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Abstract
Large Language Models (LLMs) have demon-
strated impressive zero-shot capabilities and
versatility in NLP tasks, however they some-
times fail to maintain crucial invariances for
specific tasks. One example is permutation sen-
sitivity, where LLMs’ outputs may significantly
vary depending on the order of the input op-
tions. While debiasing techniques can mitigate
these issues, and yield better performance and
reliability, they often come with a high compu-
tational cost at inference. This paper addresses
this inefficiency at inference time. The aim
is to distill the capabilities of a computation-
ally intensive, debiased, teacher model into a
more compact student model. We explore two
variants of student models: one based on pure
distillation, and the other on an error-correction
approach for more complex tasks, where the
student corrects a single biased decision from
the teacher to achieve a debiased output. Our
approach is general and can be applied to both
black-box and white-box LLMs. Furthermore,
we demonstrate that our compact, encoder-only
student models can outperform their larger, bi-
ased teacher counterparts, achieving better re-
sults with significantly fewer parameters.

1 Introduction

Recent advancements in Large Language Models
(LLMs) have led to dramatic shifts within natu-
ral language processing (NLP). Unlike prior "pre-
train and fine-tune" (Devlin et al., 2019; He et al.,
2020) approaches, instruction-tuned LLMs com-
bined with effective good prompting techniques
has enabled LLMs to excel at unseen tasks without
task-specific training (Brown et al., 2020; Touvron
et al., 2023). This has led to the current capabilities
of LLMs, where they demonstrate great versatility,
while also being powerful and displaying state-of-
the-art performance on many standard NLP bench-
mark leaderboards (Park, 2023).

Despite their impressive general abilities, LLMs
suffer from particular limitations. They are prone

to hallucinating information (Huang et al., 2023;
Manakul et al., 2023), can have large sensitivity
to the form of prompts (Sclar et al., 2023; Zhou
et al., 2022) and also demonstrate systematic biases
such as gender bias (Kotek et al., 2023). Further-
more, due to the general nature of their pre-training
and instruction-tuning (Wei et al., 2021; Ouyang
et al., 2022), for certain applications, they may be
unaware of particular important task invariances.
One such invariance that LLMs may fail to main-
tain is permutation-invariance. Ongoing work has
demonstrated that LLMs can be sensitive to the
input order of options, which has been observed
for both question answering (Pezeshkpour and Hr-
uschka, 2023; Zheng et al., 2023a) and pairwise
assessment (Zheng et al., 2023b; Wang et al., 2023;
Liusie et al., 2023b). For these tasks, varying the
ordering of the input options may lead to different
decisions by the LLM, which can impact down-
stream performance and reliability.

Although debiasing approaches can be applied
to enforce invariances, such methods can be com-
putationally expensive or inapplicable to black-box
settings (Zheng et al., 2023a). To address these
challenges, this work introduces a general frame-
work that can be used to adapt both black-box and
white-box systems to follow a particular invari-
ance, while being inference efficient. For a given
invariance and debiasing scheme, our framework
trains a compact student to emulate the debiased
teacher, which during inference can be efficiently
deployed. We investigate two variants of students,
a simple knowledge-distilled student, as well as
an error-correction student that takes in a single
biased teacher sample and corrects it to learn the
debiased teacher decision, applicable for more com-
plicated tasks. We demonstrate the effectiveness of
our framework on permutation invariance, and il-
lustrate that small 330M parameter student models
can outperform their larger biased teacher counter-
parts, while also maintaining particular embedded
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invariances.
The contributions of this work are: 1) We pro-

vide metrics for assessing the sensitivity of mod-
els to the input ordering of options. 2) We show-
case that LLMs can demonstrate large permutation
sensitivity and that biases seem correlated to task
performance. 3) We study several different debi-
ased approaches that yield significant performance
gains. 4) Experiments on RACE++ and SummEval
demonstrate that the teacher-student training for
debiasing framework yields effective students that
perform better than their biased teacher while being
inference-efficient and not expensive to train.

2 Multiple Choice Prompting

Prompting has been shown effective in leveraging
the diverse zero-shot abilities of instruction-tuned
Large Language Models (LLMs). For a particular
task, inputs can be rephrased into natural language
queries which condition the LLM to generate useful
responses (Reynolds and McDonell, 2021; Chae
and Davidson, 2023).

For example in multiple choice classification
tasks, there may be input information x (e.g. con-
text and question), and a set of K possible answers,
A = {a1, ..., aK}. Given an ordered realisation of
the possible answers Aσ (e.g. (a2, a4, a1, a3)), a
prompt t(x,Aσ) can be designed to convert the in-
put information into a textual representation. Note
that a different ordering of answers Aσj , would
lead to a different textual prompt representation.
The work of Robinson et al. (2023) conducted a
systematic study into Multiple Choice Prompting
(MCP) in which the position of each ordered an-
swer in Aσ is bound to a symbol or option label wk

within the prompt. Instead of tasking the LLM with
generating the full correct answer a∗ (Lieber et al.,
2021; Brown et al., 2020), it only needs to predict
the label w∗ of the correct position (often a single
token such as "A", "B", "C" or "D"). This converts
the significant problems that arise when comparing
the probabilities of variable-length answers a ∈ A
into simple probabilities of different tokens. The
predictive probability of the k-th option under the
particular permutation of answers then becomes:

P (wk|x,Aσ)=
PLLM(wk|t(x,Aσ))∑
jPLLM(wj |t(x,Aσ))

(1)

where the model probabilities have been normal-
ized, since the LLM vocabulary span tokens be-
yond the symbols w1:K . The probability of an

answer a can then be found by matching it to its
corresponding position, yielding a distribution over
answers P (ak|x,Aσ). Overall, the system decision
is the answer with the highest probability.

â = argmax
ak

P (ak|x,Aσ) (2)

The above approach assumes full access to the
output probabilities, which may not be available.
For black-box LLMs that are served through APIs
(Achiam et al., 2023; Anil et al., 2023), one may
only have access to the autoregressively generated
output text. In such settings, one can instead ran-
domly sample from the underlying distribution to
get an approximate system decision ã:

ã(i)∼ P (ak|x,Aσ) (3)

For well-designed prompts, the majority of the
probability mass should be associated with the op-
tion labels w1:K . One can therefore directly sample
from w̃(i)∼ PLLM(wk|t(x,Aσ)) and reject samples
that do not belong to the options labels.

2.1 Multiple Choice Question Answering
The objective for multiple choice question answer-
ing is for a model to determine which of the pro-
vided options is the correct answer for the specified
question. To determine the answer, the model must
either leverage general knowledge learned in train-
ing or, if contextual information is provided, infer
answers from the passage. In this work, simple
prompts are used as demonstrated in Figure 2.

Context: Last week I talked with some of my 
students about what they want to...

Question: What does the author want to be?

A) a doctor
B) a model
C) a teacher
D) a reporter

Figure 2: Templates used for prompting LLMs for
MCQA. For context-free questions, the context is
omitted.

2.2 Comparative Asessment
Comparative Assessment aims to determine which
of two responses is better. Given a context (e.g.
previous dialogue/article) the LLM is asked to as-
sess which response is better, A or B. Comparative
assessment can be used for various NLG metrics,
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What is the capital of England?

A) London
B) Paris

What is the capital of England?

A) Paris
B) London

What is the capital of England?

London
Paris
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B
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B

LLM LLM
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…

What is the capital of England?
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A
B

Distillation

Training Inference
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What is the capital of England?
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Figure 1: High-level diagram of the work: The left-hand side illustrates how LLMs may be sensitive to input
ordering, but by averaging results from different permutations can yield debiased distributions. The right-hand
side shows two variants of students that emulate the debiased teacher distribution, either through distillation or
through error correction where the student improves a single sampled biased decision.

and the prompt can be adapted towards particular
attributes. The prompt used is shown in Figure 3.

Context: Sick of awkward father-daughter portraits? Well 
one photographer has found an effective ...

Which Summary is more coherent, Summary A or Summary B?

Summary A: A series of photos sees Japanese dads jumping 
next to their daughters...

Summary B: Japanese photographer Yûki Aoyama's latest 
series of images capture... 

Figure 3: Prompts used for comparative assess-
ment. Different attributes use different adjectives.

3 Inherent Biases in LLMs

3.1 Quantifying Bias to Permutations

Although LLMs have shown effective zero-shot
performance, they may exhibit bias where they
fail to recognize specific task-related invariances
(Pezeshkpour and Hruschka, 2023; Miceli Barone
et al., 2023). Previous work has highlighted sen-
sitivity to the permutations of options in multiple
choice question answering (Pezeshkpour and Hr-
uschka, 2023; Zheng et al., 2023a). Similarly, com-
parative assessment systems have been shown to
favour options in particular positions (Zheng et al.,
2023b; Wang et al., 2023; Liusie et al., 2023b).

If a system demonstrates perfect awareness of
this permutation invariance, then for any two per-
mutations of the options, Aσj , Aσm , one would
expect consistent distributions,

P
(
ak|x,Aσj

)
= P(ak|x,Aσm) ∀j,m (4)

I.e, the probability of an answer should be inde-
pendent of how the options have been presented.
However, the predictive distribution produced by
an LLM may not conform to Equation 4 and suffer
from inherent bias, where different permutations
lead to different predictive distributions. This may
impact system performance, and yield biased de-
cisions in downstream applications. To assess the
sensitivity of a system to permutation, we define
two metrics that can be used to measure a system’s
inherent bias towards a particular task.

Permutation Sensitivity. As defined by Equation
4, the distribution over possible answers should
be unaffected by the input ordering. Therefore
to quantify the sensitivity of a model to changes
in the input order, one can measure the expected
divergence D between the distributions resulting
from any two possible permutations Aσj , Aσm :

ps(x,A) = (5)

Eσj,m

[
D
[
P
(
.|x,Aσj

)
; P(.|x,Aσm)

]]

Positional Bias. A possible cause for permutation
sensitivity may be systematic bias, where the most
obvious form of bias would be a global preference
for a specific option. To measure if there is any sys-
tematic preference for certain labels irrespective of
the option, one can alternatively look at the average
probability mass associated with each option label
wk over all permutations:

Pσ(wk|x,A) = Eσ[P(wk|x,Aσ)] (6)
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Note that this marginalized distribution looks at the
probability of the k-th option irrespective of how
the answers have been presented. If this positional
distribution is non-uniform U(·), the natural inter-
pretation is that the underlying LLM has a biased
preference for a particular position. Therefore, a
measure of positional bias can be defined as the
divergence between the positional and uniform dis-
tribution

pb(x,A) = D[Pσ(.|x,A); U(·)] (7)

Note that positional bias is more relaxed than per-
mutation sensitivity; a system that is permutation
insensitive guarantees having no positional bias,
while the reverse is not true.

3.2 Debiasing Approaches

To minimize the permutation sensitivity and/or po-
sitional bias, we consider two different debiasing
strategies that by design enforce invariance.

Permutation debiasing. A simple approach for
correcting permutation sensitivity is to ensemble
all permutations,

P(ai|x,A) = Eσ[P(ai|x,Aσ)] (8)

This approach eliminates any permutation sensi-
tivity and therefore by definition, positional bias.
However, it would require K! passes through the
LLM which could be prohibitively expensive. Ap-
proximate approaches such as cyclic permutations
(Zheng et al., 2023a) can be used, but they still
require K passes and are also computationally ex-
pensive at inference time.

Prior-matching. Instead of cycling through all
possible permutations and correcting for permuta-
tion sensitivity, a simpler alternative is to focus on
minimizing positional bias. Consider introducing
a set of weights α = α1:K ∈ R

K
+ to scale the

original LLM probabilities associated with each
particular option label:

P(wk|x,Aσ,α)=
αkPLLM(wk|t(x,Aσ))∑
jαjPLLM(wj |t(x,Aσ))

One can then find the weights ᾱ that ensure the
system has minimal positional bias1 (Liusie et al.,

1One can alternatively find α to minimize permutation
sensitivity, but initial results yielded similar performance to
prior-matching

2023a; Zhao et al., 2021) and that the prior over
positions is uniform over all questions.

ᾱ = argmin
α

∑

k

∣∣∣Pσ(wk|x,A,α)− 1

K

∣∣∣ (9)

4 Teacher-Student Training for Debiasing

To address the computational inefficiencies linked
with permutation debiasing, this section proposes
using teacher-student training to investigate if a
smaller inference efficient proxy system Pθ could
emulate the characteristics of the debiased teacher
distribution. Instead of performing K! calls to ob-
tain a permutation debiased prediction, a proxy
student could potentially achieve it in a single call.
Our approach is general and is applicable to both
white and black-box systems, without the need for
labelled data. Although we focus on correcting per-
mutation sensitivity, the framework can be applied
for any task invariance and debiasing strategy.

4.1 Distillation
The most inference-efficient approach is to knowl-
edge distill the debiased teacher distribution onto
a small non-autoregressive student Pθ. Given the
input x and ordered options Aσ, the student can
be designed to model the debiased teacher distribu-
tion,

Pθ(a|x,Aσ) ≈ P(a|x,A) ∀{x,A}, σ (10)

That is, irrespective of how the possible answers are
presented to the student, it should predict consistent
distributions that agree with the debiased teacher.
This is achieved by minimizing the KL-divergence
(Hinton et al., 2015):

L(θ) = E{x,A},σ
[
KL

(
P(·|x,A)||Pθ(·|x,Aσ)

)]

During training, the debiased teacher probabilities
still have to be computed which requires K! white-
box calls for every single data point. However, once
the student has been trained it can be used indepen-
dently of the original LLM, and be significantly
faster. Since white-box access is not guaranteed,
Section 4.3 discusses how to apply teacher-student
training to black-box settings.

4.2 Error Correction
For complex tasks, the capacity of a small proxy
system might be insufficient. Instead of tasking
a student with directly performing the task as in
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the section above, we consider an error correction
student. In addition to the task information and a
permutation of the answers, the student receives a
sample from a biased teacher, with the aim of emu-
lating the debiased teacher distribution and possibly
correcting the initial biased sample.

ã ∼ P(ak|x,Aσ) (11)

Pθ(ak|x,Aσ, ã) ≈ P(ak|x,A) (12)

Similarly to distillation, the student can be trained
by minimising the KL divergence between the
proxy and the debiased teacher:

L(θ) = E{x,A},σ

[
Eã∼P(·|x,Aσ)

[

KL
(
P(·|x,A)||Pθ(·|x,Aσ, ã)

)]]

At inference time this model requires a single bi-
ased black-box sample from the LLM to produce
an approximation to the full debiased distribution
of the teacher.

4.3 Black-Box Considerations
The approaches outlined in Sections 4.1 & 4.2 have
assumed white-box access to the debiased teacher
distribution P(a|x,A) during training. In black-
box settings, this is not true and a hierarchical
monte-carlo approximation to the debiased teacher
needs to be used:

σ ∼ {σ1, σ2, ..., σK!} (13)

ã(i) ∼ P(a|x,Aσ) (14)

where a random permutation of answers Aσ is first
chosen followed by sampling from the resulting bi-
ased distribution. In expectation, we regain the de-
biased distribution and can therefore use a sample-
based approximation:

P(a|x,A) = Eσ [P(a|x,Aσ)]

= Eσ [Eã [1(ã = a|x,Aσ)]]

≈ 1

N

∑

i

1(ã(i) = a)

Furthermore, the monte-carlo approximation for
the knowledge distillation criteria becomes:

L(θ) = E{x,A},σ
[
KL

(
P(·|x,A)||Pθ(·|x,Aσ)

)]

c
= E{x,A},σ

[
EP(·|x,A)

[
− ln Pθ(·|x,Aσ)

]]

≈ E{x,A},σ
[ 1

N

∑

i

− ln Pθ(ã
(i)|x,Aσ)

]

This allows us to train student models that can
emulate the debiased teacher distribution without
white-box access to the original LLM. Alternative
divergence-based loss functions such as Reverse
KL would not cleanly decompose into a black-box
compatible form. Note, that for error correction
students, an extra LLM sample is required as input
to the student.

5 Experimental Set Up

5.1 Datasets

Experiments are done on two forms of tasks: Mul-
tiple Choice Question Answering (MCQA) and
Comparative Assessment. For MCQA, we uti-
lize three popular datasets: RACE++ (Lai et al.,
2017; Liang et al., 2019), which consists of En-
glish comprehension questions designed for Chi-
nese students spanning from middle school to col-
lege. CosmosQA (Huang et al., 2019), a large-
scale commonsense-based reading comprehension
dataset of passages and questions assessing compre-
hension. ARC-CHALLENGE (Clark et al., 2018),
which contain challenging science exam questions
drawn from a variety of sources. All datasets have
(or are filtered to) 4 options per question.

For comparative assessment, SummEval (Fab-
bri et al., 2020) is used. SummEval is a sum-
mary evaluation benchmark of 100 passages and 16
machine-generated summaries per passage, where
human annotators have evaluated each summary
on coherency (COH), consistency (CON), fluency
(FLU), and relevancy (REL). We use the first 70
passages for training, the next 10 for validation,
and the final 20 for evaluation.

5.2 Base Language Models

Two different open-sourced LLM families are
investigated in this work for their general task-
solving abilities: FlanT5 (Chung et al., 2022),
which is a seq2seq T5 (Raffel et al., 2020) sys-
tem that has been further instruction tuned on a
diverse set of 1600+ NLP tasks (Wang et al., 2022);
and Llama2-chat (Touvron et al., 2023), which is
a decoder-only language model that is further fine-
tuned and optimized for dialogue use cases. A
range of the model sizes are considered: 3B and
11B for FlanT5, and 7B and 13B for Llama2-chat.

5.3 Proxy models

For the student proxy models, only simple encoder-
only models are considered. We consider both
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MCQA SummEval

RACE++ COSMOS ARC-CHAL COH CON FLU REL
acc ps acc ps acc ps acc ps acc ps acc ps acc ps

FlanT5-3B
baseline (biased) 86.7 0.09 85.7 0.12 73.6 0.22 69.2 0.20 81.1 0.12 62.5 0.17 64.5 0.17
prior-matching 86.5 0.12 85.6 0.12 73.0 0.21 70.2 0.15 80.6 0.12 64.3 0.13 64.3 0.15
ctx prior-matching 86.7 0.07 86.0 0.09 73.9 0.14 70.9 0.12 80.8 0.11 64.4 0.12 64.5 0.12
perm-debias 87.3 0.00 86.1 0.00 74.1 0.00 71.7 0.00 82.0 0.00 65.7 0.00 65.4 0.00

FlanT5-11B
baseline (biased) 88.8 0.10 85.8 0.14 76.7 0.21 61.6 0.42 70.5 0.38 55.6 0.44 62.8 0.39
prior-matching 88.3 0.11 86.0 0.12 76.8 0.20 67.2 0.16 77.8 0.14 58.9 0.16 64.8 0.15
ctx prior-matching 88.8 0.06 86.5 0.09 77.9 0.13 67.8 0.13 77.7 0.12 59.2 0.12 65.6 0.13
perm-debias 88.9 0.00 87.4 0.00 77.9 0.00 68.9 0.00 79.7 0.00 61.4 0.00 67.0 0.00

Llama-7B
baseline (biased) 61.2 0.67 62.1 0.65 58.5 0.67 62.8 0.30 64.1 0.49 58.0 0.42 58.3 0.56
prior-matching 61.9 0.58 64.0 0.57 58.5 0.63 62.5 0.29 62.8 0.28 59.5 0.30 62.1 0.28
ctx prior-matching 66.7 0.35 67.6 0.41 62.3 0.40 63.7 0.19 64.2 0.17 59.9 0.20 63.4 0.18
perm-debias 68.3 0.00 72.0 0.00 64.3 0.00 64.8 0.00 66.2 0.00 59.7 0.00 65.7 0.00

Llama-13B
baseline (biased) 71.3 0.43 68.1 0.51 68.8 0.47 62.3 0.38 71.8 0.23 58.9 0.56 63.8 0.40
prior-matching 71.8 0.39 68.7 0.45 69.0 0.46 66.0 0.22 72.6 0.17 61.7 0.25 65.5 0.24
ctx prior-matching 73.3 0.25 70.9 0.35 70.3 0.31 66.7 0.16 72.1 0.14 62.4 0.18 65.7 0.17
perm-debias 74.6 0.00 75.0 0.00 70.6 0.00 68.6 0.00 73.1 0.00 63.5 0.00 66.3 0.00

Table 1: Accuracy (acc) and permutation sensitivity (ps, §3.1) for various LLMs when prompted for MCQA
or for pairwise comparative assessment. ’ctx- prior matching’ refers to applying prior matching to each input
over all permutations.

RoBERTa (Liu et al., 2019) and DeBERTa-v3 (He
et al., 2020), where both the base (110M) and large
(330M) size are investigated. The input to the stu-
dent system proxy is matched to that of the teacher,
however for error correction, we further provide
the biased teacher decision by appending text to the
end of the input prompt. E.g. If the sampled biased
teacher prediction was "A", then we concatenate
Prediction: A to the end of the input text.

5.4 Methodology

When applying teacher-student training for debias-
ing, the debiased white-box teacher distributions
are used to train the student. We train 4 seeds
per RACE++ setting and 6 seeds per SummEval
setting and report the average performance and av-
erage sensitivity. For RACE++ Llama2-7b is used
as the teacher, while for SummEval FlanT5-11b is
used as the teacher. Details of the hyperparameters
can be found in appendix A.

For each task, we provide the performance of the
teacher under different settings. Debiased white-
box teacher refers to the performance when permu-
tation debiased decisions are used. Biased white-
box teacher performance refers when the predic-
tion is taken as the argmax of a single teacher call.
The expected biased black-box performance is
the expected accuracy when samples from the

teacher are drawn from the underlying biased dis-
tribution. Note that accuracy may differ from the
biased white-box accuracy, if the decisions are not
well calibrated (Guo et al., 2017). When evaluat-
ing permutation sensitivity, total variation is used
since the KL divergence is unbounded and, if used,
metrics may be overly influenced by individual
samples that largely diverge.

6 Results

6.1 Permutation Bias of LLMs

Table 1 shows the performance and permutation
sensitivity for various LLMs on a range of multiple
choice answering tasks, as well as for comparative
assessment, and demonstrates the following points:

1) LLMs may fail to adhere to task invari-
ances. Both Llama2 and FlanT5 style models ex-
hibit high permutation sensitivity across various
tasks. Llama2, in particular, shows reasonable accu-
racy across a range of tasks, however also has high
permutation sensitivity in nearly all tasks. This
highlights that the output distribution of prompted
LLMs can be largely influenced by the order of the
input options.

2) Models that satisfy positional invariance
for some tasks, may not be positional invari-
ant for all tasks. FlanT5-3B and FlanT5-11B
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SummEval

RACE++ COH CON FLU REL
type acc ps acc ps acc ps acc ps acc ps

Teachers
debiased white-box 68.3 0.00 68.9 0.00 79.7 0.00 61.4 0.00 67.0 0.00
biased white-box 61.2 0.67 61.6 0.42 70.5 0.38 55.6 0.44 62.8 0.39
expected biased black-box 58.4 - 58.5 - 65.5 - 54.3 - 58.8 -

Students
RoBERTa-base (110M) d 26.7 0.07 61.5 0.05 70.5 0.07 61.2 0.05 60.9 0.06
RoBERTa-base (110M) ec 61.4 0.37 66.4 0.04 71.7 0.06 61.6 0.03 61.9 0.05

DeBERTa-base (110M) d 26.9 0.05 62.6 0.03 67.1 0.04 62.1 0.03 63.0 0.05
DeBERTa-base (110M) ec 64.1 0.31 66.0 0.03 71.1 0.04 64.1 0.03 62.1 0.06

RoBERTa-large (330M) d 26.9 0.09 64.8 0.05 67.6 0.06 62.7 0.05 62.1 0.05
RoBERTa-large (330M) ec 68.0 0.25 66.7 0.05 72.0 0.05 63.3 0.04 63.6 0.05

DeBERTa-large (330M) d 47.9 0.11 65.1 0.04 71.5 0.04 64.9 0.03 63.2 0.03
DeBERTa-large (330M) ec 68.1 0.25 66.1 0.03 70.9 0.02 64.8 0.03 63.3 0.04

Table 2: Performance of a student trained to emulate the debiased teacher, measured with task accuracy (acc)
and permutation sensitivity (ps). The students are either directly distilled (d, §4.1) or trained to correct the
distribution of a single biased black-box teacher decision (ec, §4.1). Llama2-7B is used as the teacher for
RACE++ and FlanT5-11b for SummEval.

demonstrate minimal permutation sensitivity for
all MCQA tasks, likely due to the additional fine-
tuning of FlanT5 on a variety of tasks including
multiple choice question answering exams. This
fine-tuning has likely imparted implicit permuta-
tion invariance for tasks resembling those encoun-
tered during training. However, when FlanT5-11B
is applied to comparative assessment, the system
exhibits considerable permutation sensitivity across
all attributes of SummEval. This implies that fur-
ther training on supervised data may mitigate bias
and implicitly impart invariances, however, such
a solution is task-specific and may not necessarily
generalize to tasks seen beyond training.

3) Addressing neglected invariances can yield
significantly better task performance. Permuta-
tion debiasing guarantees zero permutation sensi-
tivity, and applying the method can yield large im-
provements in performance for many tasks. Even
tasks with low permutation sensitivity (e.g. FlanT5
on MCQA) gain small performance boosts, though
in settings with high bias one can gain up to 10% in
accuracy. Further, a loose correlation between per-
mutation sensitivity and accuracy can be observed
across tasks and models.

4) Positional Bias alone does not account for
the observed positional bias. Applying prior
matching, which ensures that there is no positional
bias towards any of the label tokens, alone does not
resolve the permutation sensitivity. Although in
some cases this can significantly improve both sen-
sitivity and accuracy (e.g. FlanT5-11B comparative

assessment), for some tasks, permutation sensitiv-
ity may remain significant and performance can be
substantially worse than permutation debiasing.

5) Context Positional Bias can account for
much of the observed performance degradation.
As an extension to prior matching, we also con-
sider context-prior matching where prior matching
is applied over all K! permutations of the particular
input. This enables one to capture the positional
bias caused by the specific input prompt. Correct-
ing for this bias yields performance closely match-
ing that of permutation debiasing, highlighting that
a positional bias can exist for particular contexts.
However note that, unlike prior matching, context-
prior matching requires K! calls and is only useful
as analysis relative to permutation sensitivity.

6.2 Debiased Student Performance

Table 2 shows the performance of various students
when trained to emulate the teacher debiased de-
cisions, where students are either purely distilled
(§4.1) or trained to achieve error-correction (§4.2).
The table shows that:

1) For some tasks (e.g. comparative assessment
on SummEval) the teacher’s abilities can be ade-
quately learned by a smaller student through stan-
dard knowledge distillation. The resulting student
can achieve performance considerably better than
the biased teacher and low permutation sensitivity,
all while being considerably more computationally
efficient.

2) For complex tasks (e.g. RACE++) the stu-
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dent is not powerful enough to alone capture the
abilities of the teacher. However, in such cases,
error correction students can effectively leverage
a single-biased teacher decision to predict the es-
timated general debiased distributions. These stu-
dent systems are more robust to changes in permu-
tations, although are not fully permutation invariant.
Note that error correction consistently yields bet-
ter performance than copying the biased teacher’s
decision, illustrating that the students can capture
useful information of the underlying teacher’s pre-
diction space.

3) Although the size and ability of student can
be an important factor when applying the frame-
work (e.g. RACE++), for some tasks the required
model complexity can saturate early and a further
increase in size/ability does not impact downstream
performance.

6.3 Black-Box Training Efficiency
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Number of Biased-Black Box Samples per Question
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DeBERTa-large (ec)
RoBERTa-large (ec)
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Figure 4: RACE++ performance of error correc-
tion students when using N black-box samples to
approximate the debiased distribution (§4.3)

The previous section applied the teacher-student
training framework assuming white-box access dur-
ing training. Although infinite black-box samples
can be used to derive the underlying distribution,
this section investigates the sample efficiency of
the framework in black-box settings. Figure 4 dis-
plays the RACE++ performance of an error cor-
rection student when trained using N black-box
teacher samples per example. The curve illus-
trates that teacher-student training does not require
an excessive number of black-box samples, with
performance saturating at 32 samples per exam-
ple. Interestingly, when using only a few samples,
DeBERTa-large can outperform the max-voting
performance of the debiased teacher. This im-
plies that by applying teacher-student training, the

student can infer the systematic biases present in
the teacher, and yield corrected distributions from
many noisy approximations. The analysis was done
for RACE++, and as having more options would
require more samples to approximate the true un-
derlying distribution, one would expect compara-
tive assessment to require fewer black-box samples
per input.

6.4 Impact of Data Size
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Figure 5: DeBERTa-large accuracy when using a
limited number of examples during teacher-student
training.

Figure 5 shows the effectiveness of a student
DeBERTa-large model when trained on a lim-
ited number of training samples. The plot shows
that the number of samples required before per-
formance saturates varies largely on task com-
plexity. For comparative assessment on Sum-
mEval coherency, only 2000 examples are required,
while RACE++ requires 30,000 examples before
a DeBERTa-large error correction student reaches
the debiased teacher performance on RACE++.

7 Conclusions

This paper explores the sensitivity of LLMs to the
order of input options for multiple-choice question-
answering and comparative assessment. We il-
lustrate the effectiveness of various debiasing ap-
proaches for mitigating these biases and the as-
sociated performance improvement. While these
debiasing methods often entail high computational
costs, we show that teacher-student training can
yield inference-efficient student models capable of
emulating a debiased teacher distribution. Our ap-
proach is practical in both white-box and black-box
settings, requiring a manageable number of training
data points and black-box samples.
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8 Limitations

The teacher-student training was demonstrated to
be effective for multiple choice question answer-
ing and comparative assessment, however was not
demonstrated to invariances beyond permutation
sensitivity. Further, in the current framework, the
training domain matches the downstream evalua-
tion domain. Though this is a useful set-up for
some scenarios, it does not investigate cross-task
generalization or whether the students generalize to
tasks that differ mildly from those in training. Our
work also currently requires access to unlabelled
input examples, which the teacher then produces
predictions for.
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A Hyperparameter Settings

We train over the entire training dataset with 2 epochs, with a batch size of 4 and learning rate of 1e-5
for the base students and 5e-6 for the large students, using the AdamW optimizer. The learning rate
was selected through a 1D search using 3 seeds for SummEval-COH, with the best learning rate in
the set {1e−6, 2e−6, 5e−6, 1e−5, 2e−5, 5e−5}. This learning rate was later kept for all later experiments.
Validation is run every 1000 examples, and the checkpoint with best validation accuracy is used at
evaluation. Experiments were run on Nvidia L40 GPUs with 50Gb of RAM. For DeBERTa-large Each
Summeval seed took 1 hour to run, and each RACE++ seed took 2 hours.

B Further details on LLM Set Up

For comparative assessment, the label words wk used are "Summary A" and "Summary B". This is
equivalent to appending "Summary" to the end of the input and then calculating the probability of "A" or
"B". For llama2-chat, a further "Answer:" is appended to the prompt so the model knows where the input
ends and the generated answer ends.

C LLM performance on extended tasks

Tables 3 and 4 show the LLM performance on further multiple choice and comparative assessment tasks,
while also presenting the positional bias observed for the systems and debiasing approaches. Similar
trends to those in the main paper are observed over a wider range of tasks.

D Detailed Student Performance

Table 5 shows the standard deviations observed in the accuracies for the various student models. We
further run experiments on BERT (Devlin et al., 2019) and BERT-tiny (Jiao et al., 2020) to investigate the
ability of weaker students. As expected, the BERT students were observed to be much weaker than their
more modern counterparts (RoBERTa and DeBERTa) of equivalent size.

SummEval TopicalChat

COH CON FLU REL COH CNT ENG NAT
acc pb ps acc pb ps acc pb ps acc pb ps acc pb ps acc pb ps acc pb ps acc pb ps

FlanT5-3B
baseline 69.2 0.16 0.20 81.1 0.06 0.12 62.5 0.12 0.17 64.5 0.10 0.17 75.8 0.04 0.11 70.7 0.08 0.13 65.9 0.01 0.11 70.1 0.02 0.11
prior-matching 70.5 0.03 0.15 80.5 0.03 0.11 64.3 0.03 0.13 64.1 0.02 0.15 75.7 0.02 0.11 71.8 0.00 0.11 65.5 0.02 0.11 69.5 0.06 0.12
ctx prior-matching 70.9 0.00 0.12 80.8 0.01 0.11 64.4 0.01 0.12 64.5 0.01 0.12 75.4 0.01 0.09 71.6 0.00 0.09 66.1 0.00 0.09 69.4 0.00 0.10
perm-debias 71.7 0.00 0.00 82.0 0.00 0.00 65.7 0.00 0.00 65.4 0.00 0.00 76.2 0.00 0.00 72.6 0.00 0.00 66.6 0.00 0.00 70.9 0.00 0.00

FlanT5-11B
baseline 61.6 0.42 0.42 70.5 0.37 0.38 55.6 0.44 0.44 62.8 0.39 0.39 69.2 0.29 0.29 62.4 0.35 0.35 66.3 0.29 0.29 68.1 0.30 0.30
prior-matching 67.3 0.02 0.16 77.8 0.00 0.14 58.9 0.03 0.16 65.3 0.05 0.16 74.9 0.14 0.17 75.3 0.04 0.13 73.5 0.06 0.13 73.5 0.14 0.17
ctx prior-matching 67.8 0.00 0.13 77.7 0.02 0.12 59.2 0.02 0.12 65.6 0.00 0.13 77.1 0.00 0.09 75.5 0.00 0.10 73.6 0.00 0.10 74.6 0.00 0.10
perm-debias 68.9 0.00 0.00 79.7 0.00 0.00 61.4 0.00 0.00 67.0 0.00 0.00 77.9 0.00 0.00 79.6 0.00 0.00 75.0 0.00 0.00 75.8 0.00 0.00

Llama-7B
baseline 62.8 0.09 0.30 64.1 0.45 0.49 58.0 0.33 0.42 58.3 0.53 0.56 63.3 0.12 0.31 60.7 0.44 0.45 60.9 0.51 0.52 60.3 0.27 0.34
prior-matching 62.5 0.07 0.29 62.8 0.13 0.29 59.6 0.10 0.30 62.0 0.01 0.27 63.3 0.12 0.31 63.0 0.04 0.27 64.5 0.05 0.30 62.0 0.07 0.31
ctx prior-matching 63.7 0.00 0.19 64.2 0.01 0.17 59.9 0.03 0.20 63.4 0.00 0.18 63.2 0.02 0.19 65.1 0.01 0.18 66.3 0.00 0.19 61.4 0.02 0.22
perm-debias 64.8 0.00 0.00 66.2 0.00 0.00 59.7 0.00 0.00 65.7 0.00 0.00 63.5 0.00 0.00 65.5 0.00 0.00 67.0 0.00 0.00 63.3 0.00 0.00

Llama-13B
baseline 62.3 0.36 0.38 71.8 0.18 0.23 58.9 0.56 0.56 63.8 0.38 0.40 63.4 0.29 0.33 64.5 0.37 0.40 70.9 0.28 0.31 60.1 0.35 0.39
prior-matching 65.8 0.06 0.23 72.9 0.01 0.17 61.6 0.03 0.24 65.5 0.11 0.24 64.9 0.04 0.20 67.9 0.04 0.24 73.4 0.04 0.20 64.3 0.03 0.22
ctx prior-matching 66.7 0.00 0.16 72.1 0.02 0.14 62.4 0.01 0.18 65.7 0.01 0.17 65.4 0.02 0.14 68.9 0.01 0.16 73.3 0.00 0.13 64.9 0.01 0.16
perm-debias 68.6 0.00 0.00 73.1 0.00 0.00 63.5 0.00 0.00 66.3 0.00 0.00 67.5 0.00 0.00 70.0 0.00 0.00 74.4 0.00 0.00 65.8 0.00 0.00

Table 3: Accuracy (acc), permutation bias (pb) and permutation sensitivity for various LLMs when prompted
for Comparative Assessment.
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RACE++ COSMOS ReClor ARC-EASY ARC-CHAL
acc pb ps acc pb ps acc pb ps acc pb ps acc pb ps

FlanT5-3B
baseline (biased) 86.7 0.01 0.09 85.7 0.02 0.12 54.8 0.03 0.25 85.3 0.05 0.16 73.6 0.06 0.22
prior-matching 86.5 0.05 0.12 85.6 0.01 0.12 54.0 0.03 0.25 85.9 0.03 0.15 73.0 0.03 0.21
ctx prior-matching 86.7 0.00 0.07 86.0 0.00 0.09 55.4 0.00 0.17 87.0 0.00 0.09 73.9 0.00 0.14
perm-debias 87.3 0.00 0.00 86.1 0.00 0.00 54.2 0.00 0.00 86.8 0.00 0.00 74.1 0.00 0.00

FlanT5-11B
baseline (biased) 88.8 0.03 0.10 85.8 0.05 0.14 57.0 0.10 0.30 89.5 0.05 0.14 76.7 0.06 0.21
prior-matching 88.3 0.05 0.11 86.0 0.02 0.12 57.8 0.03 0.28 89.3 0.03 0.13 76.8 0.03 0.20
ctx prior-matching 88.8 0.00 0.06 86.5 0.00 0.09 58.8 0.00 0.19 90.2 0.00 0.08 77.9 0.00 0.13
perm-debias 88.9 0.00 0.00 87.4 0.00 0.00 59.6 0.00 0.00 90.2 0.00 0.00 77.9 0.00 0.00

Llama-7B
baseline (biased) 58.1 0.32 0.72 52.2 0.30 0.73 38.8 0.61 0.99 76.2 0.15 0.45 58.5 0.24 0.67
prior-matching 59.9 0.02 0.59 54.1 0.03 0.65 40.8 0.02 0.72 76.1 0.04 0.41 58.5 0.05 0.63
ctx prior-matching 64.6 0.00 0.33 56.8 0.00 0.46 44.4 0.00 0.44 80.6 0.00 0.26 62.3 0.00 0.40
perm-debias 66.0 0.00 0.00 60.8 0.00 0.00 48.6 0.00 0.00 83.7 0.00 0.00 64.3 0.00 0.00

Llama-13B
baseline (biased) 71.3 0.19 0.43 63.4 0.19 0.54 49.6 0.31 0.65 82.7 0.07 0.29 68.8 0.14 0.47
prior-matching 71.8 0.05 0.39 65.1 0.01 0.48 50.2 0.06 0.59 83.1 0.02 0.28 69.0 0.05 0.46
ctx prior-matching 73.3 0.00 0.25 65.8 0.00 0.38 50.0 0.00 0.40 86.3 0.00 0.19 70.3 0.00 0.31
perm-debias 74.6 0.00 0.00 70.2 0.00 0.00 53.2 0.00 0.00 87.9 0.00 0.00 70.6 0.00 0.00

Table 4: Accuracy (acc), permutation bias (pb) and permutation sensitivity for various LLMs when prompted
for Multiple Choice Question Answering.

.

SummEval

RACE++ COH CON FLU REL

Teachers
debiased white-box 68.3 68.9 79.7 61.4 67.0
biased white-box 61.2 61.6 70.5 55.6 62.8
expected biased black-box 58.4 58.5 65.5 54.3 58.8

Distillation
BERT-tiny (4.4M) 26.4±0.4 50.9±1.0 51.6±1.8 50.0±0.5 50.6±0.9
BERT-base (110M) 45.6±0.2 57.7±0.7 69.5±0.6 60.9±1.2 56.8±0.4
RoBERTa-base (110M) 26.7±0.3 61.5±5.3 70.5±1.2 61.2±1.8 60.9±0.7
DeBERTa-base (110M) 26.9±0.0 62.6±5.7 67.1±7.7 62.1±5.5 63.0±0.4
RoBERTa-large (330M) 26.9±0.0 64.8±1.2 67.6±7.7 62.7±2.9 62.1±0.5
DeBERTa-large (330M) 47.9±21.0 65.1±0.6 71.5±0.7 64.9±0.6 63.2±0.5

Error Correction
BERT-tiny (4.4M) 57.7±0.6 53.9±2.0 57.5±5.1 51.6±1.6 53.0±2.4
BERT-base (110M) 58.7±0.0 57.4±0.4 70.7±0.7 61.9±1.2 58.7±0.8
RoBERTa-base (110M) 61.4±0.1 66.4±0.4 71.7±0.5 61.6±0.6 61.9±0.4
DeBERTa-base (110M) 64.1±0.1 66.0±0.5 71.1±1.3 64.1±1.0 62.1±1.5
RoBERTa-large (330M) 68.0±0.5 66.7±0.7 72.0±1.2 63.3±0.6 63.6±0.5
DeBERTa-large (330M) 68.1±0.9 66.1±0.8 70.9±1.6 64.8±0.5 63.3±0.6

Table 5: Results extending the accuracies presented in Table 2, providing standard deviations and extended to
BERT and BERT-tiny.
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