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Abstract

In this paper, we investigate which questions
are challenging for retrieval-based Question
Answering (QA). We (i) propose retrieval com-
plexity (RC), a novel metric conditioned on the
completeness of retrieved documents, which
measures the difficulty of answering questions,
and (ii) propose an unsupervised pipeline to
measure RC given an arbitrary retrieval sys-
tem. Our proposed pipeline measures RC more
accurately than alternative estimators, includ-
ing LLMs, on six challenging QA benchmarks.
Further investigation reveals that RC scores
strongly correlate with both QA performance
and expert judgment across five of the six stud-
ied benchmarks, indicating that RC is an effec-
tive measure of question difficulty. Subsequent
categorization of high-RC questions shows that
they span a broad set of question shapes, includ-
ing multi-hop, compositional, and temporal
QA, indicating that RC scores can categorize a
new subset of complex questions. Our system
can also have a major impact on retrieval-based
systems by helping to identify more challeng-
ing questions on existing datasets.

1 Introduction

Retrieval-based approaches are a dominant
paradigm in QA. They constitute a basic build-
ing for many QA pipelines, as they can gather
accurate information from external sources that
are useful for answering questions. Notable ex-
amples include the Retrieve and Rerank system
(Gupta et al., 2018; Garg et al., 2020) and the recent
Retrieval Augmented Generation (RAG) (Lewis
et al., 2020b; Hsu et al., 2021). While retrieval sys-
tems effectively address questions targeting com-
mon knowledge, they can struggle with address-
ing novel, domain-specific questions that require
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Figure 1: While both questions are complex using the
definition in prior works, the "Low RC" question on
the left is easy for RAG systems, while the "High RC"
question on the right is far more difficult because the
probability of finding an existing document comparing
lions and freezers is low. Documents retrieved by com-
mercial search engines illustrate this challenge. RC cor-
relates with the probability that the retrieved documents
contain sufficient information to generate a reference
answer.

fresh, contextually accurate information. Genera-
tive models, on the other hand, bring the ability to
generate responses to such challenging questions.
For instance, Bing-GPT uses retrieval to answer
questions about real-time events beyond the LLMs’
training data cutoff (Dao, 2023). However, retrieval
augmentation can fail for challenging questions.
To address this problem, the QA community devel-
oped benchmarks to measure the performance of
QA approaches on these types of questions. For
example, HotPotQA (Yang et al., 2018b), Com-
plexWebQuestions (Talmor and Berant, 2018), and
MuSiQue (Trivedi et al., 2022) challenge systems
by proposing questions with "complex" shapes,
such as multi-hop questions, requiring multiple
steps of reasoning, e.g., "what is the GDP of the
country with the tallest bridge?". While it is as-
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sumed that these question shapes are equally dif-
ficult for RAG and other QA systems, subsequent
works indicate that this is not the whole picture of
QA complexity. For example, Min et al. (2019a)
show that nearly 61% of HotPotQA’s multi-hop
questions actually have "single-hop answer solu-
tions" - i.e., a single document that contains the
correct answer - that a simple RAG system can use
to answer correctly. More recent RAG-oriented
benchmarks such as Fresh QA (Vu et al., 2023)
further illustrate that the complexity of the answer
evidence is relevant in identifying difficult ques-
tions since the evidence can become false if not
recent enough.

In this paper, we introduce a novel metric
named Retrieval Complexity and an unsupervised
pipeline, named Reference-based Question Com-
plexity Pipeline (RRCP) (Section 4) to recognize
it. Specifically, given a query question and one or
more reference answers, RRCP employs an arbi-
trary retriever to procure pertinent documents. Sub-
sequently, utilizing a novel reference-based eval-
uator named GenEval, RRCP scores the question
based on the retrieved documents and the supplied
reference answers. Conceptually, RC approximates
the degree to which the evidence required to an-
swer the question is spread across documents in
the retrieval batch. The intuition behind RC is that
the greater the fragmentation of required informa-
tion within a retrieval batch, the harder it is for a
RAG system to answer the question correctly. For
example, Fig. 1 shows two questions with highly
similar question semantics but significantly differ-
ent retrieval quality (e.g., relevance and compre-
hensiveness of the information) to illustrate what
RC measures.

We compare RRCP with supervised and unsu-
pervised models, demonstrating its superior accu-
racy in classifying RC questions. Our unsupervised
approach enables applicability to new QA bench-
marks, acting as a valuable resource for the QA
community. RC is intimately linked to a specific
retrieval corpus, capturing (i) index coverage, (ii)
retrieval method quality, and (iii) varying semantics
of questions into a single metric. To support this
claim, we compute RRCP scores for six QA bench-
marks using a state-of-the-art search engine (Bing)
and reveal a strong correlation between RC scores
and QA system performance. In addition, we show
that our human expert assessment of question dif-
ficulty against retrieved evidence also correlates
with RRCP scores. Finally, we present a qualitative

analysis of 200 high-RC questions drawn from all
benchmarks. These findings indicate a connection
between high RC and diverse question types, such
as multi-hop (23%), comparative (10%), temporal
(15%), superlative (3%), and aggregate (16%).

In summary, our paper (i) motivates the need to
estimate the answering difficulty of questions given
the availability of evidence, (ii) defines RC, a new
metric that measures the difficulty of questions con-
ditioned on a retrieval batch, (iii) proposes RRCP,
an unsupervised pipeline to measure retrieval com-
plexity, and (iv) empirically demonstrates that our
pipeline is superior at classifying high RC ques-
tions and (v) shows that higher RC scores correlate
with lower QA performance.

2 Related work

In this section, we introduce the related work on
the main topics of our paper: question complexity,
LLM-based QA, retrieval for QA, and automatic
evaluation.

Notions of Question Complexity: A popular no-
tion of question complexity in QA literature consid-
ers the number of reasoning steps (hops) required to
get to the answer. Multi-hop questions (Mavi et al.,
2022) - those expected to require at least two rea-
soning steps - are one source of complex questions.
Popular benchmarks for multi-hop QA include Hot-
PotQA (Yang et al., 2018b) and MuSiQue (Trivedi
et al., 2022), which are constructed by aggregat-
ing multiple one-hop questions into a multi-hop
one. Min et al. (2019b) highlight that such multi-
hop questions may, in fact, not require multiple
reasoning steps to answer, finding that many may
be answered with a single snippet extracted from
a relevant document. Talmor and Berant (2018)
suggests a related notion, compositional complex-
ity, that assesses the degree to which the answer
must be composed from multiple pieces of evi-
dence. Subsequent works have shown that both
multi-hop and compositional questions can be de-
composed into simpler sub-questions (Perez et al.,
2020; Yoran et al., 2023), enabling a strong LLM
to answer using chain-of-thought (CoT) (Wei et al.,
2022). To conclude, prior works tried to perform
some performance prediction of queries (Zhou and
Croft, 2007; Datta et al., 2022) relying on evidence
in the form of different characteristic patterns in
the distribution of Retrieval Status Values (RSVs).

Reasoning over temporal information - i.e., in-
formation that changes quickly over time - is an-
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other dimension of QA complexity, captured in
benchmarks like Time-Sensitive-QA and Fresh-
LLM (Chen et al., 2021; Vu et al., 2023). Temporal
questions require systems to reflect embedded no-
tions of temporality, which may either be explicit
(e.g., Who was the president of the US in 1945?)
or implicit (e.g., Who was the last president of the
US?). Temporal knowledge graphs (Saxena et al.,
2021; Shang et al., 2022; Sharma et al., 2023), tem-
poral embeddings in the (Huang et al., 2022), and
retrieval have all been proposed as solutions to the
complexity of temporal QA (Vu et al., 2023).

LLMs for Question Answering: Transformer-
based models (Vaswani et al., 2017) have become
the de-facto standard for QA tasks, either in the
form of encoder-only models (Devlin et al., 2019;
Liu et al., 2019; Clark et al., 2020), encoder-
decoder models such as T5 (Raffel et al., 2020;
Lewis et al., 2020a) or decoder-only models (Rad-
ford et al., 2018), most notably ChatGPT. Despite
the impressive performance of these models across
a variety of QA benchmarks, answering complex
and convoluted questions without hallucinations is
an enduring challenge (Huang et al., 2023). RAG
systems seek to address this challenge by providing
retrieved information as grounding knowledge for
answer generation (Lewis et al., 2020b; Gabburo
et al., 2022; Borgeaud et al., 2022).

Retrieval for QA: BM25 (Crestani et al., 1998)
is a traditional retrieval approach also widely used
for QA. It uses an unsupervised scoring function
based on a sparse bag-of-words representation of
text. More recently, supervised retrieval systems
that compute an approximate nearest neighbour
score on dense representations of query and docu-
ment have been proposed, such as DPR (Karpukhin
et al., 2020) and ColBERT (Khattab and Zaharia,
2020). Other models attempt to capture the benefits
of both techniques by learning a sparse representa-
tion of documents conditioned on relevant queries,
such as UniCOIL (Lin and Ma, 2021) and DeepIm-
pact (Mallia et al., 2021).

Automatic QA Evaluation: Automatically eval-
uating the correctness of answers is a challenging
task, especially in light of the compelling halluci-
nations created by strong generative LLMs. Previ-
ously, token-level metrics such as BLEU (Papineni
et al., 2001) and sentence-level metrics such as
BERTScore (Sun et al., 2022) and BLEURT (Yan
et al., 2023) have been used for this task. However,

these metrics do not correlate well with human
annotation for QA tasks, as shown in (Gabburo
et al., 2022). Recently, several works have pro-
posed reference-based evaluation metrics for the
QA and demonstrated that these have greater cor-
relation with human annotations, such as AVA (Vu
and Moschitti, 2021), BEM (Bulian et al., 2022),
and SQuARe (Gabburo et al., 2023).

3 Retrieval Complexity of Questions

A retrieval system provides users with relevant
and accurate information in response to their
queries (Baumgärtner et al., 2022b; Rogers et al.,
2023). Recently, retrieval augmentation - that is,
conditioning generation on retrieved evidence - has
been shown to enable generative models to address
more complex, multi-faceted questions (Luo et al.,
2023). We conceptualize RC, a specific notion of
question complexity, which can also be used to
evaluate the complexity of questions used in prior
retrieval-based QA systems, e.g., RAG models.

Intuitively, a question can be considered complex
for retrieval augmentation if it cannot be answered
by extracting a snippet from a retrieved document.
This dimension of complexity can occur for mul-
tiple reasons, such as if the answer requires multi-
ple reasoning steps or a composition of supporting
facts spread across retrieved content (Dua et al.,
2019; Yang et al., 2018a). Effectively, retrieval
complexity occurs when multiple pieces of infor-
mation must be combined in a complex fashion
to generate the correct answer, such as reasoning,
comparison, or composition over multiple facts.
Multiple factors can increase the retrieval complex-
ity, including index coverage, retrieval quality, and
question syntax, as each plays a role in determin-
ing whether a document containing a snippet that
answers the question is retrieved.

For example, answering the question "Are lions
bigger than tigers?" (Fig. 1) requires a comparison
between two related entities. While this question
could be considered complex, the close relation
of the lions and tigers increases the probability
that a single snippet talks about the size of both
animals. However, the probability above is an order
of magnitudes lower for a similar question, such as
"Are lions bigger than freezers?".

4 Modeling Retrieval Complexity

To model and recognize the retrieval complexity
(Section 3), we designed an unsupervised reference-
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Figure 2: Overview of our RRCP for measuring the
complexity of questions. A retrieval system retrieves
documents for the input question. These are examined
by a reference-based evaluation system, which provides
the probability of correctness scores. These approxi-
mate the answerability and completeness of retrieved
information, i.e., an estimation of RC.

based pipeline named RRCP (reference-based RC
pipeline) shown in Fig. 2. RRCP is composed of
three primary components: (i) A state-of-the-art
retrieval system based on multiple indexes. This,
given a question Q, composes a set of supporting
documents D = {d0, d1, ..., dk}. (ii) A power-
ful automatic evaluation system named GenEval,
which, using the retrieved documents and a set of
references, estimates the RC of Q, and (iii) a con-
straint enforcer mechanism based on two thresh-
olds.

4.1 Retrieval System
The retrieval system component of RRCP is a
framework that uses multiple indexes to efficiently
retrieve relevant documents in response to a given
question Q. This system employs state-of-the-art
techniques to compose a set of supporting docu-
ments, D = d0, d1, ..., dk, where each document
di is deemed relevant to the query Q. To ensure
high reliability and robustness, we used a hybrid
retrieval system based on BM25 (Crestani et al.,
1998) and ColBERT (Khattab and Zaharia, 2020).

4.2 GenEval
Inspired by recent automatic evaluation systems
such as BEM (Bulian et al., 2022) and SQuArE
(Gabburo et al., 2023), we designed a novel model
named GenEval to recognize the difficulty of a
question. GenEval is an encoder-decoder model
trained to understand if a document di ∈ D is
relevant (e.g., contains a correct answer) given a

Models AE Finetuning Accuracy

SQuARe ✗ 0.572
GenEval ✗ 0.750

BEM ✓ 0.897
SQuARe ✓ 0.907
GenEval ✓ 0.916

Table 1: Comparison of GenEval, SQuARe and BEM
on the Answer Equivalence (AE) test set. The results
show that both in a zero-shot setting (without the fine-
tuning on the target dataset) and in a fine-tuned setting,
GenEval exhibits better performances in terms of ac-
curacy, leading to a better correctness estimation. The
better results divided per setting are in bold.

question Q and a set of multiple references R =
{r0, r1, ..., rk}.

GenEval differs from BEM and SQuArE in two
main aspects: First, both SQuArE and BEM are
based on an only-encoder transformer architecture
(Devlin et al., 2019; Liu et al., 2019; He et al.,
2021). Using an encoder-decoder model allows for
a more flexible model training starting from state-
of-the-art large language models such as T5-xxl
(Raffel et al., 2020).

Second, unlike the aforementioned approaches,
GenEval has been trained on more reference
datasets and on synthetic data, increasing flexibil-
ity to cases where ground-truth references are not
available and using a two-headed architecture to
predict the "answer correctness" and "tokens rel-
evance". The first one estimates the probability
of di containing an accurate answer for Q, while
the second computes the relevance distribution of
each token of di according to Q. RRCP uses these
two inner metrics to model the Answerability and
the Retrieval Completeness constraints necessary
to estimate RC. We provide better details about
GenEeval in Appendix A.4.

To prove the better performance of GenEval over
the BEM and SQuARe, we conducted an experi-
ment measuring the performance of the GenEval on
the AE (Bulian et al., 2022) testset. Table 1 presents
the comparison results of GenEval, SQuARe, and
BEM on the Answer Equivalence (AE) test set
in both zero-shot and fine-tuned settings. In the
zero-shot setting, without fine-tuning on the tar-
get dataset, GenEval shows better accuracy with
a value of 0.750 compared to SQuARe’s 0.572.
In the fine-tuned setting, all models were fine-
tuned on the target dataset, and the table shows
that SQuARe and GenEval exhibit improved perfor-
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mances, with the latter having an accuracy of 0.916,
which is higher than both SQuARe’s 0.907 and
BEM’s 0.897. These results suggest that GenEval
outperforms SQuARe and BEM in terms of accu-
racy and correctness estimation in both settings.

4.3 RRCP Constraints

RRCP enforces two constraints, Answerability and
Retrieval Set Completeness, to estimate RC.

4.3.1 Answerability
From a retrieval perspective, a requirement that
makes a question complex is the probability of an-
swering it with a single document (Sec. 3. For
example, questions like "What is the capital of
France?" can be easily answered by a single docu-
ment and do not fit our definition of retrieval com-
plexity. In contrast, questions like "Is Paris bigger
than the capital of the US?" have a higher degree of
complexity since the probability of finding a docu-
ment that makes this comparison is more difficult
to find.

We capture this property by setting a constraint
on answerability: if the target question fails to
meet this criterion, it is deemed potentially com-
plex. Specifically, answerability is met if at least
one document di ∈ D contains an accurate re-
sponse to Q. To compute the probability that an
answer exists in a document, we use the probability
estimated by GenEval. Specifically, we define a
threshold Tans ∈ [0, 1] over the probability com-
puted by the GenEval "answer correctness" head
of a document containing the correct answer si: if
the score exceeds Tans, the question is answerable.
Intuitively, if the question can be answered by a
single retrieved document di in D, si will approach
1. As such, we model the answerability function
Ans(SD) as follows:

Ans(SD) =

{
0 if max(si ∈ SD) < Tans

1 if ∃ si ∈ SD ≥ Tans,
(1)

where Tans is used to discriminate between not
answerable questions when si < Tans, and answer-
able questions when si ≥ Tans.

4.3.2 Retrieval Set Completeness

Retrieval set completeness determines how much
the information required to answer is spread across
different documents. Indeed, a document could
be partially relevant to the question but without

containing sufficient information to induce the cor-
rect answer (Fan et al., 2018; Baumgärtner et al.,
2022a). For instance, to answer a question like
"Who are the top 5 goalkeepers of the last ten
years?" a two-year-old document could not con-
tain all the information needed since there is no
evidence about the scores achieved by the goal-
keepers in the last two years. For this reason, the
document is still relevant but not exhaustive. With
the retrieval set completeness, we aim to estimate
the retrieval complexity of a question by exam-
ining the heterogeneity of the retrieval set. To
perform this estimation, we compute the entropy
of the relevance of each document in the retrieval
batch di ∈ D with each token in the question. For
example, given the question "Are lions bigger than
tigers?", we can expect that documents discussing
lions will be more relevant to the question subparts
that refer to lions, and the opposite for documents
discussing about tigers. Based on this notion of
relevance, we can approximate whether the knowl-
edge relevant to each portion of the question is
present in the retrieval set.

To measure completeness, we leverage the rele-
vance distribution extracted from GenEval at the to-
ken level to generate a distinct attention distribution
for each document in D. These distributions are
organized into a matrix M of size |D|× |Q|, where
each row represents the token tj from the question,
and columns indicate the relevance Rel(di, tj) of
each document di to those tokens.

Finally, to ensure comparability, we normalize
the entropy for each document and compute the
average normalized entropy to obtain the complete-
ness score SD:

SD =

∑|D|
i=1

∥∥∥
∑|Q|

j=1Rel(di, tj)
∥∥∥

|D| . (2)

Similar to answerability, we apply a threshold
Tcom to the completeness score:

Com(SD) =

{
1 if SD ≥ Tcom

0 if SD < Tcom

(3)

4.4 Classifying Complex Questions
While answerability and retrieval set completeness
are two standalone criteria, RRCP leverages both
signals to approximate retrieval complexity (RC).
Specifically, RRCP considers a question complex
when the question is not answerable with a single
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document and when the retrieval set is incomplete.
Formally, we consider both 1 and 3, classifying a
question as retrieval-complex if Ans(SD) = 0 and
Com(SD) = 1. In addition to enabling RC clas-
sification, answerability and completeness scores
can be used as additional diagnostic metrics.

5 Experiments

In this section, we focus on studying Retrieval
Complexity (RC) and our RRCP framework for its
detection. First, in sections 5.1 and 5.2 we describe
the datasets we considered and the setup of RRCP.
Then, we validate RC and RRCP by conducting
both quantitative and qualitative analyses. Specif-
ically, we first compare RRCP against a strong
prompted LLM unsupervised baseline directly on
a set of 4 selected datasets in, targeting the specific
complexity class for each of them (Section 5.3).
Secondly, in Section 5.4, we evaluate the correla-
tion between the RC classification (complex/not
complex) with LLM answer capability. This al-
lows us to understand some possible limitations of
our notion of complexity. In the third quantitative
experiment (Section 5.5), we measure the answer-
ability of the questions identified as complex by our
pipeline using a state-of-the-art search engine, such
as Bing. Finally, we perform a qualitative analysis
to inspect the limitations and the generalizability
of our approach (Section 5.7).

5.1 Datasets

We evaluated RRCP on the following academic
benchmarks: ComplexWebQuestions (CWQ) (Tal-
mor and Berant, 2018), HotPotQA (Yang et al.,
2018b), StrategyQA (Geva et al., 2021), and
MuSiQue (Trivedi et al., 2022). We used the
question complexity information provided in each
dataset to define "complex" or "not complex" labels.
For CWQ, we labelled their simple questions as not
complex and the more challenging ones composed
from them as complex. For HotPotQA, we used
the "difficulty level" associated with each question
in the dataset. For MuSiQue and StrategyQA, we
considered one-hop questions as not complex and
multi-hop ones as complex.

We also used Natural Questions (Kwiatkowski
et al., 2019) and QuoraQP-a (Wang et al., 2020)
to evaluate our pipeline on more natural user-
generated questions. A small team of expert annota-
tors determined complexity labels on these datasets
using the instructions outlined in Appendix A.6.

Dataset Complexity Class
Compositional Multihop

CWQ (Talmor and Berant, 2018) ✓ ✓

HotPotQA (Yang et al., 2018b) ✗ ✓

StrategyQA (Geva et al., 2021) ✓ ✓

MuSiQUe (Trivedi et al., 2022) ✗ ✓

Natural Questions (Kwiatkowski et al., 2019) ✗ ✗

QuoraQP-a (Wang et al., 2020) ✗ ✗

Table 2: Categorization of datasets into compositional
and multihop complexity classes based on their respec-
tive characteristics.

Table 2 reports the complexity categories we found
in some of the datasets above. Additional details
regarding the distribution, size, and splits of these
datasets are defined in Appendix A.2.

5.2 RRCP setup

We implemented RRCP (described in Section 3),
with a state-of-the-art hybrid retrieval system based
on BM25 (Crestani et al., 1998) and ColBERT
(Khattab and Zaharia, 2020) with an index of docu-
ments containing (Wikipedia (Petroni et al., 2021),
and MS MARCO (Nguyen et al., 2016)).

To implement the automatic evaluation system
represented by GenEval (Sec.4.2), we trained a
T5-xxl model (Raffel et al., 2020) on two exist-
ing datasets, which are WQA (Vu and Moschitti,
2021) and AE (Bulian et al., 2022). We discuss ad-
ditional details regarding the experimental setting
and the performance against other automatic evalu-
ation metrics in Appendix A.4. We set thresholds
Tans = 0.15 and Tcom = 0.80 based on a small set
of 50 manually written test questions.

5.3 Complex Question Identification

To compare the ability of RRCP to detect com-
plex questions with alternative approaches (e.g.,
LLMs, supervised models), we use the answer-
ability and completeness scores to classify ques-
tions as described in Section 5.3. We compare the
performance in terms of accuracy and f1-measure
against a strong unsupervised baseline consisting of
a prompted state-of-the-art LLM for this task. We
report the results of these experiments in Table 3.

Furthermore, we ablated different configurations
of the pipeline to assess the benefits given by the
two constraints. Combining the answerability and
the retrieval set completeness constraints proved
to be beneficial, enabling a more accurate classi-
fication than the alternatives. RRCP, based only
on the answerability constraint, generally demon-
strates higher results than the LLM baseline. Also,
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Approach Answerability Retrieval Set CWQ HotPotQA StrategyQA MuSiQue Average
Completeness ACC F1 ACC F1 ACC F1 ACC F1 F1

LLM ✗ ✗ 0.649 0.780 0.699 0.815 0.548 0.436 0.582 0.709 0.685

RRCP
✓ ✗ 0.905 0.872 0.611 0.731 0.754 0.737 0.799 0.834 0.794
✗ ✓ 0.818 0.189 0.560 0.674 0.554 0.493 0.679 0.651 0.502
✓ ✓ 0.912 0.882 0.718 0.829 0.623 0.742 0.780 0.838 0.823

Table 3: Performance comparison of our pipeline against a complex question classifier in terms of Accuracy and
F1 (the best results are in bold). The pipeline has been tested ablating the two constraints (Answerability and
Retrieval Completeness) and on different Complex QA datasets. The results show that our pipeline is able to identify
complex questions with high accuracy and that combining the two constraints is beneficial. For these experiments,
we selected the best pipeline thresholds based on the development set.

without considering the completeness constraint,
the pipeline provides accurate predictions. On
the other hand, the model only based on retrieval
completeness achieves lower performance than the
other approaches, highlighting the fact that it can
not be used standalone.

5.4 LLM Performance on Complex Questions

In this section, we study whether RRCP predic-
tions (complex vs. not complex) correlate with the
notion of complexity of LLM-based systems (only
using parametric knowledge). Specifically, we eval-
uate the correlation between its RC classification
and LLM answer capacity (0/1 label), where the
latter is computed by (i) generating an answer with
LLM and (ii) manually annotating its correctness.

For each dataset in Section 5.1, we apply RRCP,
employing our defined criteria to filter complex
from non-complex questions. We use an end-to-
end QA system composed of a prompted Mistral
7B (Jiang et al., 2023) (a large language model)
designed to receive input questions and generate
accurate answers. Then, we evaluated each gener-
ated answer, comparing it with the original gold
answers in the datasets. Finally, we measured the
agreement between the detected RC and answer
correctness in terms of Pearson Correlation.

We present the results of this analysis in terms of
accuracy in Table 4, where we show the accuracy
scores for both complex and non-complex ques-
tions across the different datasets and their Pearson
Correlation. Each entry in the table represents the
percentage of questions correctly answered by this
LLM-based QA system.

The results confirm that our approach effectively
identifies complex questions, resulting in higher an-
swerability. Questions identified as complex by the
pipeline generally exhibit higher accuracy in terms
of answerability, indicating that these questions are

Dataset Complex Not Complex PCC

CWQ 0.328 0.641

0.449

HotPotQA 0.266 0.328
StrategyQA 0.000 0.078
MuSiQue 0.031 0.563
Natural Questions 0.023 0.547
Quora 0.016 0.016

Table 4: Average answerability of answers generated
for complex and not-complex questions selected by our
pipeline. The results show that the questions marked as
complex are generally more difficult to answer. PCC
denotes the correlation in terms of the Pearson Correla-
tion Coefficient between the complex and not complex
questions in terms of answerability.

easier to be answered for the model. Specifically,
questions categorized as complex in CWQ, Hot-
PotQA, MuSiQue, and Natural Questions display
higher accuracy than those classified as not com-
plex. Notably, the complexity assessment in Quora
and StrategyQA does not significantly impact the
question answerability, suggesting a different na-
ture of complexity in this dataset or some bias. In
StrategyQA, complex questions were labelled due
to limited "true/false" reference answers, impacting
evaluation metrics. Modifying the prompt elimi-
nated this artifact, highlighting the need for precise
evaluation metrics. In contrast, Quora’s complexity
designation was influenced by poor-quality refer-
ence answers, emphasizing caution when interpret-
ing complexity labels in datasets with sub-optimal
reference quality.

5.5 Search Engine Performance on Complex
Questions

We further explore the quality of our pipeline by
sampling a set of 500 questions from the "com-
plex" questions of each dataset and analyzing how
many of them can be answered by a state-of-the-art
search engine such as Bing1. This dataset is con-

1https://www.bing.com/
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RRCP Answerable Not MCCClassification Answerable

Not Complex 0.600 0.113
0.508Complex 0.400 0.887

Table 5: Probability for a question classified by RRCP
of being answered by a state-of-the-art search engine.
The answerability is computed using manual annota-
tors. MCC stands for Matthew Correlation Coefficient
and measures the correlation between the complexity
classification and its answerability.

structed by selecting 256 questions from datasets
with their own notion of complexity, including
CWQ, HotPotQA, StrategyQA, and MuSiQue (64
questions per dataset), and another 256 from natu-
ral datasets not specifically focused on complexity
(128 each from Natural Questions and Quora). To
conduct the evaluation, we select a pool of expert
annotators. Their task is to determine whether a
given question can be answered by examining the
top 5 search engine results. If the answer is found
within these results or can be inferred through rea-
soning based on them, the question is considered
answerable. Furthermore, the annotators are tasked
with evaluating whether the question aligns with
our predefined notion of retrieval complexity as
described in Section 3.

The results of our analysis, detailed in Table 5,
reveal significant insights. Indeed, the probabil-
ity of a question marked as complex by RRCP of
not being answered by a state-of-the-art search en-
gine is high (0.887). Similarly, a question marked
as not complex has a high chance to be answered
(0.6). In addition, the results show a good corre-
lation between question-predicted complexity and
their answerability (manually annotated), with a
Matthew correlation of 0.508, indicating a moder-
ate to strong positive correlation between the pre-
dicted classifications and the actual classifications.

5.6 Limitations of Supervised Approaches

In this section, we explore the limitations of em-
ploying supervised approaches to estimate ques-
tion complexity. To show this finding, we trained
several cross-encoder models on the datasets intro-
duced in Section 5.1 using a supervised learning
approach. The experimental setup is detailed in
Appendix A.1. The outcomes of this analysis are
presented in Table 6.

We assessed the resulting five models on the four
datasets. Notably, Natural Questions (Kwiatkowski
et al., 2019) and QuoraQP-a (Wang et al., 2020)

Datasets Evaluated
CWQ HotPotQA MuSiQue StrategyQA

Tr
ai

ne
d

ALL 0.974 0.834 0.956 0.921
CWQ 1.000 0.448 0.609 0.266
HotPotQA 0.901 0.842 0.714 0.656
MuSiQue 0.851 0.491 0.861 0.618
StrategyQA 0.075 0.253 0.238 0.978

Table 6: The supervised approach displays limited effec-
tiveness for cross-dataset evaluation, indicating reduced
performance when trained on one dataset and tested on
another. Despite similar complexity classes between
datasets (e.g., Multihop), the transferability of mod-
els across distinct datasets (e.g., training on CWQ and
testing on HotPotQA) exhibits notable performance dis-
crepancies. Notice that ALL refers to a model trained
on all the datasets combined together.

lack an internal definition of complexity (Table 2),
making automatic evaluation and training impracti-
cable.

Although the model trained on the merged
dataset demonstrated impressive performance, in-
dividual models struggled to replicate this strong
performance across datasets. This disparity implies
that fine-tuning induces models to overfit on the
question distribution rather than learning the intri-
cacies of question complexity. This observation
highlights the need for standard fine-tuning to de-
velop dataset-agnostic models to detect question
complexity. It is important to acknowledge that the
"ALL" model performs well due to its ability to
identify which dataset the test question belongs to,
thanks to the distinctive topics and typical question
shapes characterizing each dataset. Consequently,
supervised models only capture specific properties
of the data and complexity definitions.

5.7 Qualitative Analysis and Limitations

We further examine the behaviour of our pipeline
through a rigorous qualitative evaluation. We no-
tice that RRCP, initially designed to recognize re-
trieval complexity, can address other complexity
classes beyond its primary scope. These complex-
ity classes are part of a wide range of question
types, such as comparative questions (e.g., "Is an
elephant bigger than a cat?"), multi-hop questions
(e.g., "How old is the wife of the tallest NBA
player?"), questions needing the "aggregation" of
multiple answers in the form of disconnected enti-
ties (e.g., "List every football player who played in
the last World Championship?"), time-based ques-
tions, both implicit and explicit (e.g., "Who is the
current president of the US?" and "Which movie
won the Oscar for the best movie in 1992?") and
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Figure 3: Distribution of complexity classes from a
sample of 200 high RC questions selected among the
datasets described in Section 5.1.

superlative questions (e.g., "What are the best coun-
tries to travel to in March?") following the distribu-
tion shown in Fig. 3.

However, our analysis also highlights notable
limitations within our pipeline. We identified two
primary challenges. Firstly, the reference-based
nature of our approach is susceptible to the quality
of the references used. Consequently, the predic-
tive accuracy of the pipeline is significantly im-
pacted by the quality of these references. This
issue becomes evident during the examination of re-
sults from Quora, where we observed a discernible
drop in performance. Despite employing a robust
retrieval system, the precision of our pipeline is
closely linked to the quality of the references. This
finding underscores the critical role of reference
quality in shaping the effectiveness of our method-
ology. Addressing this challenge necessitates a
comprehensive evaluation of the reference sources
employed and potential enhancements in the re-
trieval system to mitigate the adverse effects on
prediction accuracy. By acknowledging and ad-
dressing these limitations, our research aims to
refine the qualitative analysis pipeline, ensuring its
applicability across various complexity classes and
enhancing its overall robustness in handling diverse
question types.

6 Retrieval Complexity Applications

In Section 5, we show that RRCP is a valuable tool
which allows for the recognition of RC with high
accuracy. This could be difficult to achieve with
a reference-free approach. Although the need of
references could limit the applicability of RRCP in
real-world scenarios, it serves as a crucial step to-

wards understanding the potential applications and
future directions of RC in the field of QA systems.
Indeed, RC is a valuable diagnostic tool that can be
applied to various settings, including question rout-
ing, optimizing document usage in Relevance and
Ranking (RAG) systems, filtering QA datasets, and
identifying interesting questions according to some
complexity notion. The motivating concepts of RC
are potentially applicable to many settings, as they
provide insights into the underlying complexity of
questions and can help reveal challenging questions
in existing academic benchmarks.

7 Conclusion

In this paper, we introduced a novel concept of
question complexity, measuring the difficulty of
finding accurate answers from multiple sources.
By combining a top-tier retrieval system with an ef-
fective automatic evaluation system, our approach
(RRCP) demonstrated high accuracy in handling
complex questions that go beyond single-source
responses. We performed an extensive experimen-
tation, conducting both quantitative and qualitative
analyses on various datasets, proving the robust-
ness of our pipeline in managing and recogniz-
ing complex question types, including multi-hop
questions, time-based queries, and comparative in-
quiries. The results consistently showed that our
approach outperformed state-of-the-art supervised
transformer models and large language models
in these challenging scenarios. Additionally, our
benchmark evaluations underscored the superiority
of our method, highlighting its capability to de-
liver more precise answers where traditional mod-
els struggled. The empirical evidence confirmed
that our pipeline is particularly effective in classi-
fying high retrieval complexity (RC) questions and
that higher RC scores were correlated with lower
QA performance, underscoring the validity of our
RC metric. As future work, we plan to reduce the
reference dependency of the Retrieval Complex-
ity Pipeline (RRCP) in our evaluation system by
incorporating large language models (LLMs) and
parametric knowledge. This enhancement aims to
increase the number of application scenarios for
our framework, broadening its usability and effec-
tiveness in diverse contexts. By leveraging these
advanced models, we anticipate further improve-
ments in the efficiency and accuracy of our system,
making it even more versatile in handling a wide
range of complex queries.
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8 Limitations

While our study provides valuable insights about
retrieval complexity and our framework proved to
be a useful tool to determine whether a question
fits with our notion of complexity, it is important to
acknowledge several limitations that may impact
our approach:

Corpus dependency: As mentioned in Section 4
and Section 5, the performance of our pipeline is
limited by the goodness of the corpora considered
to build the index. For example, this limitation is
evident when thinking about a time-based question
asking about recent events not covered by our in-
dex. We partially mitigate this problem by working
on the completeness constraints as specified in Sec-
tion 4, but we consider this limitation as an open
problem, planning to address it in future work.

Reference-based approach: The core of our
framework is based on a reference-based evaluation
system. Although we can rely on high accuracy
and human-like performance in terms of correct-
ness evaluation, on the other hand, we are limited
by the need for gold answers to get a good answer-
ability prediction, limiting the scope of RRCP on
labeled data. However, despite this limitation, we
believe that larger reference-free approaches based
on LLMs could soon replace the automatic evalua-
tion component.

Quality of the retrieval system: Our methodol-
ogy accuracy scales with the quality and accuracy
of the retrieval system.

Thresholds: Determining Tans and Tcom is a
trivial task that can be done with few examples.
However, their values are critical to determine the
RC with high accuracy.

As mentioned in Section 5 and Section 7,
we plan to address these limitations in future work.
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A Appendix

A.1 Modelling Details

The supervised model was trained on Amazon
AWS P3dn.24xlarge hosts using specific hyperpa-
rameters selected after a parameter search. The
model architecture utilized the roberta-base (Su
et al., 2022) configuration, with a batch size (bs)
of 256 instances. We used an Adam optimizer
considering a learning rate (lr) of 1e − 05 during
training, carried out over 10 epochs. The model
selection criterion was based on achieving the high-
est F1 score on the development set (devset), en-
suring the selection of the most effective model
variant. Additionally, the training process incorpo-
rated mixed-precision arithmetic (fp16) to enhance
computational efficiency and speed up the training
procedure. We estimate that GPU hours used for
baseline training and pipeline inference to be no
more than 462 GPU hours.

A.2 Datasets

In this section, we provide an exhaustive descrip-
tion of the datasets we considered in the paper to
validate our approach.

ComplexWebQuestions (Talmor and Berant,
2018) is a dataset for answering complex ques-
tions that require reasoning over multiple web snip-
pets. It contains 34686 examples in total (27368,
3518, and 3530 for train, dev and test splits), and
each example presents a question, an answer, and a
SPARQL query to retrieve the web snippets needed
to build the context.

HOTPOTQA (Yang et al., 2018b): A QA dataset
designed to contain complex questions that can
not be answered without reasoning and additional
context. To support this, they also added different
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paragraphs for each question in the dataset that can
be used as a context to provide the answer.

StrategyQA (Geva et al., 2021): StrategyQA is a
question-answering benchmark focusing on open-
domain questions where the required reasoning
steps are implicit in the question and should be in-
ferred using a strategy. StrategyQA includes 2,780
examples, each consisting of a strategy question,
its decomposition, and evidence paragraphs. The
only usable split is the "train "since it has both the
decompositions and the facts.

MuSiQue (Trivedi et al., 2022): This dataset has
been prepared by joining multi-hop questions with
single-hop questions from different datasets using
a bottom-up approach. Differently from BREAK,
the decomposed questions here look more natural.

Natural Questions (Kwiatkowski et al., 2019):
Large scale dataset made considering real Google
queries. Each query is paired with a corresponding
Wikipedia page and the relevant passage containing
the answer. By definition, this dataset does not con-
tain questions that fit our definition of complexity
(Section 3) since, for construction, the majority of
the questions have answers that can be answered by
a single passage. However, studying this dataset is
helpful to recognize the limitations of the retrieval
system used by the pipeline and to study the corre-
lations between what is complex for a human and
for a QA system.

QuoraQP-a (Wang et al., 2020), is a question-
answering dataset made pairing existing questions
from Quora Question Pairs (QQP) with their origi-
nal answers.

A.3 Supervised results
For completeness, in Table 7, we report the com-
plete results obtained by the supervised approach
measured in terms of Accuracy, Precision, Recall,
and F1.

A.4 GenEval details
The GenEval is an encoder-decoder transformer
model based on the T5-XXL (Raffel et al., 2020).
We trained the model on three datasets, WQA (Gab-
buro et al., 2023), and AE (Bulian et al., 2022)
and ASNQ (Garg et al., 2020). Differently from
the original SQuArE, we used a variable number
of references during the training, considering also
generated ones (we generated these references us-
ing a GenQA model (Gabburo et al., 2022)). We

Datasets Accuracy Precision Recall F1Score

Trained on All

CWQ 0.994 0.956 0.994 0.974
HotPotQA 0.799 0.891 0.799 0.834
MuSiQue 0.944 0.970 0.944 0.956
StrategyQA 0.941 0.913 0.941 0.921

Trained on CWQ

CWQ 1 1 1 1
HotPotQA 0.501 0.641 0.501 0.448
MuSiQue 0.619 0.858 0.619 0.609
StrategyQA 0.501 0.680 0.501 0.266

Trained on HOTPOTQA

CWQ 0.905 0.896 0.905 0.901
HotPotQA 0.808 0.898 0.808 0.842
MuSiQue 0.697 0.873 0.697 0.714
StrategyQA 0.682 0.668 0.682 0.656

Trained on MUSIQUE

CWQ 0.932 0.802 0.932 0.851
HotPotQA 0.507 0.519 0.507 0.491
MuSiQue 0.835 0.926 0.835 0.861
StrategyQA 0.647 0.637 0.647 0.618

Trained on StrategyQA

CWQ 0.388 0.175 0.388 0.075
HotPotQA 0.512 0.523 0.512 0.253
MuSiQue 0.435 0.214 0.435 0.238
StrategyQA 0.984 0.974 0.984 0.978

Table 7: Results of the supervised baseline on the dif-
ferent settings and measured in terms of accuracy, preci-
sion, recall and F1Score

experimented with different parameters, and we
found the best combination of parameters training
the model for 20 epochs on every dataset using
a batch size of 32, fp32, and Adam as optimizer
with a learning rate equal to 5e− 05. We select the
best checkpoint by evaluating the AUROC (Area
Under the Curve) on the validation set.

A.5 Mistral 7B Evaluation Prompt

To perform the automatic evaluation on LLM, we
are considering the following prompt:
<s>[INST]"Consider the following question Q: {s}.
Is question Q complex according to the provided
definition? A complex question cannot be answered
by a single document; it necessitates reasoning
over different snippets due to the low probability
of finding the answer within existing sources. Ex-
amples of complex questions include inquiries like

’Is a cup of tea bigger than an elephant?’ where
the comparison is unlikely to be found in a single
document. In contrast, questions such as ’Is an
elephant bigger than a lion?’ are not complex be-
cause ’elephant and lions’ can be part of the same
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document with high probability. Please respond
with ’yes’ if the question is complex and ’no’ if it
is not. Ensure your reply is concise, strictly limited
to ’yes’ or ’no’." [/INST]

A.6 Manual annotation
To perform the manual annotation described in Sec-
tion 5.5, we employed a set of 5 voluntary inter-
national experts (from the US, Brazil, India, and
Italy) in the QA domain to annotate the data. We
instruct each of them on the task, providing the no-
tion of retrieval complexity 3 and a set of examples
to reference during the annotation. Specifically, for
each question present in our evaluation set, the an-
notation has been done by presenting the question
to the annotator, the top−5 web pages retrieved by
the search engine, and the top document retrieved
using our retrieval system. Then, for each question,
the annotators determine whether the question is
answerable by one or more Bing search results (ap-
plying or inferring reasoning if needed). During
the annotation process, the annotator was unaware
of the RC assigned by RRCP.

14650


