InstructEd: Soft-Instruction Tuning for Model Editing with Hops

Xiaoqi Han* RuLi *
Zifang Zhang *

Jiye Liang *

Xiaoli Li ¢
Jeff Z. Pan®*

& School of Computer and Information Technology, Shanxi University, China
¢ Institute for Infocomm Research, A*Star, Singapore
& ILCC, School of Informatics, University of Edinburgh, UK
& xiaogisev@163.com,{liru,ljy}@sxu.edu.cn
#x11i@i2r.a-star.edu.sg, #http://knowledge-representation.org/j.z.pan/

Abstract

The task of model editing becomes popular for
correcting inaccurate or outdated parametric
knowledge in Large Language Models (LLMs).
However, there are major limitations of state of
the art (SOTA) model editing methods, includ-
ing the excessive memorization issue caused
by the direct editing methods, as well as the
error propagation and knowledge conflict is-
sues from the memory enhancement methods,
resulting in hindering models’ portability, e.g.,
the ability to transfer the new knowledge to re-
lated one-hop or multi-hop content. To address
these issues, we propose the InstructEd method,
the idea of which is to insert soft instructions
into the attention module so as to facilitate in-
teractions between instructions and questions
and to understand and utilize new facts. Our
main findings are: (i) InstructEd has achieved
SOTA performance on three datasets for one-
hop/multi-hop evaluation with LLaMAs and
GPT2, achieving 10% (5%) improvement in
one-hop (multi-hop) model editing. (ii) Dif-
ferent from earlier methods on editing param-
eters in FFN, we show that editing attention
can also help. (iii) Model editing is highly re-
lated to retrieval augmented methods, which
can help improve the locality of model edit-
ing while slightly decrease the editing perfor-
mance with hops. Our code is available at
https://github.com/sev777/InstructED.

1 Introduction

Large Language Models (LLMs) have accu-
mulated substantial parametric knowledge (Pan
et al., 2023), showcasing remarkable progress in
knowledge-driven tasks such as question answering
(Kwiatkowski et al., 2019; Chen et al., 2021, 2022;
Hu et al., 2023) and reasoning (Mihaylov et al.,
2018; He et al., 2023). However, LLMs are sus-
ceptible to errors stemming from inaccurate or out-
dated parametric knowledge (Zheng et al., 2024),

* Contact Authors

restricting the reliability of these models. Previ-
ous research has introduced Model Editing (ME)
(De Cao et al., 2021; Mitchell et al., 2022b) to rec-
tify or update parametric knowledge in LLMs with-
out the need for expensive re-training processes.

These methods either update the parametric
knowledge within LLMs with either some given
factual knowledge (called ‘modification based
setting’) or some external knowledge repository
(called ‘memory based setting’). In this paper, we
propose a method that can address both settings.

In order to assess ME methods’ effectiveness
in understanding and application of related factual
knowledge, Yao et al. (2023); Zhong et al. (2023)
proposed two new benchmarks, introducing the no-
tion of portability, e.g., the ability to apply the new
knowledge to related one-hop (Yao et al. (2023))
or multi-hop (Zhong et al. (2023)) content.

As illustrated in Fig.1, modification-based meth-
ods (Mitchell et al., 2022a; Meng et al., 2022,
2023a) calculate the parameter shift 6 based on the
new fact, which can only used to recall modified
knowledge (Q-ED). Once the facts are discrepant
with the new fact (such as Re-ED!), they cannot
answer these questions based on the modified facts.
As for the memory-based methods (Zheng et al.,
2023; Mitchell et al., 2022b) maintain LLMs pa-
rameters unchanged and retrieve knowledge rel-
evant to the current edit from a pre-constructed
memory to achieve editing. Some recent memory
based methods like MeLLo (Zhong et al., 2023)
and PokeMQA (Gu et al., 2023) have been pro-
posed to address multi-hop question editing. These
methods rely on the retrieval results and neces-
sitate decomposing multi-hop questions into sub-
problems. However, the knowledge conflict issue?
between retrieved results and LLMs, and error prop-

'Before addressing the question "What city is Messi’s team
in?" we need to know "Messi is playing for Inter Miami."

*LLM:s prioritize their own parametric knowledge and
overlook retrieved non-parametric knowledge

14953

Findings of the Association for Computationcll Linguistics: ACL 2024, pages 14953-14968
August 11-16, 2024 ©2024 Association for Computational Linguistics

https://github.com/sev777/InstructED

 (Messi, play™_
~—for, Miami)-
Editor ———C
(Wg)
O = fy, (Fact)

Messi is playing
for Inter Miami.

—>OocFact——*

Excessive Knowledge!

Q-ED |
. /{ In which team does Messi play? }

Re-EBR

What city is Messi's team in? }

Ignore whether the question is relevant to the fact

Modification-based Methods

Target

x
X Select!

[What city is Messi's team in? }H

>

Error Propagation !

Messi was born in Rosario.
Rosario Located in Argentina.

(o

~+[Messi is playing for Inter Miami. |~

> O /{Messi, play)

{In which team does Messi play?} Vemory (M)

Ignore whether the fact is accurate and applicable

~ for, PSG)y

Knowledge Conflict!

Memory-based Methods

Figure 1: The existing methods fail to leverage knowledge effectively. They either overlook whether the question is
relevant to the facts, resulting in excessive memorization and inability to resolve Re-ED; or they neglect whether the
facts are accurate and applicable due to factors error propagation and knowledge conflicts. Q-ED represents the
questioning of a modified fact, Re-ED represents the questioning related but un-equivalent to the modified facts.

agation issue caused by decomposition, make these
methods unstable to handle Q-ED and Re-ED.

Recently, instruction-tuning (Zhang et al., 2023)
has emerged as a new paradigm for tuning LLMs
to generate responses based on natural language
instruction, which has been extensively researched
in language (Gupta et al., 2023; Li et al., 2023a)
and vision domains (Brooks et al., 2023; Liu et al.,
2023a,b). These methods enhance LL.Ms by fine-
tuning them using high-quality (instruction, output)
pairs, boosting the model to comprehend user in-
tentions and follow instructions more accurately.

In this paper, we present InstructEd, a novel
approach for the challenging task of model edit-
ing with hops, by using soft instruction tuning.
We construct an instruction dataset based on ex-
isting editing data to facilitate training. Unlike
previous methods, we augment a set of learnable
soft-instruction prompts as prefixes to the input
instruction tokens in the attention module (rather
FFN). We use a relevance score between the in-
struction and inputs to learn how to use knowledge
and inject new knowledge (instructions) into the
frozen LLMs.

Experimental results on three datasets demon-
strate that our approach achieves superior porta-
bility of edits while maintaining stability in other
essential properties. The main contributions of our
work are as follows:

1) We propose a novel method InstructEd, en-
hancing the capability of LLMs to effectively uti-
lize knowledge by adaptively modifying the atten-

tion module in LLMs, in both modification based
and memory based settings. This is different from
previous model editing efforts focusing on the FFN
module.

2) Experimental on three datasets demonstrate
that InstructEd exhibits excellent ability to under-
stand and use instructions, achieving SOTA editing
performance, achieving 10% (5%) improvement in
one-hop (multi-hop) model editing over previous
SOTA.

3) We investigated the feasibility of retrieval aug-
mentation on model editing with hops and found
that it can help improve the locality of model edit-
ing while slightly decrease the editing performance
with hops.

2 Realted work

2.1 Model Editing

Model Editing emerges as a viable strategy for
precisely updating LLMs without the expensive
resources (Wang et al., 2023; Zhang et al., 2024).
Recent studies on model editing can be divided
into two categories based on whether the original
parameters of the edited model are modified (Yao
et al., 2023). One category involves directly mod-
ifying model parameters, exemplified by hyper-
networks (De Cao et al., 2021; Mitchell et al.,
2022a; Han et al., 2023a) and located-and-edit
techniques (Meng et al., 2022, 2023a; Li et al.,
2023b). The other incorporates additional modules
to LLMs (Mitchell et al., 2022b; Han et al., 2023b;

14954

2

Hartvigsen et al., 2022). Recently, in-context-based
editing methods have gained attention. These meth-
ods guide the model in learning knowledge up-
dates by providing editing examples (Zheng et al.,
2023; Yu et al., 2023; Gu et al., 2023), offering
greater flexibility. Nonetheless, this approach re-
lies on the context selection and the scale of input
prompt data. Additionally, PMET improved editing
performance by modifying attention mechanisms.
Inspired by this, we believe that attention, as an
interaction module, can better facilitate the interac-
tion between instructions and knowledge. Building
on these concepts, we investigate how to guide the
model in learning knowledge with minimal prompts
and present an editing model grounded in instruc-
tion learning.

2.2 Instruction Tuning

Instruction tuning of language models has demon-
strated its capability to enhance model general-
ization across unseen tasks, leveraging in-context
learning with just a few examples (Zhang et al.,
2023; Gupta et al., 2023; Li et al., 2023a). Recent
works have leveraged instruction-driven fine-tuning
methods, improving performance on previously un-
seen tasks through supervised fine-tuning on a lim-
ited number of examples (Li et al., 2023a; Ye et al.,
2023). Furthermore, researchers have applied in-
struction tuning methods to image editing. They
discern that the intent in the instructions success-
fully facilitates adaptive modifications to image
content (Brooks et al., 2023; Liu et al., 2023a,b).
In this work, we leverage the transfer ability of
instruction to guide the model to learn how to uti-
lize instructional knowledge adaptively, achieving
generalization and portability in editing.

2.3 Prompt Tuning

Prompt (prefix) tuning (Li and Liang, 2021; Liu
et al., 2022) is an efficient way to fine-tune LLMs.
prompt refers to a text or instruction that guides
the model in generating specific output types
commonly applied in classification and question-
answering tasks (Chan et al., 2020; Pei et al., 2023;
Huang et al., 2023). On the other hand, prefix refers
to specific markers or sequences of words added
before the input text to alter or control the model’s
behavior, with many scholars recently applying it
in Controllable text generation (Li and Liang, 2021;
Lester et al., 2021; Meng et al., 2023b). This paper
explores understanding instructions and utilizing
and editing knowledge through fine-tuning with

inserted prefixes while freezing LLMs parameters.
More discussion can be found in Appendix D.6.

3 The Proposed Method

3.1 Problem Formulation

We formally define the Model Editing (ME) task.
To better explaining the complex editing scenarios
of Multi-Hop Editing, Subject Replacement, and
Reversed Relation we define facts in the form of
triples. However, our proposed method does not
require facts to be in the form of triples.

In particular, we denote LLLMs as f and a fact
to be edited as a triple e = (s,7,0), consisting
of a subject (s), a relation (r), and an object (o).
To convert the triple e into natural language, we
employ the prompt template #,.(-) 3. The editing
task aims to update the object o to 0* in e that shares
the same subject and relation in LLMs f. This
can be formally expressed as: f(t.(e¢)) = o —
f(tr(e);e) = o*, where ¢ represents the editor.

Simultaneously, the editing model needs to han-
dle both in-scope data D;,, and out-scope data
Dyt The in-scope data includes inputs generated
by different templates ¢, for the same triple e. Out-
scope data refers to entities unrelated to e, such as
any entity distinct from either the subject s or the
relation r.

Following previous work (Yu et al., 2023; Gu
et al., 2023), the post-edit model f(+; ¢) is designed
to satisfy the following properties: (1) Reliabil-
ity: Ensuring that f(¢,(e);e) can output the tar-
get answer o*. (2) Generalization: Ensuring that
f(tr(ei); €) can generate the target answer o* for
e; € Djy, where e; share the same subject and rela-
tion with e. (3) Locality: Ensuring that f (¢, (e,); €)
can generate the original answer o for e, € Dyyz.
(4) Portability: Ensuring that the model not only
updates the current editing but also maintains con-
sistency with other facts e, relevant to the current
edits e.

Specifically, there are three aspects of Porta-
bility (Yao et al., 2023). (1) Hop-editing: For
an n-hop question constructed by a chain of
facts Q {(51,71,01), -+, (SnsTn,0n)}, up-
dating any object o; € (@ should result
in the post-edit model outputting new results
based on the new object o within the chain

3For instance, given the triple (Messi, play for, Inter Miami
CF), the template ¢ is "subject is playing for object", resulting
in the sentence: Messi is playing for ___.

14955

3

Qx = {(s1,71,01), (81,71, 0}, ory (85,70, 05) .4
(2) Subject Replacement: Replace the subject s in
the edited triple (s, r,0) with its alias s , and the
post-edited model should maintain the answer o,
such as (Messi,playing for, *) and (Leo Messi, play-
ing for, *). (3) Reversed Relation: When the target
of a subject and relation is edited, the attribute of
the target entity should also change, such as for an
edit "Who is Mike’s Father? Bob — Tom", the
answer for "Who is the son of Tom?" should update
to "Mike".

Messi is playing for Inter Miami.

What city is Messi’s team in?

Pairs

NN

Miami

C-Edit:

(Messi, play for, Inter Miami CF)
(Inter Miami CF, located in, Miami)
C-Trues:

(Messi, play for, PSG)

(PSG, located in, Pairs)

Table 1: Example from the Instruction Editing Dataset:
Featuring an Instruction 7, a Question Q, Pre- and Post-
Editing Answers 7, L, and Chains of Facts Pre- and
Post-Editing C-Trues, C-Edit.

3.2 Instruction Prompt for editing

To train the InstructEd, we first generate instruc-
tions based on the existing editing dataset Coun-
terFact (Meng et al., 2022) and ZsRE (Levy et al.,
2017). Subsequently, we design instruction tem-
plates to construct input data.

3.2.1 Generating instructions

For CounterFact (Meng et al., 2022), the original
dataset provides triple information with modified
knowledge and offers prompt templates to convert
these triples into natural language. Therefore, we
directly employ the natural language of the modi-
fied knowledge as instructions for the current data.
As illustrated in Table 1, consider the edited triple
in C-Edit: "(Messi, play for, Inter Miami CF)".
Here, we utilize the natural language expression

*For example, with a two-hop chain: {(Messi, play for,
PSG), (PSG, located in, Paris)}, updating the object "PSG —
Inter Miami CF" should lead to the answer for the question
"What city is Messi’s team in?" being "Miami" not "Paris," as
the new triple is (Inter Miami CF, located in, Miami).

"Messi is playing for Inter Miami CF" as the in-
struction for the current editing instance.

For ZsRE (Levy et al., 2017), the original dataset
lacks suitable prompts for transforming triplet in-
formation into natural language. To address this,
we concatenate the question and the target answer
to create the instruction. For instance, the instruc-
tion for the edited triple "(Messi, play for, Inter
Miami CF)" is "Which team does Messi play for?
Inter Miami CF".

3.2.2 Construct Input

For each modified data, we concatenate the instruc-
tions with four distinct types of questions, forming
the input for the model and subsequently assessing
the editing model based on four metrics. The input
template is as follows:

Instructions: {Instructions} \n Input: {Input}.

We used the four types of input mentioned above
to train the editor. To adapt to real-world editing
scenarios, we evaluate the editing based on whether
the instructions for input (‘ED-Ins’ in Figure 2) are
known or unknown, referring to both modification
based and memory based settings. Appendix B
shows the input cases and details of two editing
scenarios.

3.3 InstructEd

We employ instruction editing data to train an In-
structEd to learn to utilize edits based on instruc-
tions. Figure 2 shows that we use frozen LLMs
with L layers. The input to the LLMs consists
of three components: (1) The questions in natural
language) with @),, tokens. (2) The instructions
in natural language I with I,, tokens. (3) A set
of learnable adaption prompts P for instruction-
following tuning. The prompts at layer [/ in the
LLMs are represented as P, with a length of n;
and a dimension of A, which is equal to the LLMs’
hidden dimension. Note that the prompts inserted
into NV layers of the LLLMs are different (N < L).
The input is formulated as follows:
[P I5.Q) € RUMHQntln)<h (1)
The instruction I serves as a prompt for LLMs
when answering question (). However, due to the
knowledge conflict, LLMs may struggle to rec-
oncile non-parametric instruction knowledge with
their own parameterized knowledge. To address
this, we introduce trainable prompts F; as a prefix,
which offers several advantages:

14956

4

1) Prompts facilitate interactions between ques-
tion () and instruction [, enabling the model to
consider more contextual information during gener-
ation. 2) Prompts assist in handling different types
of instructions. For example, for Locality data, P
should guide the model to rely less on the informa-
tion within the instruction /. We have designed the
following strategies to achieve the above objectives,
as illustrated in Figure 2.

Messi is playing for

Which team does
Inter Miami.

Messi play for ?

(Messi |s4p|aym§)\ .
ED-Ins (Fact): Cfor Inter MIami—” - vpigmi s)
S |Messi is playing for Inter Miami. InsEditor O Coced n Ml
o o9
g + { QED"]
= [What city is Messi's team in?]
i i play? >
In which team does MesstIay, TR eE =l
— - .
— - ~
e N
/ ______________________ ~
‘ 3% Frozen LLM \
‘ @ @Or. \
|
| ees
jo e ol Seol L (RTAT N OI’.O’)T‘ ‘
Lleplss# | 32|08 |3 2): 331 313
\ & BT i &
| W, R(.Q) W "RU.Q) Was*R(1.Q W R(.Q) |
L
‘ Layer 1-1 1 T+N T+N+1 ‘
‘ t t \
| @e® QD oo |
|
|
|
|
\

N8 |)|
Questions

Figure 2: Overview of InstructEd. We achieve interac-
tion between instructions and questions by inserting N
trainable prefixes, thereby endowing the LLM with the
ability to follow instructions. To mitigate the impact
of irrelevant instructions on the input, we re-weight the
attention for each layer based on the relevance scores
between instructions and input.

Insert prompts into the middle layer of the
LLMs. In autoregressive models, tokens draw
information solely from the above tokens (Meng
etal., 2022, 2023a):

hi =hi—1+ATT;_y + FFN,_4, ()

where ATT and F'F' N refer to the Attention and
Feed-Forward module in transformer architecture.
We perform prompt training in the L intermediate
layers of LLMs (L = N/3), leveraging higher lay-
ers to capture semantic information representation
between () and I.

Editing the attention for interaction between
(@ and I. As the attention module serves as an
interactive module in the transformer, it is crucial
to leverage attention to facilitate interaction among
Q, I, and P,. Specifically, as shown in Figure 2, we
modify the attention from layer [to [+ N. In the
attention mechanism of the preceding / layers, after
generating M tokens (M< (Q,, + I,)), the attention

score of (M + 1)-th token ¢ at layer [— 1 is calcu-
lated by several linear projections Linearq o(+):

Query;_; = Lineary([M,t;—1]), 3)
Key, ; = Lineary([M,t;—1]), 4)
Value;_1 = Linear,([M, t;—1]), 5)
S;_1 = Query, ,Keyl ,/VC, (6)
(M+1)sh,

where Query;_;,Key,_;,Value;_; € R
Si_1 € RFMA+1) finally the attention output of
[— 1 layer is:

t7_, = Linear,(S;—1 Value;_1). @)

At layer [, we incorporate the prompts P, into
the attention mechanism. Subsequently, we con-
catenate the prompt with the (M + 1)-th token ¢
and compute the new representations for Query,,
Key,, and Value; at layer (:

Query; = Linearq([M;t]), 8
Key, = Lineary([P; M;t]), 9
Value; = Linearq([FP; M;t]), (10)

where Query, € R(M+D*h and Key,, Value; €
R(u+M+1)*h The attention score at layer [is:

S; = Query,Key? /V/C, (11)

where S; € RI*(m+M+1) and S can be reformu-
lated in three parts:

S =175 80 57" (12)
where n;, I, and @, are the prefix, instruction,
and question length respectively. This implies that
the attention score comprises both the instruction
prompt p;, the tokens for instructions I and the
question Q. Consequently, ¢; can learn information
from all its preceding tokens and the prompt py,
fostering interaction between the question () and
the instructions I through p;:

ty = Linear,(S;Value;). (13)

Re-weight the attention score. For the editor to
learn how to process the Locality instruction, we
mitigate the impact of irrelevant instructions on the
output by adjusting the attention weights. More
precisely, we utilize the similarity scores between
instructions and questions:

sim = Cos(Enc(Q), Enc(I)), (14)

14957

5

where we employ the Enc(+) to encode both ques-
tion) and instruction /, utilizing the contriever
encoder as described in (Izacard et al., 2022). Sub-
sequently, we utilize the similarity score sim to
re-weight the attention score:

{ 15)

where Sin L, S{", and SZQ " represent the attention
scores for prompts, instruction, and questions, re-
spectively.

S8R T e 1,1+ N,
[sim * S SZ-Q"}T Else,

[sim * (S}

4 Experiments

4.1 Experimental Setup
4.1.1 Dataset

We conduct comprehensive experiments on three
widely recognized editing datasets: CounterFact
(CT), ZsRE for one-hop evaluation, introduced in
Yao et al. (2023), and MQUAKE for multi-hop
evaluation, as described in (Zhong et al., 2023).
We adopt the same data split of training and testing
following Yao et al. (2023) and Zhong et al. (2023).
The detail of the data is provided in Appendix A.

4.1.2 Setup

We conduct experiments on three autoregressive
LLM: LLaMA1(7B,13B), LLaMA2(7B,13B) and
GPT2-XL (1.5B) models. We compare our method
against three classes of editors, encompassing a to-
tal of 11 models: 1) Preserving LLMs Parameters
as our baselines: SERAC(Mitchell et al., 2022b),
IKE(Zheng et al., 2023), RASE(Han et al., 2023b),
GRACE(Hartvigsen et al., 2022). 2) Modifying
LLMs parameters: FT(Zhu et al., 2020a), LoRA,
ROME(Meng et al., 2022), MEMIT(Meng et al.,
2023a), PMET(Li et al., 2023b). 3) Retrieval-
based method for Multi-hop editing method: Mello
(Zhong et al., 2023) and PokeMQA (Gu et al.,
2023). To train InstructEd, we sample 10000 train-
ing instances from CT, which exclusively include
the recall edits, and 2200 training instances from
MQUAKE-CF-3k, which contains 2,3,4-hop edits
in the following distribution 1000:910:290. The
training process spans 10 epochs, with each batch
comprising 6 instances of edits and 6 instances of
unmodified data. For additional settings, please
refer to Appendix B.

4.1.3 Metrics

We use Reliability (Rel), Generalization (Gen), and
Locality (Loc) for single editing evaluation, Pory,,

for one-hop evaluation, Pory, , and Hop-Acc for
multi-hop editing evaluation, respectively Yao et al.
(2023); Gu et al. (2023). Note that PorNth refers
to the results on multi-hop question answering
after modifying one fact, while Pory,, refers to
the results on one-hop question answering after
modifying one fact. Furthermore, to examine the
generalization-specificity trade-off, we present the
mean and harmonic mean scores of Rel, Gen, Loc,
and Pory,,, as Score and Harmonic Score (H). De-
tails on metrics can be found in Appendix C.

4.2 Main Results

Results on CounterFact. The edits in Counter-
Fact are the facts that do not exist in the real world,
which can ensure the manipulated/modified data
have not occurred during the training of LLMs.
Consequently, evaluations on CounterFact can bet-
ter measure the editor’s editing capabilities.

InstructEd can better understand and utilize
edited facts, outperforming existing models of vary-
ing scales, showcasing a remarkable enhancement
in model editing with hops. As shown in Table
2, our approach demonstrates significant advan-
tages in both Gen and Pory,,. Compared with
methods directly updating model parameters (M),
our method flexibly updates various types of edit-
ing data and applies the updated knowledge in the
model’s inference, avoiding issues of excessive
memorization caused by direct parameter updates.
Furthermore, in contrast to the memory-based
method (P), we learn and leverage instructional
knowledge to prevent the accumulation of errors
when solving multi-hop editing while modifying at-
tention parameters to alleviate knowledge conflicts
in the model effectively. Results on LLaMA (13B)
and more analysis are in Appendix D.1.

Results on ZsRE. In contrast to CounterFact,
the ZsRE is specifically designed to rectify LLM
errors. Consequently, as shown in Tabel 2, there
is a notable enhancement in retaining LLM param-
eters due to incorporating additional modules or
memory to constrain the output of LLM, especially
IKE, which encourages model editing by provid-
ing external editing samples. However, InstructEd
can still demonstrate greater generalization and ro-
bustness on ZsRE, showing good performance even
when trained only on CounterFact and tested on
ZsRE, further indicating that enhancing a model’s
ability to utilize knowledge can fundamentally im-
prove model editing with hops.

Results on MQuAKE. Table 3 shows the results

14958

6

Model Type Method Rel Gen Loc Pory,,, Score H ‘ Rel Gen Loc Pory,,, Score H
CounterFact (%) ZsRE (%)
FT 46.33 75.88 3375 47.01 50.74 46.69 | 59.38 62.15 97.18 5435 6827 6491
MEMIT 99.6 822 9442 512 81.86 7644 | 8459 8048 99.53 5259 793 75.03
M ROME 99.43 79.08 9554 5145 81.38 76.04 | 83.88 78.62 99.5 54.11 79.03 75.23
LLaMA LoRA 100 5530 65.26 48.68 6731 6255|6601 6336 965 5469 70.14 67.14
V1 (7B) RASE 93.40 9340 80.89 1.60 67.32 6.07 - - - - - -
P IKE 99.81 82.38 46.86 49.82 69.72 6292 | 99.76 99.62 8297 6476 86.78 84.11
SERAC 76.58 2620 58.00 18.00 44.69 32.25|98.81 80.75 100 11.11 72.67 32.65
InstructEd 98.01 97.59 76.46 6243 83.62 80.73 | 98.16 98.24 80.73 67.72 86.21 84.17
+ Retrieval 97.81 8891 9432 61.60 8566 §82.80 | 96.84 83.30 98.66 64.92 8593 83.56
FT 1147 1411 26.11 4583 2438 18.33 | 4826 4854 9432 51.64 60.69 56.11
M MEMIT 9952 824 9476 512 8197 7653 | 66.13 6533 99.56 5446 7137 67.99
PMET 20.16 17.10 87.37 12.53 3429 20.06 | 43.26 4192 94.64 5594 5894 53.04
LLaMA LoRA 99.84 60.84 64.09 52.10 69.21 65.30 | 70.37 67.15 91.76 5451 7095 68.56
V2 (7B) ROME 15.68 2287 97.61 4797 46.03 28.86| 64.13 6329 99.54 52777 6993 66.24
SERAC 98.53 11.66 100 49.75 6499 31.74 | 96.57 79.31 100 10.55 71.61 3131
P RASE 72.64 7130 80.89 5.81 57.66 18.84 - - - - - -
IKE 99.63 85.77 49.64 54.11 7229 6631 | 100 99.71 82.1 6552 86.83 84.26
InstructEd 98.77 98.32 77.74 65.85 85.17 82.74 | 98.70 98.29 7557 70.02 85.65 83.65
+ Retrieval 98.07 90.72 9438 65.21 87.09 §84.83 | 9693 8448 9840 67.38 86.80 §84.82

Table 2: Results on CounterFact and ZsRE. M represents methods for modifying LLM parameters; P represents
methods for preserving LLM parameters. ‘+Retrieval’ means we use the retrieval model msmarco, -’ refers to the
results that the methods fail to edit LLMs. We use the evaluation metrics in Sec.4.1.3 to assess the editor.

Method Pory, ~ Hop-Acc
FT 47.32 -
FT-Cot 56.48 33.89
Rome-CoT 28.96 -
Rome 24.89 17.99
MEMIT-CoT 36.88 -
MEMIT 30.89 23.98
PokeMQA 75.43 60.44
InstructEd 80.62 83.35

Table 3: Results on MQUAKE-T with LLaMA-2(7B).
Pory,,, means the accuracy of multi-hop editing, and
Hop-Acc is the mean of Pory,,, for each sub-question
in a multi-hop question.

on MQuAKE-T (Zhong et al., 2023). In multi-hop
question answering, we retrieve instructions for
each multi-hop question through search. For exam-
ple, for an N-hop question, we retrieve N facts (the
top N retrieved facts) as instructions. Our method
demonstrates excellence in both Pory;, , and Hop-
Acc, indicating that InstructEd can flexibly utilize
instructional knowledge, providing advantages in
multi-hop editing. Additionally, the accuracy of
retrieval will affect the performance of our model.
More discussion can be found in Appendix 4.5.

4.3 Further Analyses of InstructEd

Performance without Instructions We compared
our method with the model without instructions

and the model without soft-instructions. All results
were tested using CounterFact and MuQAKE-T.
As shown in the Table 5: (1) InstructED can im-
prove the generalization of editing and reduce the
impact on the performance of the original model.
Compared with *-O’, InstructED shows a higher
improvement in ’Gen’ and a lower decline in "Loc’
than ’-Ins’, indicating that InstructED possesses a
more stable editing ability. (2) InstructED demon-
strates stronger instruction utilization ability. In
comparison with ’-O’, the performance enhance-
ment of InstructED on Hop, Multi-hop, and Hop-
ACC surpasses that of ’-Ins’. Furthermore, the
improvement tends to increase as the model size
increases, suggesting that InstructED enhances the
model’s capacity to utilize instructions effectively.

Results for portability. InstructEd has not only
achieved an advantage on the Pory,, but obtained
excellent results in the other two aspects of portabil-
ity: Subject Replace (Rep) and Reversed Relation
(Rev). As shown in Table 6, the InstructEd could
gain great performance on Rev. However, for Rep,
InstructEd is not ideal at the beginning. After we
add additional instruction that never occurs dur-
ing training and is unrelated to the edits (s is also
known as s), the performance increases signifi-
cantly, demonstrating its robust understanding and
utilization of instructions. Details can be found in
Appendix D 4.

Sequential editing Results. InstructEd is a plug-

14959

7

Model Method Rel Gen Loc Por Score H Rel Gen Loc Por Score H
CounterFact (%) ZsRE (%)
InstructEd 98.01 97.59 76.46 6243 83.62 80.73 | 98.16 9824 80.73 67.72 8621 84.17
w/o re-weight 99.52 100.00 24.73 74.62 7472 54.14|99.38 97.02 61.80 69.87 82.02 78.64
LLamal w L:20-30 98.40 89.19 4470 50.76 70.76 63.05 | 98.97 97.44 33.15 65.02 73.64 60.69
w FEN 99.60 98.74 3579 69.82 7599 64.07 | 99.73 99.18 56.64 70.13 81.42 76.88
InstructEd 98.77 9832 77.74 65.85 85.17 82.74 | 98.70 98.29 75.57 70.02 85.65 83.65
w/o re-weight 9534 99.66 3526 69.41 7492 6320 | 98.85 97.65 56.08 70.19 80.69 76.28
LLama2 w L:20-30 98.04 9275 55.09 55.82 7542 70.11 | 97.03 9544 3324 66.16 7296 60.62
w FFN 98.26 99.56 34.16 58.19 7254 5999 | 93.73 9328 36.28 46.65 67.49 56.83

Table 4: Results of ablation experiments. re-weight indicates whether attention was re-weighted; L:20-30 represents
the results of applying the Editor on layers 20-30; FFN represents the results of editing the FFN.

Model Rel Gen Loc Hop Multi-hop Hop-ACC
InstructED 98.07 90.72 94.38 65.21 80.62 83.35
w/o Ins 11.71 11.59 100 49.73 49.81 45.43
w/ Ins 97.85 69.96 51.10 55.02 73.84 51.45
InstructED 99.85 99.17 82.88 71.67 87.45 95.19
w/o Ins 17.94 1855 100 50.15 56.23 51.26
w/ Ins 98.60 77.17 4876 57.20 74.87 54.68

Table 5: Performance without Instructions. We com-
pared our method (InstructED) with the model with-
out instructions ("-O’) and the model without soft-
instructions (’-Ins’) on the LLaMA?2 at different scales.

and-play model that can address both batch edit-
ing and sequential editing. The results in Table 2
are obtained by modifying one edit at a time. In-
structEd uses additional prefixes to achieve editing,
allowing it to handle varying amounts of editing
data flexibly and perform sequential editing while
maintaining the performance. Therefore, whether
editing a batch of data simultaneously or sequen-
tially, InstructEd’s performance remains unaffected.
In contrast, performance declines with the direct
modification of model parameters as the number
of sequential edited data increases. Details can be
found in Appendix D.2.

Results of Different Model Scales. To validate
the generality of our approach, we also tested it
on models of varying scales, including GPT2-XL
(1.5B) and LLaMAZ2 (13B). As shown in Appendix
D.1. We observed that our method can be flexi-
bly applied across models of different scales while
maintaining consistent performance.

Efficiency of InstructEd. We utilized the A100
(40G) GPU to train InstructEd on LLaMA (7B)
which took 7 hours. The inference speed is con-
sistent with the original LLaMA model, averaging
around 0.5 seconds per edit. Note that we assess
the modification of each data point from four data,
so the inference speed for each data point is 0.5/4
seconds. Regarding storage, InstructEd requires

approximately 0.8M of additional storage space.

4.4 Ablation experiment

In this section, we analyze the impact of differ-
ent modules on InstructEd’s editing performance.
Results are shown in Table 4.

"w/o re-weight" remove sim in Eq.15 and use
the original attention weights, significantly reduc-
ing the locality. Indicate that InstructEd, when
equipped with re-weighting, can effectively learn
how to leverage knowledge flexibility.

"L:20-30" shows an additional ablation editing
deep layer (20-30) in LLMs, rather than middle
layer (10-20). The results indicate that editing
deeper layers impedes the model’s effective use
of knowledge (lower propagation scores) and leads
to more pronounced negative impacts on the model
(lower Locality scores). See Appendix D.3 for ab-
lation experiments on editing layers.

"FFN" shows an additional ablation editing FFN
weights rather than the attention module. Intro-
ducing a Adapter module to each FFN at layers
10-20 in LLMs reveals that editing the FFN re-
mains a viable alternative, yielding a higher propa-
gation score while maintaining other editing met-
rics. However, a lower Locality implies that impre-
cise editing of the FFN could lead to substantial
adverse consequences. This paper validates that
editing attention can achieve comparable or even
superior results to editing FFN. More Discussion
about FFN can be found in Appendix D.5.

4.5 Results with Retrieval augment

The results (+Retrieval) in Table 2 indicate that re-
trieval augmented can improve the performance of
InstructEd especially on localization performance.

To assess the effectiveness compared to using
only retrieval-augmented methods, we conducted a
comparison with the Self-RAG (Asai et al., 2023).

14960

8

InsE_v1 | InsE_v2 | InsE_G
Rev 93.27 89.43 83.86
ZsRE Rep 60.69 67.42 68.08
+ins 77.52 76.63 85.95
CT Rep 66.43 66.23 66.5
+ins 90.48 86.01 98.58

Table 6: Results for portability. InsE means our pro-
posed InstructEd, vl and v2 mean LLaMA1-7B and
LLaMAZ2-7B, respectively, and G means GPT2-XL.
“+ins’ means we add "s is also known as s " into the
instruction, s and s is the subject and replaced-subject.

The results in Table 7 show that the retrieval-
augmented demonstrates great performance on
ZsRE regarding localization. It can accurately de-
termine whether a query is relevant to the input.
However, the high correlation between the location
data and input in CT makes the performance on
CT is mediocre. For example, both edit input and
loc input involve queries about the team to which
a player belongs, leading to errors in judging rele-
vance. The retrieval-augmented model has shown
promise regarding editing, as pointed out by Pinter
and Elhadad (2023), directly modifying the model
can result in unknown and uncontrollable impacts
on the original LL.Ms, using retrieval-augmented
methods to achieve the model editing is safer and
interpretable (Gupta et al., 2024; Gu et al., 2024).

Rel Gen Loc Por Score H
ZsRE 77.05 73.67 96.53 29.51 69.19 56.50
CT 7730 6421 36.08 3531 5322 4731

Table 7: Results on Self-RAG

5 Discussion

5.1 Retrieval-augmented for editing

Through comparative analysis with retrieval-
augmented methods, we have found that Retrieval
can provide factual support for model editing.
While model editing requires fact-question-answer
pairs, obtaining facts or evidence automatically in
real-world applications remains essential. Retrieval
facilitates acquiring updated facts, thereby provide
data support for model editing. Model editing effi-
ciently harnesses retrieval information. Retrieval
typically yields non-parametric text-based infor-
mation, whereas model editing transforms non-
parametric knowledge into parametric knowledge.

This enables the model to utilize the information
more effectively and alleviate knowledge conflicts.

Recently works retrieved facts from a pre-
constructed memory to enhance the performance of
model editing, which limits the application scenar-
ios of model editing. In the future, developing more
efficient methods to combine retrieval-augmented
with model editing will be key to implementing
applied model editing.

5.2 Editing on Attention Layer

We aim to enhance the model’s comprehension and
application of edited facts by improving its ability
to follow instructions. Specifically, InstructEd en-
hances the model’s interaction between instructions
and inputs by training additional prefixes that act
on attention in certain layers, which we call soft-
instruction. In line with recent work (Xiao et al.,
2024), they find that LLMs tend to pay more atten-
tion to the initial token during computation, with
the initial tokens interacting more frequently with
subsequent tokens in training, thereby more easily
capturing some information that the model consid-
ers important. Likewise, Mu et al. (2024) achieves
information compression and enhances the model’s
ability to follow instructions by inserting certain
GIST tokens. Similar to these methods, we have im-
proved editing performance through modifications
to the attention parameters, especially enhancement
in multi-hop inference performances. Indicating
that the interaction between instructions and ques-
tions can be better facilitated by editing attention,
thereby helping the model understand and apply
edited facts.

6 Conclusion

In this paper, we have presented an instruction tun-
ing based method InstructEd for modeling editing
with hops. We validate the effectiveness of In-
structEd on varying scales of LLMs under three
datasets, demonstrating InstructEd’s excellent gen-
eralization in both modification based and memory
based settings. Our experiments indicate that, un-
like previous editing methods, modifying attention
parameters can model editing. Last but not least,
we investigated the feasibility of retrieval augmen-
tation on model editing and found that the retrieval-
augmented methods can enhance the locality of
model editing while slightly decreasing the editing
performance with hops.

14961

9

7 Limitations

In this paper, we introduce an effective method for
model editing with hops. Although we achieve
good results, there are still limitations in the fol-
lowing aspects: 1) We only focus on model editing
with hops. In the future, we plan to look into model
editing with more complex reasoning involved. 2)
We utilize the retrieval augmented model to en-
hance InstructEd and verify the performance of
the retrieval model Self-RAG (Asai et al., 2023)
in editing tasks. However, novel integration of
retrieval-augmented methods with model editing
remains a challenge that needs further exploration
in the future.

Acknowledgements

This work has been supported by the National Nat-
ural Science Foundation of China (N0.61936012),
by the Science and Technology Cooperation and
Exchange Special Project of ShanXi Province
(No0.202204041101016), by the Chang Jiang Schol-
ars Program (J2019032), and by the Key Research
and Development Program of Shanxi Province
(N0.202102020101008).

References

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and
Hannaneh Hajishirzi. 2023. Self-RAG: Learning to
retrieve, generate, and critique through self-reflection.
arXiv preprint arXiv:2310.11511.

Tim Brooks, Aleksander Holynski, and Alexei A Efros.
2023. Instructpix2pix: Learning to follow image edit-
ing instructions. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition, pages 18392-18402.

Alvin Chan, Yew-Soon Ong, Bill Pung, Aston Zhang,
and Jie Fu. 2020. Cocon: A self-supervised approach
for controlled text generation. In International Con-
ference on Learning Representations.

Zhuo Chen, Jiaoyan Chen, Yuxia Geng, Jeff Z. Pan,
Zonggang Yuan, and Huajun Chen. 2021. Zero-shot
Visual Question Answering Using Knowledge Graph.
In Proc. of ISWC2021.

Zhuo Chen, Yufeng Huang, Jiaoyan Chen, Yuxia Geng,
Yin Fang, Jeff Z. Pan, Ningyu Zhang, and Wen Zhang.
2022. Lako: Knowledge-driven Visual Question An-
swering via Late Knowledge-to-text Injection. In
Proc. of IICKG2022, pages 20-29.

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2021. Edit-
ing factual knowledge in language models. In Pro-
ceedings of the 2021 Conference on Empirical Meth-

ods in Natural Language Processing, pages 6491—
6506.

Hengrui Gu, Kaixiong Zhou, Xiaotian Han, Ninghao
Liu, Ruobing Wang, and Xin Wang. 2023. Pokemqa:
Programmable knowledge editing for multi-hop ques-
tion answering. arXiv preprint arXiv:2312.15194.

Jia-Chen Gu, Hao-Xiang Xu, Jun-Yu Ma, Pan Lu, Zhen-
Hua Ling, Kai-Wei Chang, and Nanyun Peng. 2024.
Model editing can hurt general abilities of large lan-
guage models.

Akshat Gupta, Anurag Rao, and Gopala Anu-
manchipalli. 2024. Model editing at scale leads to
gradual and catastrophic forgetting.

Himanshu Gupta, Saurabh Arjun Sawant, Swaroop
Mishra, Mutsumi Nakamura, Arindam Mitra, San-
tosh Mashetty, and Chitta Baral. 2023. Instruction
tuned models are quick learners. arXiv preprint
arXiv:2306.05539.

Xiaoqi Han, Ru Li, Xiaoli Li, and Jeff Z Pan. 2023a. A
divide and conquer framework for knowledge editing.
Knowledge-Based Systems, 279:110826.

XiaoQi Han, Ru Li, Hongye Tan, Wang Yuanlong,
Qinghua Chai, and Jeff Z. Pan. 2023b. Improving
sequential model editing with fact retrieval. In The
2023 Conference on Empirical Methods in Natural
Language Processing.

Thomas Hartvigsen, Swami Sankaranarayanan, Hamid
Palangi, Yoon Kim, and Marzyeh Ghassemi. 2022.
Aging with grace: Lifelong model editing with dis-
crete key-value adaptors. In NeurlPS 2022 Workshop
on Robustness in Sequence Modeling.

Jie He, Victor Gutiérrez-Basulto, and Jeff Z. Pan. 2023.
BUCA: A Binary Classification Approach to Un-
supervised Commonsense Question Answering. In
Proc. of ACL2023.

Jason Hoelscher-Obermaier, Julia Persson, Esben Kran,
JToannis Konstas, and Fazl Barez. 2023. Detect-
ing edit failures in large language models: An
improved specificity benchmark. arXiv preprint
arXiv:2305.17553.

Nan Hu, Yike Wu, Guilin Qi, Dehai Min, Jiaoyan Chen,
Jeff Z Pan, and Zafar Ali. 2023. An Empirical Study
of Pre-trained Language Models in Simple Knowl-
edge Graph Question Answering. In Journal of
World Wide Web, pages 1-32.

Xuancheng Huang, Zijun Liu, Peng Li, Tao Li, Maosong
Sun, and Yang Liu. 2023. An extensible plug-and-
play method for multi-aspect controllable text gener-
ation. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 15233-15256.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebas-
tian Riedel, Piotr Bojanowski, Armand Joulin, and
Edouard Grave. 2022. Unsupervised dense informa-
tion retrieval with contrastive learning. Transactions
on Machine Learning Research.

14962

10

https://arxiv.org/abs/2310.11511
https://arxiv.org/abs/2310.11511
http://arxiv.org/abs/2401.04700
http://arxiv.org/abs/2401.04700
http://arxiv.org/abs/2401.07453
http://arxiv.org/abs/2401.07453
https://openreview.net/forum?id=JIrP8CIvx6
https://openreview.net/forum?id=JIrP8CIvx6

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natural
Questions: A Benchmark for Question Answering
Research. Transactions of the Association for Com-
putational Linguistics, 7:453—466.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on

Empirical Methods in Natural Language Processing,
pages 3045-3059.

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke
Zettlemoyer. 2017. Zero-shot relation extraction via
reading comprehension. In Proceedings of the 21st
Conference on Computational Natural Language
Learning (CoNLL 2017), pages 333-342, Vancouver,
Canada. Association for Computational Linguistics.

Bo Li, Yuanhan Zhang, Liangyu Chen, Jinghao Wang,
Fanyi Pu, Jingkang Yang, Chunyuan Li, and Ziwei
Liu. 2023a. Mimic-it: Multi-modal in-context in-
struction tuning. arXiv preprint arXiv:2306.05425.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582—
4597.

Xiaopeng Li, Shasha Li, Shezheng Song, Jing Yang, Jun
Ma, and Jie Yu. 2023b. Pmet: Precise model editing
in a transformer. arXiv preprint arXiv:2308.08742.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae
Lee. 2023a. Improved baselines with visual instruc-
tion tuning. In NeurIPS 2023 Workshop on Instruc-
tion Tuning and Instruction Following.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2023b. Visual instruction tuning. In 37th Con-
ference on Neural Information Processing Systems

NeurIPS 2023.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengx-
iao Du, Zhilin Yang, and Jie Tang. 2022. P-tuning:
Prompt tuning can be comparable to fine-tuning
across scales and tasks. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 61-68,
Dublin, Ireland. Association for Computational Lin-
guistics.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022. Locating and editing factual associ-
ations in gpt. Advances in Neural Information Pro-
cessing Systems, 35:17359-17372.

Kevin Meng, Arnab Sen Sharma, Alex Andonian,
Yonatan Belinkov, and David Bau. 2023a. Mass

editing memory in a transformer. In International
Conference on Machine Learning.

Yu Meng, Martin Michalski, Jiaxin Huang, Yu Zhang,
Tarek Abdelzaher, and Jiawei Han. 2023b. Tun-
ing language models as training data generators for
augmentation-enhanced few-shot learning. In Inter-
national Conference on Machine Learning, pages
24457-24477. PMLR.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question an-
swering. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2381-2391, Brussels, Belgium. Association
for Computational Linguistics.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea
Finn, and Christopher D Manning. 2022a. Fast model
editing at scale. In International Conference on
Learning Representations.

Eric Mitchell, Charles Lin, Antoine Bosselut, Christo-
pher D Manning, and Chelsea Finn. 2022b. Memory-
based model editing at scale. In International Con-
ference on Machine Learning, pages 15817-15831.
PMLR.

Jesse Mu, Xiang Li, and Noah Goodman. 2024. Learn-
ing to compress prompts with gist tokens. Advances
in Neural Information Processing Systems, 36.

Jeff Z. Pan, Simon Razniewski, Jan-Christoph Kalo,
Sneha Singhania, Jiaoyan Chen, Stefan Dietze, Hajira
Jabeen, Janna Omeliyanenko, Wen Zhang, Matteo
Lissandrini, ussa Biswas, Gerard de Melo, Angela
Bonifati, Edlira Vakaj, Mauro Dragoni, and amien
Graux. 2023. Large language models and knowledge
graphs: Opportunities and challenges. Transactions
on Graph Data and Knowledge.

Jonathan Pei, Kevin Yang, and Dan Klein. 2023. Preadd:
Prefix-adaptive decoding for controlled text genera-
tion. In The 61st Annual Meeting Of The Association
For Computational Linguistics.

Yuval Pinter and Michael Elhadad. 2023. Emptying
the ocean with a spoon: Should we edit models?
In Findings of the Association for Computational
Linguistics: EMNLP 2023, pages 15164-15172.

Song Wang, Yaochen Zhu, Haochen Liu, Zaiyi Zheng,
Chen Chen, et al. 2023. Knowledge editing for
large language models: A survey. arXiv preprint
arXiv:2310.16218.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. 2024. Efficient streaming lan-
guage models with attention sinks. In The Tivelfth
International Conference on Learning Representa-
tions.

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng,
Zhoubo Li, Shumin Deng, Huajun Chen, and Ningyu

14963

11

https://doi.org/10.18653/v1/K17-1034
https://doi.org/10.18653/v1/K17-1034
https://doi.org/10.18653/v1/2022.acl-short.8
https://doi.org/10.18653/v1/2022.acl-short.8
https://doi.org/10.18653/v1/2022.acl-short.8
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/D18-1260

Zhang. 2023. Editing large language models: Prob-
lems, methods, and opportunities. In Proceedings
of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 10222-10240,
Singapore. Association for Computational Linguis-
tics.

Seonghyeon Ye, Hyeonbin Hwang, Sohee Yang,
Hyeongu Yun, Yireun Kim, and Minjoon Seo. 2023.
Investigating the effectiveness of task-agnostic prefix
prompt for instruction following. In NeurlPS 2023
Workshop on Instruction Tuning and Instruction Fol-
lowing.

Lang Yu, Qin Chen, Jie Zhou, and Liang He. 2023.
Melo: Enhancing model editing with neuron-indexed
dynamic lora. arXiv preprint arXiv:2312.11795.

Ningyu Zhang, Yunzhi Yao, Bozhong Tian, Peng Wang,
Shumin Deng, Mengru Wang, Zekun Xi, Shengyu
Mao, Jintian Zhang, Yuansheng Ni, et al. 2024. A
comprehensive study of knowledge editing for large
language models. arXiv preprint arXiv:2401.01286.

Renrui Zhang, Jiaming Han, Aojun Zhou, Xiangfei Hu,
Shilin Yan, Pan Lu, Hongsheng Li, Peng Gao, and
Yu Qiao. 2023. Llama-adapter: Efficient fine-tuning
of language models with zero-init attention. arXiv
preprint arXiv:2303.16199.

Ce Zheng, Lei Li, Qingxiu Dong, Yuxuan Fan, Zhiyong
Wau, Jingjing Xu, and Baobao Chang. 2023. Can
we edit factual knowledge by in-context learning?
In Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pages
4862-4876, Singapore. Association for Computa-
tional Linguistics.

Danna Zheng, Danyang Liu, Mirella Lapata, and Jeff Z.
Pan. 2024. TrustScore: Reference-Free Evaluation of
LLM Response Trustworthiness. In ICLR 2024 Work-
shop on Secure and Trustworthy Large Language
Models (Set LLM 2024).

Zexuan Zhong, Zhengxuan Wu, Christopher Manning,
Christopher Potts, and Dangi Chen. 2023. MQuAKE:
Assessing knowledge editing in language models via
multi-hop questions. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 15686—15702, Singapore.
Association for Computational Linguistics.

Chen Zhu, Ankit Singh Rawat, Manzil Zaheer, Srinadh
Bhojanapalli, Daliang Li, Felix Yu, and Sanjiv Kumar.
2020a. Modifying memories in transformer models.
arXiv preprint arXiv:2012.00363.

Chen Zhu, Ankit Singh Rawat, Manzil Zaheer, Srinadh
Bhojanapalli, Daliang Li, Felix Yu, and Sanjiv Kumar.
2020b. Modifying memories in transformer models.

A Dataset

We conduct comprehensive experiments on three
widely recognized editing datasets: CounterFact

(CT), ZsRE for portability evaluation, introduced
in Yao et al. (2023), and MQUAKE for Multi-hop
evaluation, as described in (Zhong et al., 2023), the
dataset has been divided into MQ-CF (for coun-
terfactual edits) and MQ-T (for real-world fact up-
dates) two sub-datasets. The detail of the data is
provided in Table 8.

Both four datasets include single-hop and multi-
hop editing data, while CT and ZsRE only contain
up to 2-hop question-answer pairs, and MQ con-
tains up to 4-hop question-answer data. ‘Overlap’
indicates whether there is a final multi-hop question
answer in the edited factual calm. For example, for
a 2-hop question: "What city is Messi’s team in?"
if the edit is "Messi is playing for Inter Miami."
Then, the overlap is 0 because the model needs to
know that "Inter Miami is located in Miami." But
if the edit is "Inter Miami is located in Pairs," the
final answer "Pairs" is present in the edits, so the
overlap is 1.

Dataset Edits Hops Total Overlap
ZsRE 1 2 1037 3%
CT 1 2 1031 1%
MQ-CF 1,234 234 9218 68%
MQ-T 1 234 1868 99%

Table 8: Statistics of dataset.

B Experimental Details

Construct Input

To train the InstructEd, we use the following input
template as the inputs:

Instructions: {Instructions} \n Input:{Input}.

For example, as shown in Table 1, the instruction
for edits is "Messi is playing for Inter Miami.".

Accordingly, the Reliability input is "Instruc-
tions: Messi is playing for Inter Miami. \n Input:
Which team does Messi play for?".

The Generalization input is "Instructions: Messi
is playing for Inter Miami. \n Input: In which
team does Messi play?".

The Locality input is "Instructions: Messi is
playing for Inter Miami. \n Input: When was the
recent World Cup held?".

The Portability input is "Instructions: Messi is
playing for Inter Miami. \n Input: What city is
Messi’s team in?.

14964

12

https://doi.org/10.18653/v1/2023.emnlp-main.632
https://doi.org/10.18653/v1/2023.emnlp-main.632
https://doi.org/10.18653/v1/2023.emnlp-main.296
https://doi.org/10.18653/v1/2023.emnlp-main.296
https://doi.org/10.18653/v1/2023.emnlp-main.971
https://doi.org/10.18653/v1/2023.emnlp-main.971
https://doi.org/10.18653/v1/2023.emnlp-main.971
http://arxiv.org/abs/2012.00363

Evaluate Strategy

During the testing phase, two strategies emerge
depending on whether the gold instruction informa-
tion is known:

(1) When the gold instruction for each edit is
known, we concatenate the instruction with the
corresponding data for assessment. The instruction
is combined with a randomly selected and unrelated
data point before evaluation for locality data.

(2) When we do not know the gold instruction for
each edit, we rely on retrieving relevant instructions
from a pre-constructed instruction memory. If no
instructions were found, it indicates the current
data point does not necessitate modification.

Evaluate with Retrieval

When the gold instructions for each data are un-
known, we use the retrieval model msmarco (Izac-
ard et al., 2022) to retrieve instructions relevant to
the current input from a pre-constructed instruction
memory. If certain conditions are met, the data
with the highest-ranked retrieval result is consid-
ered the current input instruction. Otherwise, the
current data is deemed unnecessary to edit, and the
original LLMs are used to calculate.

Specifically, we calculate the standard deviation
of the scores for the top 5 ranked retrieval results.
When the standard deviation is larger than 0.1, the
similarity score of the highest-ranking result is sig-
nificantly higher than the scores of the other 4 data.
In this case, we consider the data with the highest
ranking as the instruction for the input. Otherwise,
the input does not contain a suitable instruction and
does not require editing.

Experimental Setting

We follow the setting provided in Yao et al. (2023)
and Han et al. (2023b) for the baseline methods.
We training InstructEd on 2 A100 (40G) GPUs
for 10 epochs. The warmup epochs, batch size,
learning rate, and weight decay are set to 4, 6, 9e-3,
and 2e-2, respectively. We add 5 prefixes per layer
and edit 10 to 20 layers in LLM.

C Evaluation metrics

To evaluate the performance of a post-edit model,
following Yao et al. (2023) and Gu et al. (2023),
We use the following editing properties: Reliabil-
ity,Generalization, and Locality for single editing
evaluation. Portability, Pory, , and Acc-Hop are
used for multi-hop editing evaluation. We denote

as the indicator function, and the post-edit model
is fT.

Reliability is measured as the average accuracy
on the edited dataset (z¢,Yys,) € Deg, T is the
length of D4 :

1 T
Rel = = ;I(fqp(xt) =y,). (16)

Generalization is measured as the average accuracy
on the equivalent neighbor of edit dataset Dyc,,, we
denote each edit case has N; neighbors:

Gen =

T N
ZZ (fr(=}) = yu)- (D

=0 =0

Locality is evaluated by the rate at which the post-
edit model fr’s predictions are unchanged as the
pre-edit model fo on Dy, L is the length of Dy,

1
Loc = —

(18)

For InstructEd, the y is the output of fy(-) or the
True label.

portabilityn,, is measured as the average accu-
racy on the multi-hop questions of edit case on
Dyor, note that each x € Dy, is related to an edit
i € Deg:

T
Porney = Y I(fr(x)=y). (19
(z,y)€Dpor
Pory;,,, is measured as the average accuracy on

the multi-hop questions of edit case on MQuAKE-
T qut :

T
1
Pory,, == >, 1(fr@@)=y). @0
(z,y)EDmgt

Hop-Acc is measured if the post-edit model can
answer the sub-questions for multi-hop questions
on MQUAKE-T ID,,,4¢, suppose each multi-question
x can be decomposed to s sub-questions x:

HopAcc—iz Z (fr(z:) = i)

(%,y) (zi,9:)
(21

14965

13

D Extended Discussion of Results

D.1 Analyse for Baselines

Tabel 9 and Table 10 shows the results for GPT2-
XL (1.5B) and LLaMA2 (13B) on two datasets.
Furthermore, we analyzed the results obtained by
different methods in Table 2 to verify the effective-
ness of InstructEd.

Fine-tuning (Zhu et al., 2020b), as the most di-
rect editing method, does not show ideal results,
resulting in lower local alignment scores while
achieving lower editing capabilities. LoRA im-
proves performance by training low-rank matrices
to replace parameters in FFN compared to fine-
tuning, but it also exhibits poor generalization.
Both methods directly modify parameters in LLMs
through gradient descent, neglecting the impact of
parameter changes on other aspects of the model’s
performance. Additionally, editing performance
cannot be guaranteed when there is limited editing
data.

ROME and MEMIT (Meng et al., 2022,
2023a), as representatives of the located-and-edit
methods, generally exhibit great and stable perfor-
mance. However, as they directly modify param-
eters in LLMs, there are still unknown impacts
on the model and the risk of overfitting caused
by excessive memorization resulting from edit-
ing(Hoelscher-Obermaier et al., 2023).

RASE and SERAC (Han et al., 2023b; Mitchell
et al., 2022b) utilize additional cache as retrieval
memory, training other parameters and additional
modules for editing. However, as the results indi-
cate, both approaches perform poorly on portability.
This is attributed to their focus on knowledge up-
dates during additional training modules, neglect-
ing how to use knowledge effectively.

IKE (Zheng et al., 2023), as the most compet-
itive method, achieves good performance on real-
world datasets ZsRE by providing additional edit-
ing examples to prompt the model to learn the cur-
rent task format. However, the lower performance
on CounterFACT reflects the significant knowl-
edge conflict with the LLLMs, leading to unsuccess-
ful modifications. Additionally, the performance
of IKE is influenced by the number of additional
prompts, requiring the model to have the capability
to handle long texts.

Our approach focuses on learning how to utilize
knowledge for LLMs. We design instructions and
guide the model through the interaction of instruc-
tions and questions, achieving comprehensive edit-

ing performance in learning and utilizing knowl-
edge. Furthermore, our approach maintains the
parameters of LLMs, enabling application across
various datasets while combining with retrieval-
augmented methods to enhance performance.

D.2 Sequential editing Results.

As shown in Table 11, after continuous editing of
100 edits, the overall performance of MEMIT sig-
nificantly deteriorates, and other methods are also
heavily impacted, especially in terms of the Pory,,,
metric. This is attributed to the continuous param-
eter adjustments these methods make to the LLM,
leading to an increasing difficulty in editing and
gradual degradation of model performance. In con-
trast, by freezing the parameters of LLMs, SERAC
experiences a slower performance decline but fails
to achieve satisfactory results in GEN and Pory,,.

D.3 Ablation experiments on editing layers

The results of ablation experiments are shown in
Figure 1. We tested the insertion of 5, 10, and 15
layers of prefixes into LLM. The results indicate
that adding additional parameters beyond the 20th
layer in LLM leads to an overall performance de-
crease compared to before the 20th layer, especially
in terms of local performance. This suggests that
modifying parameters in the higher layers of LLM
is more likely to impact model performance.

When modifying parameters in the lower layers
of LLM, the model exhibits lower success rates in
editing. However, when modifying intermediate
layers, there is a noticeable improvement in overall
performance (such as 0-15 and 10-20). In order to
maximize editing efficiency, we chose to modify
layers 10-20.

D.4 Results for portabilit

We use the dataset in Yao et al. (2023) to evaluate
the results on Subject Replace (Rep) and Reversed
Relation (Rev). As the results in Table 6 show.
Regarding Reversed Relations, InstructEd can un-
derstand and reason based on current instructions
for reversed relations. In terms of Subject Replace,
InstructEd performs modestly without the use of
instructions. However, its effectiveness improves
when relevant instructions are provided, indicat-
ing that our approach can significantly enhance the
model’s comprehension and ability to use instruc-
tions.

14966

14

Model Type Method Rel Gen Loc Pory,, Score H Rel Gen Loc Pory,, Score H
CounterFact (%) ZsRE (%)
FT 97.38 10.18 81.38 41.13 57.52 27.57 56 3049 85.31 4551 5433 4742
M MEMIT 80.89 46.17 98.84 43.02 6723 5936 | 67.09 52.82 99.57 4796 6686 61.79
GPT2 ROME 99.71 77.59 8691 41.68 7647 6847|9992 88.16 9491 47.1 8252 753
XL (1.5B) LoRA 100 6751 44.03 4129 63.20 5575|5253 5243 96.77 44.19 6148 56.28
IKE 9942 68.77 4161 4286 63.17 5558 | 99.82 9552 73.7 5326 80.58 75.71
P InstructEd 100 99.51 61.16 61.31 8049 7588 | 97.88 97.19 45.10 57.07 7431 66.44
+ Retrieval 98.20 91.35 9145 60.68 8542 8240 | 9590 7837 97.55 5444 8156 77.21
Table 9: Results on CounterFact and ZsRE.
Rel Gen Loc Por Score H Layer Pory,, Rel Gen Loc Score
CT 9985 99.17 8288 71.67 8839 86.74 0:10 0.6619 0.9848 0.9832 0.6914 0.8303
ZSRE 97.83 98.13 7347 7330 85.68 83.92 0:15 07091 0.9758 09706 0.7615 0.8543
0:5 0.6957 0.9596 0.9597 0.7505 0.8414
10:15 0.6853 0.9916 0.9862 0.7097 0.8432
Table 10: Results on LLaMA2 13B. 1520 0.6723 09737 09787 0.6752 0.8250
ZsRE 15:30 0.6756 0.9744 09711 0.6908 0.8280
Rel Gen Loc Pomop Scoe H 20:25 0.6682 0.9720 0.9638 0.6722 0.8190
MEMIT,, 7200 5333 3000 2283 44.54 3644 20:30 0.6605 0.9689 0.9564 0.6480 0.8084
ROME,, 99.50 7850 90.50 3.17 67.92 1145 25:30 0.6895 0.9738 0.9585 0.7203 0.8355
SERAC,; 92.00 400 100.00 4.00 50.00 7.68 5:10 0.6786 0.9605 09791 0.5825 0.8002
cT InstructEd,; 98.16 100.00 79.25 67.72 86.28 84.08 10:20 0.7023 0.9857 0.9833 0.7563 0.8569
MEMIT,, 625 625 1475 792 879 778

ROME,» 1875 21.92 7942 1642 34.13 23.20 0:10 0.6769 1.0000 0.9768 0.7575 0.8528
SERAC,» 100.00 11.17 100.00 12.33 55.88 20.98 0:15 07228 0.9787 0.9807 0.7919 0.8685
InstructEd,, 99.00 96.00 73.50 6227 82.69 79.71 05 0.6705 09990 09540 07376 0.8403
l\égﬁgm z‘s‘-ég 23?2 9543:3 553-6947 ;3?3 795-4565 10:15 0.6485 0.9922 0.9871 0.7470 0.8437
GRACE,; 3399 3366 100 5113 5470 45.10 15:200.6334 0.9924 09793 0.7444 0.8374
S InstructEd,; 97.97 98.19 7448 71.56 8555 83.70 20:25 0.5918 0.9842 09176 0.7244 0.8045
MEMIT,; 5489 5231 3694 27.09 4281 3948 20:30 0.5774 0.9801 0.9026 0.7360 0.7990
o By o 25:30 0.5767 0.9922 0.8804 0.7160 0.7913

w2 K
SERAC,, 97.80 7821 100.00 1051 71.63 31.21 5:10 06505 09921 09713 0.7528 0.8417
InstructEd,s 9836 9875 8128 67.33 8643 84.30 10:20 0.6548 0.9930 0.9964 0.7886 0.8582

Table 11: Results for Sequential editing 100 edits. v1
and v2 means the LLaMA1(7B) and LLaMA?2 (7B).

D.5 Discussion of the role of ATT and FFN in
Model Editing

In the Large Language Model (LLM), there exists
a significant amount of parameterized knowledge.
The mechanism for storing knowledge in the LLM
remains an open question. Some studies have exper-
imentally verified that more knowledge is retained
in the Feedforward Neural Network (FFN). Build-
ing on this finding, corresponding editing models
have been proposed, yielding certain advantages
by updating parameters in the FFN.

However, Attention serves as a crucial module in
the Transformer, and its role in the knowledge stor-
age process still warrants investigation. Previous
research conducted through ablation analysis found
that Attention has a relatively minor impact on edit-
ing and that achieving knowledge editing through
parameter updates in Attention is challenging. This
perspective is one-sided, particularly given that At-

Table 12: The ablation studies about patched layer. We
use the LLaMA2-7B as the base model.

tention can equip the Transformer with potent in-
teractive capabilities, making it a vital aspect in
model editing. Furthermore, precise knowledge
updates can be achieved by controlling the Query,
Key, and Value (QKV) components within Atten-
tion. A deeper understanding of Attention in the
future can facilitate the proposal of more efficient
and accurate model editing methods.

D.6 Discussion of the prompt-tuning

Our approach achieves understanding and utiliza-
tion of instructions by inserting additionally trained
prompts into different layers of attention. As shown
in Table 13, when not using prefix and only apply-
ing editing in the form of instructions to the original
LLMs, the base model performs well on "Rel", in-
dicating that instructional knowledge can provide
the model with good factual support, and the model
can extract knowledge from it. However, the lower

14967

15

performance on "Gen", "Loc" and "Por" reflects the
inability of the base model to transfer new knowl-
edge to relevant content, which means they fail to
understand and utilize the knowledge.

In addition, there are many other efficient fine-
tuning methods such as Adapter, LoRA, Prompt,
etc. Besides utilizing prefixes, we compared with
Adapter ("w FFN" in Table 4) and LoRA ("LoRA"
in Table 2), respectively.

Overall, while LoRA and adapters can improve
the efficiency of fine-tuned models, they add the
incremental change Ah, obtained from the feed-
forward layer with the original h from the previ-
ous layer, the adapter or LoORA modifies the hid-
den representation calculated by the pre-trained
model h = h + Ah, which is lack interaction with
the information in the LLM. And the prefix re-
quires fewer parameters. They can interact with
the context in the LLM by adding the trainable
prefix, which enables more efficient guidance for
the model to perform corresponding reasoning and
computations based on instruction knowledge. As
shown in Table.13

Model Setting Rel Gen Loc Pory,, Score
InstructEd 0.9791 09714 0.7254 0.6210 0.8242

Vi w/o prefix 0.9514 0.6231 0.4699 0.5128 0.6393
V2 InstructEd 0.9930 0.9964 0.7886 0.6548 0.8582
w/o prefix 0.9885 0.7065 0.5045 0.5502 0.6874

GPT2 InstructEd 0.9825 0.9971 0.7515 0.6531 0.8461

w/o prefix 0.9728 0.5747 0.3834 0.4423 0.5933

Table 13: The ablation results of prefix on CT

14968

