowledge pool comprises 21 million paragraphs,
with details provided in Appendix D.

4.3 Dataset

We test the proposed framework on the three
popular open-domain QA datasets, namely Triv-
iaQA (Joshi et al., 2017), Natural Questions
(Kwiatkowski et al., 2019), and Web Questions
(Berant et al., 2013).

4.4 Baselines & Metrics

We compare our proposed approach with four cate-
gories of QA models: closed-book, retriever-only,
retrieve-and-read, and memory-based QA mod-
els. In the closed-book category, we utilize vari-
ants of the T5 model. For retriever-only models,
we compare with RePAQ models of varying sizes
(Lewis et al., 2021) and a retriever coupled with a
a reranker. In the retrieve-and-read category, we
consider RAG (Lewis et al., 2020b), FiD (Izac-
ard et al., 2020), and QAMAT (Chen et al., 2023),
which are arguably the most popular approaches.
Finally, for models with neural memory, we com-
pare with EMAT (Wu et al., 2022). For models
that require index search, we have used faiss li-
brary with HNSW index as in (Lewis et al., 2021).
We have run all of the models on a single V100
machine.

To measure QA performance, we report Exact
Match (EM). We also report the number of ques-
tions processed per second to measure inference
speed, which helps assess throughput. For models
that retrieve from a knowledge source, we provide

3https://dl.fbaipublicfiles.com/dpr/wikipedia_
split/psgs_w100.tsv.gz

details about the type of knowledge source and the
number of retrievals (k). Additionally, we report
model parameter count and CPU RAM usage for
memory-based approaches.

4.5 Experiment Result

We evaluate our approach in two settings: zero-
shot (after pre-fine-tuning) and fine-tuned (after
fine-tuning) stages. The results are shown in Ta-
ble 1. In the zero-shot setting, both MATTER-QA
and MATTER-QA/PRG significantly outperform
QAMAT and EMAT across all datasets. For exam-
ple, the MATTER-QA model achieves 47.5 EM on
TQA in the zero-shot setting, while EMAT scores
32.4 and QAMAT scores 34.1. The performance
gap becomes more pronounced with the addition of
retrieval from unstructured knowledge pool. When
the proposed model conditions on both retrieved
QA pairs and Wikipedia paragraphs, the EM score
reaches 51.6 on TQA dataset. Both of the proposed
models outperform previous approaches by more
than 10 EM points. Furthermore, it is worth noting
that our approach in the zero-shot setting achieves
stronger performance than the fine-tuned baselines
of EMAT and QAMAT on TQA and NQ datasets.

In the fine-tuned setting, MATTER achieves
competitive performance. The closed-book QA
models have low latency but exhibit inferior QA
performance. Retrieval-only models demonstrate
fast inference speed and competitive EM scores,
and coupling them with a reranker can boost per-
formance at the expense of inference speed, pre-
senting a strong baseline. FiD and RAG models
exhibit the strongest QA performance across all the
datasets; nevertheless, their inference speed is by
far the slowest among all the baselines. EMAT, a
memory-based approach, overcomes the high la-
tency problem, but the EM scores still have a sig-
nificant gap compared to those of the retrieve-and-
read models. Our models strike a good balance in
terms of QA performance and speed trade-off. For
example, MATTER-QA and MATTER-QA/PRG
achieve EM scores of 51.2 and 56.0 respectively
on TQA dataset, which are comparable or even
better than the scores of RAG model, while being
at least 10x faster. Furthermore, MATTER-QA
outperforms existing efficient approaches, EMAT
and RePAQ, across all datasets in accuracy, while
achieving competitive throughput of 284 questions
per second. With access to multiple heterogeneous
knowledge sources, MATTER-QA/PRG model out-
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Setting Type Model
Knowledge Source Benchmark Speed # Parameter CPU RAM
k Type TQA NQ WQ Q/s Retrieval Reader Memory

Zero-shot

Retrieve-Read QAMAT♣ 32 QA 34.1 37.9 25.9 11∗ 110M 220M NA

Memory

EMAT 10 QA 32.4 30.6 25.6 190 Max 110M 220M 376GB
MATTER-QA (Fast) 10 QA 45.9 43.4 28.0 463 12M 220M 188GB

MATTER-QA 10 QA 47.5 44.4 29.7 284 110M 220M 188GB
MATTER-QA/PRG 10 QA/PRG 51.6 45.8 29.9 176 110M 220M 334GB

Fine-tuned

Closed-book

T5-base NA NA 23.8 25.9 27.9 807 NA 220M NA
T5-large NA NA 28.7 28.5 30.6 289 NA 770M NA
T5-3B NA NA 33.6 30.4 33.6 86 NA 3B NA
T5-11B NA NA 42.3 32.6 37.2 – NA 11B NA

Retrieve

RePAQ-256 – QA 40.2 41.4 – 1135 12M NA NA
RePAQ-Base – QA 39.7 40.9 – 418 12M NA NA

RePAQ-Xlarge – QA 41.3 41.7 – 156 60M NA NA
RePAQ+Reranker 50 QA 51.2 47.4 – 50 24M NA NA

Retrieve-Read

RAG 10 PRG 56.8 44.5 45.2 22 110M 400M NA
FiD-Base 100 PRG 65 48.2 32.4 2.2 110M 220M NA
QAMAT 32 QA 48 44.7 39.4 11∗ 110M 220M NA

QAMAT♣ 32 QA 53.2 44.5 43 11∗ 110M 220M NA

Memory

EMAT 10 QA 44.4 44.3 36.7 190 Max 110M 220M 376GB
MATTER-QA (Fast) 10 QA 49.3 43.6 38.0 463 12M 220M 188GB

MATTER-QA 10 QA 51.2 44.8 39.2 284 110M 220M 188GB
MATTER-QA/PRG 10 QA/PRG 56.0 46.5 40.6 176 110M 220M 334GB

Table 1: Exact match (EM) score on the three QA benchmarks. QAMAT♣ indicates that the model uses an
additional QA set, additional to PAQ dataset. * indicates that QAMAT’s inference speed is computed with relative
speed compared to that of FiD as reported in the original paper.

performs MATTER-QA in terms of performance
while maintaining a slightly slower, yet competitive
throughput.

Our proposed approach offers the added benefit
of utilizing an off-the-shelf retriever. Our reader
can be easily coupled with a smaller retriever in a
plug-and-play fashion, denoted as MATTER-QA
(Fast) in Table 1. The fast version can process 463
questions per second, which is approximately twice
as fast as the MATTER-QA model, albeit with a
small drop in performance. This clearly demon-
strates the flexibility to use different retrievers for
varying needs, highlighting one of the core advan-
tages of having an off-the-shelf retriever. Detailed
inference speed metrics for each module are pro-
vided in Appendix C.

5 Analysis

Retrieval vs Reader in Model Performance
With the superior results achieved by our proposed
model on various QA benchmarks, one natural
question arises: are the gains in EM score solely at-
tributable to using an off-the-shelf retriever? In fact,
this is not the case; our strong reader models bring
such superior EM scores. For instance, the EMAT
retriever achieves an EM score of 43.3 on the TQA
dataset, while the EM score with the full EMAT
model is 44.4, a gain of 1.1 points through reading
the retrieved memories. On the other hand, a sig-

Model
TQA NQ

Ret Ret+Read ∆ (↑) Ret Ret+Read ∆ (↑)
EMAT 43.3 44.4 +1.1 42.2 44.3 +2.1
Ours 40.0 56.0 +16.0 42.5 46.5 +4.0

Table 2: Comparison between retriever and retrieve-and-
read in EM score on TQA and NQ dataset. ∆ denotes
the difference in EM score between the retriever and
full model (retrieve-and-read).

nificant improvement is observed with our reader
model: our off-the-shelf retriever model achieves
an EM score of 40.0, and when coupled with a
reader model that cross-encodes retrieved memo-
ries, we achieve a score of 56.0, marking an abso-
lute EM score improvement of 16.0 points. While
our retriever is inferior to that of EMAT, the EM
score of the full retrieve-read model surpasses that
of EMAT by a significant margin. This clearly
demonstrates that the retriever is not the core con-
tributor to the performance gains; rather, it is the
proposed memory-augmented model that brings a
substantial improvement.

Scalability to Varying k In this section, we an-
alyze the scalability of model performance with
varying values of k. As shown in Table 3, in the
zero-shot setting, we observe a meaningful im-
provement by increasing k beyond 10, even though
our models are trained with k set to 10. For exam-
ple, the EM score increases by 0.9 for the QA-only
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Model
Knowledge TriviaQA

k QA PRG Zero-Shot fine-tuned
QA 10 10 ✗ 47.5 51.2

QA/PRG 10 5 5 51.6 (+4.1) 56.0 (+4.8)
QA 20 20 ✗ 48.6 53.1

QA/PRG 20 10 10 52.6 (+4.0) 58.2 (+5.1)
QA 30 30 ✗ 48.2 53.4

QA/PRG 30 15 15 52.3 (+4.1) 58.7 (+5.3)
QA/PRG 10 0 10 38.6 49.3
QA/PRG 10 3 7 51.2 56.2
QA/PRG 10 7 3 51.4 55.5
QA/PRG 10 10 0 47.7 50.9

Table 3: EM scores on TriviaQA dataset with varying k
and varying proportions. The numbers in the parenthesis
are the absolute EM gain by the model with both semi-
structured and unstructured knowledge over that of semi-
structured only.

model and 1.9 for the QA/PRG model when k is
increased to 20. However, we find that in zero-shot
settings, increasing k does not always result in bet-
ter performance, as evident in the scores when k
is set to 30. After fine-tuning, on the other hand, a
larger k leads to better QA performance, with the
performance linearly increasing with increasing
k. This demonstrates that our models are capable
of answering questions with varying number of re-
trieved contexts, both in zero-shot settings and after
fine-tuning.

Furthermore, we conducted experiments with
various combinations of heterogeneous knowledge
sources. Our model, MATTER-QA/PRG, has the
flexibility to condition on different proportions of
these sources. Notably, we observed that our model
achieves its highest performance when leveraging
knowledge retrieved from both sources simultane-
ously. While using only a single type of knowledge
still outperforms several baselines, it’s worth not-
ing that combining information from both sources
yields significant improvements over strong base-
lines, reaching an impressive score of approxi-
mately 56 in TriviaQA. This demonstrates the ad-
vantage of integrating multiple knowledge sources
to enrich the contextual information available to
our model.

A Closer View on Model Conditioning on Het-
erogeneous Knowledge Base We examine what
the model focuses on in the retrieved context when
generating an answer. In detail, we naively assume
that our model has conditioned on specific knowl-
edge when the predicted answer is present within
that knowledge. In Table 4, we observe that our

QA QA/PRG
% EM d̄(q, R̃) % EM d̄(q, R̃)

â ∈ Q̃ 4.6% 40.4 – 0.7% 32.4 –
â ∈ Ã 62.4% 64.8 – 13.4% 51.7 –
â ∈ P̃ - - - 14.3% 45.7 –
â ̸∈ R̃ 23.1% 7.4 – 18.9% 4.1 –
a ∈ R̃ 52.3% 84.1 0.37 75.1% 74.0 0.36
a ̸∈ R̃ 47.7% 15.2 0.51 24.9% 1.9 0.52

Table 4: Q̃, Ã, P̃ , and R̃ indicate retrieved questions, an-
swers, paragraphs, and the union of retrieved knowledge
respectively. In this table, ∈ indicates that “is only in”.
d̄(q, R̃) describes the average distance between question
and retrieved knowledge, hence being inverse similarity.

models employ both retrieved QA pairs and para-
graphs during inference. MATTER-QA utilizes
both questions and answers in making predictions,
while MATTER-QA/PRG equally uses questions,
answers, and paragraphs.

An interesting finding is that our models per-
form exceedingly well when relevant knowledge
is provided in the context, i.e., when the answer is
present in the retrieved context. When the ground-
truth answer is present in the retriever results, our
QA model achieves an impressive EM score of
84.7, while our QA/PRG model reaches 74.0. Ad-
ditionally, our model demonstrates its ability to
selectively condition on the retrieved knowledge;
the proposed models condition on the retrieved
knowledge when the similarity of the retriever re-
sults is high. On the other hand, when the retrieved
results have low similarity scores to the input ques-
tion, our model still generates a correct answer
that is not present in the retrieved results 15%
of the time. These key findings reveal that our
memory-augmented model can selectively and ef-
fectively extract answers from the retrieved knowl-
edge. Moreover, this suggests that our model’s
performance can be further enhanced when paired
with a superior retriever.

6 Conclusion

In this paper, we propose an efficient memory-
augmented question answering model with multi-
ple heterogeneous knowledge sources. The pro-
posed QA framework is able to retrieve from
and condition on retrieved knowledge from multi-
ple sources with varying formats and achieves re-
markable performance in popular QA benchmarks,
while having high throughput.
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Limitations

In this paper, we experiment with two types
of knowledge sources, unstructured and semi-
structured knowledge sources. Our model can be
extended to retrieve from structured knowledge
sources, namely knowledge graphs. As knowledge
graphs are also a viable source of knowledge, we
leave it as a future work to incorporate such knowl-
edge source to enrich the knowledge pool.

Ethics Statement

Most question answering models, including the pro-
posed model, may cause hallucination potentially
leading to misinformation. Preventing such issues
calls for careful attention and one possible mitiga-
tion is to adopt a thresholding approach. In this
paper, we demonstrate that an appropriate retriever
result is likely to lead to a correct and hallucination-
free answer. Combining this insight with the find-
ing that retriever models are well-calibrated (Lewis
et al., 2021), the confidence score (similarity score)
of a retriever can be used as a meaningful proxy for
evaluating retrieved results. Hence, one can choose
to generate an answer from the reader only if the
similarity scores from the retrieval model is above a
certain threshold reducing the risk of hallucination.
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A Implementation Details

We set the auto-encoding and memory-augmented
generation balancing parameter to 0.3 and 1.0 re-
spectively for both pre-fine-tuning and fine-tuning.
We set k to 10 for pre-fine-tuning, 10 QA pairs for
MATTER-QA and 5 QA pairs and 5 paragraphs
for MATTER-QA/PRG. The learning rates for pre-
fine-tuning and fine-tuning are set to 0.0005 and
0.0001 respectively, and we use the linear learn-
ing rate decay scheme. We train 10 epochs for
pre-fine-tuning and 30 epochs for fine-tuning on
TriviaQA and NQ. For WebQuestions, we finetune
the models for 50 epochs.

Our models are initialized with t5-base model.
For model-specific hyperparameters, j is set to 8,
indicating we use the first 8 encoder layers for both
question encoding and memory building. The rest
of the encoder layers, 4 encoder layers, are used for
cross-encoding memories and a question. Memory
size, denoted as l, is configured to 2.

For the off-the-shelf retriever, mpnet-base
model (Song et al., 2020) with mean pooling is
used4. For MATTER-QA (Fast), the off-the-shelf
retriever model is RePAQ-256 model (Lewis et al.,
2021).

For computing EM score, we follow the pre-
processing steps used in FiD (Izacard et al., 2020),
which is specified at the official code repository.
For computing the throughput, we perform batch
inference and try a max batch size of 500. If a
model with the maximum batch size results in the
out-of-memory issue, we find the maximum batch
size that fits in the memory size. For T5-3B, FiD,
and RAG, the batch sizes were set to 300, 15 and
128 respectively. For Reranker, the batch size is set
to 200. All the remaining models generate answers
with batch size of 500.

4https://huggingface.co/sentence-transformers/
all-mpnet-base-v2
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Module Process Latency

Memory

Retriever Forward 0.012s
Faiss Search - QA (Fast) 0.41s

Faiss Search - QA 0.90s
Faiss Search - PRG 0.56s

Encoder
Question Encoding (≤ j Layer) 0.009s

Cross-Encoding (> j Layer) 0.005s
Decoder Decoder Forward 0.61s

Table 5: Latency report on individual part of the pro-
posed model. j denotes the memory injection layer, and
the latency is computed with batch inference, which the
batch size is set to 500.

B Discussion on Heterogeneous
Knowledge Sources

One natural question with heterogeneous knowl-
edge sources is “are we giving advantage to our
model by giving access to more knowledge, com-
pared to the other baselines?”. The answer is “No”.
The QA pairs, PAQ dataset, are generated from the
Wikipedia paragraphs, and hence, the coverage and
subject of each knowledge source are the same.

C Inference Speed by Each Module

Our model performs inference with low latency,
and we present the speed of each module of the
proposed model with a close view in Table 5. We
find that a large portion of the inference is spent
on the MIPS operation and decoder-side. As our
model can be switched with an off-the-shelf re-
triever with a smaller hidden dimension, the total
inference time can be greatly reduced; our model
with RePAQ-256 retriever runs twice as faster com-
pared to our model with mpnet-base model with
reasonable decrease in QA performance as seen in
Table 1.

D Preprocessing Knowledge

Our framework maps knowledge into 2 latent repre-
sentations, and hence the small number of vectors
may not fully capture salient information of a long
paragraph. In this sense, we split a paragraph into
a set, where each item is a two sentence long utter-
ance.

E Templates

Here, we show the three templates used in the ex-
periments. For input question, the template is as
follows:

tq(q) = Question: $q Answer:

q denotes an input question.
For a question-answer pair, the below template

is used.

tqa(q, a) = <spe1><spe2> Question: $q
Answer: $a

<spei> indicates a special token. In this paper,
we take the first two representations, and hence
we prepend two special tokens in the template for
simplicity.

Lastly, for a Wikipedia paragraph, the Wikipedia
title and paragraph are used.

tprg(t, p) = <spe3><spe4> Title : $t
Content: $p

t and p denote Wikipedia title and corresponding
content. Note that the special tokens are different
from those in the QA template, and we differenti-
ate different knowledge types simply with special
tokens.

F Case Study

Table 6 shows an example output of MATTER-
QA/PRG on a NQ test sample.
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Input Question Answer Model Prediction
How many seasons of the bastard executioner are there? one season one

Retrieved Question Retrieved Answer Relevance
How many episodes of the bastard executioner are there? 10 ✗

how many episodes are in the bastard executioner? 10 ✗

how many episodes in the bastard executioner season 1? 10 ✗
...

Retrieved Passage Relevance
On May 22, 2015, “The Bastard Executioner” was picked up for a 10-episode series for

fall launch. On November 18, 2015, FX and Sutter announced that Sutter had canceled the series. ✗
The Bastard Executioner is an American historical fiction drama

television series, created by Kurt Sutter and aired on FX from September 15, 2015, to November 17, 2015.
On November 18, 2015, Sutter announced that FX had canceled the series after one season. ✓

It ran for 26 episodes, with the last episode airing on 10 January 2016. “The Executioner” received
positive reviews during its broadcast. ✗

...

Table 6: A NQ test sample output. Relevance indicates if a retrieved knowledge has information to answer the input
question.
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