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Abstract

Multi-modal information retrieval (MMIR)
is a rapidly evolving field where significant
progress has been made through advanced rep-
resentation learning and cross-modality align-
ment research, particularly in image-text pairs.
However, current benchmarks for evaluating
MMIR performance on image-text pairs over-
look the scientific domain, which has char-
acteristics that are distinct from generic data,
as the captions of scientific charts and tables
usually describe experimental results or sci-
entific principles, rather than human activity
or scenery. To bridge this gap, we develop a
scientific domain-specific MMIR benchmark
(SciMMIR) by leveraging corpora of open-
access research papers to extract data relevant
to the scientific domain. This benchmark com-
prises 530K meticulously curated image-text
pairs extracted from figures and tables with de-
tailed captions from scientific documents. We
further annotate the image-text pairs with a two-
level subset-subcategory hierarchy to facilitate
a more comprehensive evaluation of baseline re-
trieval systems. We conduct zero-shot and fine-
tuned evaluations on prominent multi-modal
image-captioning and visual language models,
such as CLIP, BLIP, and BLIP-2. Addition-
ally, we perform optical character recognition
(OCR) on the images and exploit this text to
improve the capability of VLMs on the SciM-
MIR task. Our findings offer useful insights
for MMIR in the scientific domain, including
the influence of pre-training and fine-tuning set-
tings, the effects of different visual and textual
encoders, and the impact of OCR information.
All our data and code are made publicly avail-
able.!

1 Introduction

Information retrieval (IR) systems are expected to
provide a relevant piece of information from a vast,

*Corresponding authors.
"https://github.com/Wusiwei@410/SciMMIR

yet organised, collection of data, according to given
user queries. With the advancement of representa-
tion learning (Bengio et al., 2013), the methodolog-
ical paradigm of IR systems has evolved from us-
ing lexical matching to retrieve textual data (Luhn,
1957; Jones et al., 2000; Robertson et al., 2009) to
a mixture of similarity matching approaches in a
learned representation space, consequently support-
ing additional modalities such as images and audio,
alongside text (Karpukhin et al., 2020; Chen et al.,
2020b; Koepke et al., 2022).

In scientific domains, offering users a fine-
grained multi-modal retrieval service presents con-
siderable practical significance. Although previ-
ous studies have evaluated the image-text retrieval
task across a range of general topics on large-scale
datasets such as Wikipedia (Young et al., 2014;
Lin et al., 2014; Srinivasan et al., 2021; Goldsack
et al., 2023; Luo et al., 2023a), there is a notable
research gap in comprehensively assessing MMIR
models within scientific domains, specifically. In-
tegrating both in-domain and out-of-domain data
in the pre-training phase significantly boosts the
performance of visual language models (VLMs)
on downstream tasks. However, the training of
most VLMs has focused exclusively on common
generic topics concerning the mundane events of
daily life (Luo et al., 2023b), such as images depict-
ing scenery and human activities. As a result, this
pre-training overlooks data pertinent to scientific
domains such as elements related to model archi-
tectures, illustrations of scientific principles, and
the results of experiments.

Due to the substantial differences in the data
distribution characteristics between generic data
and scientific data, many VLMs may not have an
adequate ability to perform MMIR for scientific do-
mains. Additionally, existing table-related works,
such as table generation tasks, have mainly focused
on textual representations of tables, while overlook-
ing image-based representations of tabular data.
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This presents problems for human-computer inter-
action, as users may desire to input information in
the form of screenshots and expect an interactive
system to present results in a graphical format.

To address the aforementioned research gap,
we introduce SciMMIR, a Scientific Multi-Modal
Information Retrieval benchmark. SciMMIR (out-
lined in Figure 1) is the first benchmark to compre-
hensively evaluate a model’s MMIR ability in the
scientific domain. To build our data collection, we
retrieve images of figures and tables, and their as-
sociated captions, from scholarly documents avail-
able on arXiv, an open-access archival corpus, to
construct image-text pairs. In order to comprehen-
sively evaluate the cross-modality aligned represen-
tations learned by models, our SciMMIR bench-
mark defines the retrieval task as bi-directional,
involving searching for the correct textual caption
in a candidate pool from a given image (img—txt)
and finding the corresponding figure or table image
from a textual caption (txt—img).

Given the disparity among various data types,
we contend that achieving uniform model perfor-
mance across diverse data formats is challenging.
For example, a model may excel at retrieving data
related to experimental results but demonstrate av-
erage performance regarding data related to model
architectures. If an overall improvement is sought
for the performance of VLMs, this improvement
may not be observed in specific sub-domains of
information. Consequently, such improvements
do not necessarily translate into observable boosts
to a VLM’s performance for a specific use case.
As aresult, we annotate and categorise the image-
text pairs into three figure-caption and two table-
caption subcategories based on the type of content
they describe (such as experimental results, model
architectures, and scientific principles). We then
conduct fine-grained evaluation on each subset.
By analysing performance across subcategories, we
are better able to carry out targeted improvements
to a model for a specific subcategory of interest.

To explore the MMIR capabilities of existing
image captioning models and VLMs in scientific
domains, as well as different subcategories, we con-
duct extensive experiments in both zero-shot and
fine-tuned settings across various subcategories.
Furthermore, we extract OCR-text data from the
images and investigate its influence on the perfor-
mance of VLMs. We present our key insights as
follows:

1. We reveal that MMIR tasks in the scientific
domain pose significant challenges for cur-
rent VLMs, which usually do not demonstrate
adequate performance in scientific domains.
Furthermore, after fine-tuning VLMs with
data specific to scientific domains, there is a
marked performance improvement, underlin-
ing the effectiveness of domain-specific adap-
tation.

2. The results suggest a distinction between
tasks involving the figure and table subsets,
with performance on the figure subset be-
ing more easily improved through domain-
specific adaptation. Furthermore, by leverag-
ing text data extracted through OCR, we are
able to substantially boost the performance
of VLMs in MMIR tasks within scientific do-
mains. This suggests that character recogni-
tion is a key weakness of standalone VLMs in
the performance of SciMMIR.

3. Regardless of parameter size, the BLIP-2 se-
ries of models generally perform better on
SciMMIR than other pre-trained VLMs. This
improved zero-shot capability may be the
result of distinct pre-training tasks includ-
ing image-text matching and image-text con-
trastive learning, rather than standard lan-
guage modelling.

These findings underscore the importance of tai-
lored approaches for different data types within
the scientific MMIR framework. A more in-depth
exploration of these findings is given in §5.

2 Related Work

General Information Retrieval. Information
Retrieval is a fundamental task within NLP and has
recently been facilitated by dense representation
learning (Reimers and Gurevych, 2019; Karpukhin
et al., 2020). More recently, the desire for uni-
fied representations across tasks has become sig-
nificant, with this line of research proposing to
understand and evaluate task-agnostic representa-
tions in a single representation space (Muennighoff
et al., 2023; Asai et al., 2022; Su et al., 2022; Wei
et al., 2023). In another vein, domain generali-
sation has always been seen as a key weakness
of IR models (Thakur et al., 2021). Through the
subpar performance of general image-text mod-
els on SciMMIR, we evidence that scientific IR,
especially when multi-modal, remains an out-of-
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SciMMIR Benchmark
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Figure 1: An illustration of the SciMMIR framework.

domain (OOD) task despite advancements in gen-
eral information retrieval.

Multi-modal Information Retrieval. In ear-
lier multi-modal representation learning research,
small-scale cross-modal retrieval datasets including
MSCOCO (Lin et al., 2014) and Flickr30k (Plum-
mer et al., 2015) have facilitated the alignment
between visual and linguistic representations. Ef-
forts have since shifted towards large-scale vision-
language pretraining (Radford et al., 2021; Kim
etal., 2021; Lietal., 2021; Jiaet al., 2021; Yu et al.,
2022), with these small-scale retrieval datasets, in
turn, becoming the standard evaluation approach
for such systems. Advancements in multi-modal
representation alignment have also facilitated multi-
modal retrieval-augmented generation (Chen et al.,
2022; Yasunaga et al., 2022; Hu et al., 2023; Lin
et al., 2023), and more recently, evaluating the
unified cross-modal representations across diverse
tasks has emerged as a prevalent trend (Wei et al.,
2023).

Scientific Document Retrieval. Scientific infor-
mation retrieval has received moderate attention in
NLP, with SciFact (Wadden et al., 2020) and SCI-
DOCS (Cohan et al., 2020) commonly incorporated
in popular zero-shot information retrieval bench-
marks (Thakur et al., 2021). More complex tasks
have been proposed in this area, such as DORIS-
MAE, a task to retrieve documents in response
to complex, multifaceted scientific queries (Wang
et al., 2023a). In the multi-modal area, VQA (An-
tol et al., 2015) presents another major approach
in evaluating vision-language systems, concerning

Subset Subcategory Number Len (words)
Train  Valid Test Caption
Result 296,191 9,676 9,488 52.89
Figure Illustration 46,098 1,504 1,536 38.44
Architecture 13,135 447 467 27.27
Table Result 126,999 4,254 4,229 27.23
Parameter 15,856 552 543 17.10
Total 498,279 16,433 16,263 43.19

Table 1: Statistics of the SciMMIR dataset.

in-depth visual grounding, rather than the use of
distributional priors (Agrawal et al., 2018). It is
in this area that work with a similar scope to ours
in the scientific domain, such as PlotQA (Methani
et al., 2020) and ChartQA (Masry et al., 2022), is
seen. Our proposed SciMMIR benchmark distin-
guishes itself from these existing works by offering
extensive coverage across annotations of figure and
table subcategories, a larger dataset size, and the
use of real-world data that is naturally paired and
therefore not reliant on costly human annotation.

3 Dataset Construction

Data Collection. We collect PDF files from a
6-month period (i.e. papers submitted between
May and October 2023) from arXiv using the offi-
cial API. We use an open-source tool (Clark and
Divvala, 2016) to locate non-textual elements (i.e.,
figures and tables) in the papers and extract their
corresponding caption text. All tables and figures
are stored in the form of images, and we remove
the figure/table entries that have empty captions.
The aforementioned collection process results in

2https://info.arxiv.org/help/api
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Figure 2: The ratio of different subject image-caption
data in SciMMIR. ’Hep-Ph’ denotes High Energy
Physics - Theory, ’Quant-Ph’ denotes Quantum Physics,
and ’Astro-Ph’ denotes Astrophysics. *Gr-Qc’ denotes
General Relativity and Quantum Cosmology, ’Eess’
denotes Electrical Engineering and Systems Science,
’Cond-Mat’ denotes Condensed Matter, and Cs’ de-
notes Computer Science.

the SciIMMIR dataset that comprises 530K image-
caption samples, with an average caption length
of 43.19 words as shown in Table 1. The dataset
is split into training, validation, and testing sets
with 498,279, 16,433, and 16,263 samples, re-
spectively. As shown in Figure 2, the SciMMIR
benchmark covers a wide range of scientific disci-
plines, including those that require complex reason-
ing (such as Mathematics, Physics, and Computer
Science), which attests to the presence of compre-
hensive and intricate scientific knowledge within
the dataset.

Subset and Subcategory Structure. To better
understand the performance of VLMs across var-
ious data types within the scientific domain, we
define a hierarchical architecture with two subsets
and five subcategories for the SciMMIR bench-
mark. We divide the data into two subsets: one
for tables and one for figures, as they possess dis-
tinct data distributions. Tables contain ample tex-
tual information, whereas figures predominantly
utilise geometric shapes to elucidate scientific prin-
ciples or reveal patterns within data. For tabular
data, we further categorise them into two subcate-
gories, Table-Parameter and Table-Result. Table-
Result data primarily presents experimental results,
whereas Table-Parameter data provides explana-
tions of parameters or specific numerical values
(i.e., learning rates and physical coefficients), and
consequently both have different data type distribu-
tions. As for Figures, we consider those depicting

Subset Subcategory Description
. Depicts scientific study frame-
Architecture p Y .
works and conceptual designs.
. . Illustrates complex scientific
Figure Tjlustration P . .
concepts or data relationships.
Visually presents scientific re-
Result yP
search outcomes.
Details of key parameters and
Parameter . . .
variables in studies.
Table S - 4 disol
ummarises and displays ex-
Result . Py
periment/study results.

Table 2: The hierarchical structure of SciMMIR.

experimental results, explaining model architec-
tures (e.g. a figure describing each module in a
deep learning model), and illustrating scientific the-
ories (e.g. a figure illustrating an event related to
double-slit interference, aiming to elucidate the un-
derlying scientific principle), as they encompass
different types of scientific knowledge. Therefore,
the performance of models on these distinct data
types may vary, leading us to categorise them into
three separate subcategories. Specifically, our fine-
grained categorisation is derived based on the statis-
tics in Table 2.

Data Annotation. For data annotation, we use
manually constructed key phrases to classify image-
text sample pairs. Firstly, we acquire keywords
based on the unique words that emerge in captions
under different subcategories and conduct an initial
categorisation of the data based on this keyword set.
Subsequently, to ensure the quality of our statistical
analysis, we randomly select 2000 images from the
test set and hire three graduate students experienced
in natural language processing to manually review
the results of the keyword-based classification on
the criteria of whether the image within the image-
caption pairs conform to the expected character-
istic of the corresponding subcategory. We then
construct new keywords and remove low-quality
ones by analysing which words in the caption re-
sult in misclassified examples. Finally, we refine
the keyword list iteratively, enhancing the quality
until the manual evaluation’s accuracy on the 2,000
extracted samples reached 80%. The subset and
subcategory classification results are shown in Ta-
ble 1, providing a structured and standardised basis
for subsequent experiments.
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Model

Pre-training Data

i &
Pre-training Task Trainable & *Frozen Parameters

‘ Domain Number Visual | Textual | Align
CLIP-base | Internet Crawled | 400M | Contrastive | 62M | 63M | /
- COCO, VG, CC3M, CCI2M, SBU, Image-Text Contrastive, Image-Text
BLIP-base ‘ LAION-400M ‘ 129M ‘ Matching, Language Modeling 255M ‘ 108M ‘ /
BLIP2-OPT-2.7B \ \ \ \ | *27B | *2.7B
Image-Text Contrastive.
BLIP2-OPT-6.7B COCO, VG, CC3M, g o #6.7B *6.7B
| CCI12M, SBU, | 120M im“ge Text l\gaffg'“g' | *1.3B | |
BLIP2-FLAN-T5-XL | LAION-400M \ mage-grounded Text \ | *2.85B | #2.85B
Generation
BLIP2-FLAN-TS-XXL | \ \ | *11.3B | *11.3B
LLaMA-Adapter2-7B ‘ Eé;(lj\)/[Nég(()jl\(/I)’ COYO, MMC4, SBU, ‘ 56.7M Fine-Tuning only ‘ *62M ‘ *7B ‘ 14M
Kosmos-2 | GRIT \ 90M | Language Modeling | 03B | 1.3B | 19M
COCO, CC3M, CCI2M, LAION-5B, I .
mPLUGw-OWL2 ‘ COYO, DataComp ‘ 400M ‘ Language Modeling ‘ 0.3B ‘ 7B ‘ 0.9B
LLaVA-V1.5-7B ‘ LAION, CC, SBU, ShareGPT ‘ 392M ‘ Language Modelling ‘ 0.3B ‘ 6.9B ‘ 0.02B

Table 3: The pre-training information of the baselines.

4 Experiment

4.1 Retrieval Baseline

To investigate the capabilities of current VLMs on
the SciMMIR task and to assess whether data from
different categories influences their performance,
we evaluate a wide range of baseline models. Fur-
thermore, we collect information regarding the pre-
training strategy for each baseline model in Table 3
and present additional details in Appendix A, in
order to explore the potential factors that cause
performance differences between VLMs.

Image Captioning Models. As our baselines, we
present image-captioning models, including CLIP-
base (Radford et al., 2021) and BLIP-base (Li
et al., 2022), that have learned the pairing relation-
ship between images and the corresponding text
via a strong supervision signal. We evaluate these
image captioning models trained on general do-
main datasets (such as images related to scenery
and daily life events) in both zero-shot and fine-
tuned settings to investigate the need for scientific
domain adaptation. We also introduce BERT (De-
vlin et al., 2018) as an alternative text encoder for
captioning (denoted "+BERT" in the tables), where
such ensemble baselines may reveal the influence
of the text encoders.

Visual Language Models. Additionally, we se-
lect large visual language models (VLMs) trained
for multi-modal tasks such as Visual Question An-
swering (VQA) to examine their zero-shot and fine-
tuned MMIR performance in the scientific domain.
Additional details of the benchmarked VLMs are
given in Appendix B.

refers to non-public or not fully public data.

OCR Based Method. We perform OCR on the
images in our SciIMMIR benchmark to extract tex-
tual content. To improve the performance of VLMs
on the SciMMIR task, we combine the OCR text
embeddings generated by the text encoder of the
VLMs with the image embeddings produced by the
VLMs’ visual encoder.

4.2 Evaluation Protocol

Task Definition. The SciMMIR benchmark
presents a bi-directional MMIR task:

e txt—img: The forward direction retrieval
task, where for a given text, the model re-
trieves the correct corresponding image from
a candidate set.

e img—txt: The inverse direction retrieval
task, where given an image, the model re-
trieves the correct corresponding text from
a candidate set.

Given an image ¢my; and a text text;, the rel-
evance score I? in the retrieval ranking is defined
as the dot product between the visual and tex-
tual representations of img; and text; (ie. R =
Eipyg, - Etextj). In addition to assessing the mod-
els’ performance on the overall test set (denoted
“ALL”), we evaluate the models’ retrieval capabil-
ity on different subsets and subcategories to scru-
tinise their abilities. Specifically, we assess the
models’ performance on five fine-grained subcat-
egories (shown in Table 2) of the test set, as well
as the performance on the Figure and Table subsets
overall.

Metrics. In this paper, we use the Mean Recipro-
cal Rank (MRR) and Hits @K metrics to assess the
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IR models’ performance on the SciMMIR bench-
mark. These metrics are calculated based on the
ranking of the golden answer within the entire set
of candidates provided by the IR models. The de-
tails of these metrics are described in Appendix D.

Zero-shot We provide a zero-shot (ZS) setting
in the evaluation for all baselines. For image-
captioning models, the features extracted by the vi-
sual encoder and textual encoder are directly used,
since they have been aligned to the same represen-
tation space. For the visual language models, the
visual representation remains unchanged, but the
representations from the textual module are used
depending on their architectures. Specifically, for
the encoder-decoder textual models such as BLIP2-
FLAN-TS5s, we use the output features from the
textual encoder as the text features, whereas for
decoder-only textual models like BLIP2-OPTs, we
perform mean pooling on the outputs from the last
decoder layer.

Fine-tuning. We also provide an evaluation of
fine-tuned (FT) versions of the relatively small
models (CLIP-base and BLIP-base) and a large
VLM (BLIP2-FLAN-T5-XL) that were trained
with our data. During fine-tuning, we employ stan-
dard contrastive learning (Chen et al., 2020a) to
maximize the relevance score between positive text-
image pairs and minimise the relevance score be-
tween negative text-image pairs within a batch of
samples. In addition to training the models on the
entire training set, we also train them on different
subsets (e.g., Figure-Result and Table-Parameter)
of the training data to investigate the modelling
abilities in a fine-grained manner.

5 Result Analysis

5.1 Opverall Evaluation

Following the evaluation protocol shown in Table 4,
we report the baseline performances on the univer-
sal set (ALL), Figure set, and Table set.

For both the forward (txt—img) and inverse
(img—txt) tasks, we find that small models (e.g.
CLIP and BLIP) fine-tuned with our in-domain
scientific image-text data generally demonstrate
superior performance in all settings of the SciM-
MIR benchmark. Specifically, the MRR of fine-
tuned CLIP and BLIP models are over 6% in all
settings. This underscores the necessity of domain
adaption for improvement in the SciMMIR task.
Our designed tasks remain challenging for most of

the models. For tasks across both directions, the
zero-shot capabilities of most large VLMs demon-
strate relatively poor performance, with both the
MRR and Hits@ 10 metrics falling below 0.23% in
the ALL setting. It is worth mentioning that the
CLIP-base model’s zero-shot performance is the
best across all VLMs with its MMR being over
0.3%, which suggests CLIP maybe encounter some
image-caption pair related to the scientific domain
during the pre-training.

The performance of the fine-tuned multi-modal
models in information retrieval involving both fig-
ures and tables is promising overall. However, in
the non-OCR setting, the performance of the mod-
els is significantly higher on the Figure subset than
on the Table subset, suggesting that the table re-
trieval task is more challenging. Conversely, when
fine-tuning with the OCR-text data, there is not an
explicit gap between the models’ performance on
the Figure and Table subsets. We hypothesise that
the lower performance on the table subset with-
out OCR-text data may be due to the scarcity of
table-style images in the pre-training datasets and
the lack of textual perception ability in the visual
encoders.

Experimental results based on our SciMMIR
benchmark demonstrate the limitations of existing
VLMs for MMIR in scientific domains. However,
by employing the high-quality data of SciMMIR
for fine-tuning, the performance of VLMs can be ef-
fectively improved. Additionally, our experiments
show that retrieving visual tables is challenging
and requires thoroughly mining the semantic rela-
tions between caption information and textual data
within tables.

5.2 Zero-Shot Analysis

To provide a more thorough analysis, we present
the zero-shot performance of the baselines across
different subcategories in Table 8 and Table 9 in
Appendix F.

As for the txt—img direction, the selected large
pre-trained VLMs (e.g. BLIP2-OPT-6.7B and
LLaMA-Adapter2-7B) demonstrate poor perfor-
mance across various subcategories in both the Fig-
ure and Table subsets. For the subcategories within
the Table subset, all models, except CLIP-base, are
ineffective. In the Figure subset, the BLIP2-FLAN-
TS5 series models show slightly better performance
across all subcategories. This may be attributed
to the fact that the textual encoder part of encoder-
decoder architecture could better capture textual
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ALL Figure* Table*

Model txt—img img—txt txt—img img—txt txt—img img—txt
MRR Hits@l0 MRR Hits@10 | MRR Hits@10 MRR Hits@10 | MRR Hits@l10 MRR Hits@10
CLIP-base 8.13 13.48 7.94 13.34 9.29 15.41 8.99 15.29 5.29 882 541 8.65
CLIP-base+BERT 2.47 5.01 3.11 5.85 2.99 6.09 3.80 7.10 1.19 242 1.44 2.85
BLIP-base 6.14 11.30 6.18 11.71 6.80 12.59 6.89 13.21 4.59 822 447 8.15
FT | BLIP-base+BERT 11.51 20.09 12.69 21.77 13.01 2267 14.12 24.18 | 793 13.98 9.31 16.08
BLIP2-FLAN-T5-XL 4.44 7.74 2.27 4.48 4.93 8.66 2.57 5.02 3.23 548 1.51 3.13
CLIP-base+OCR 20.23 29.60 20.70 30.19 20.38 29.71 20.87 30.49 | 20.00 2949 2041 29.60
CLIP-base 0.419 0.719 0.364 0.670 0.458 0.767 0421 0.787 | 0.310 0.586 0219 0.375
BLIP-base 0.004 0.006 0.003 0.006 0.006 0.009  0.002 0.000 | 0.001 0.000  0.007 0.021
BLIP2-FLAN-T5-XL 0.025 0.031 0.012 0.025 0.028 0.035  0.016 0.035 | 0.020 0.021  0.003 0.000
BLIP2-FLAN-T5-XXL 0.053 0.105 0.004 0.000 0.059 0.104  0.004 0.000 | 0.040 0.105  0.003 0.000
7S BLIP2-OPT-2.7B 0.052 0.111 0.015 0.031 0.035 0.060  0.013 0.027 | 0.093 0.230  0.020 0.042
BLIP2-OPT-6.7B 0.002 0.006 0.002 0.000 0.003 0.008  0.002 0.000 | 0.002 0.000  0.002 0.000
LLaVA-V1.5-7B 0.006 0.012 0.002 0.000 0.008 0.018  0.002 0.000 | 0.002 0.000  0.002 0.000
mPLUG-OwI2-LLaMA2-7B | 0.002 0.000 0.002 0.000 0.003 0.000  0.002 0.000 | 0.001 0.000  0.001 0.000
Kosmos-2 0.008 0.018 0.002 0.000 0.011 0.025  0.002 0.000 | 0.000 0.000  0.001 0.000
LLaMA-Adapter2-7B 0.040 0.061 0.002 0.000 0.056 0.085  0.002 0.000 | 0.001 0.000  0.004 0.000

Table 4: The main results of SciMMIR benchmark. * refers to average results in the Figure and Table subsets.

Fig Architecture Fig Illustration Fig Result

Model Training Data txt—img img—txt txt—img img—txt txt—img img—txt
MRR Hits@10 MRR Hits@10 | MRR Hits@10 MRR Hits@10 | MRR Hits@l0 MRR Hits@10
All 9.77 1692  9.84 15.42 | 10.01 1530 935 1497 | 9.16 15.37 8.90 15.34
Fig-Architecture 5.60 8.35 6.11 8.14 2.61 4.95 295 5.01 2.50 4.02 2.35 4.18
CLIP-base Fig-Illustration 8.58 12.85 8.82 1328 | 6.76 1172 7.08 11.78 5.69 9.20 546 8.96
Fig-Result 9.24 15.42 9.76 14.99 8.58 14.19 8.86 14.26 8.79 14.10 9.05 14.79
Table-Parameter 2.67 450  3.04 3.85 1.78 319 242 4.49 1.82 2.99 1.55 2.74
Table-Result 3.12 5.78 3.31 535 1.91 391 233 4.49 2.58 4.26 1.48 2.80
CLIP-base+BERT | Al | 230 4.93 2.76 6.42 | 3.12 5.53 3.59 6.97 | 3.01 6.23 3.88 7.16
CLIP-base+OCR | Al | 15.40 2270 16.41 25.48 | 15.89 2324 1694 24.61 | 21.29 31.03 21.68 31.63
All 5.11 10.06  5.53 1028 | 5.35 10.09  5.64 10.16 | 7.11 13.10  7.15 13.82
Fig-Architecture | 0.04 0.00  0.06 0.21 0.02 0.00  0.03 0.07 | 0.03 0.06  0.02 0.01
BLIP-base Fig-Illustration 0.04 0.00  0.09 0.00 | 0.26 052 045 0.91 0.08 0.16  0.09 0.14
Fig Result 2.55 6.21 3.20 6.00 | 291 6.25 3.380 6.84 | 4.66 9.13 480 9.18
Table-Parameter 0.00 0.00  0.00 0.00 | 0.00 0.00  0.00 0.00 | 0.00 0.00  0.01 0.00
Table-Result 0.12 0.21 0.01 0.00 | 0.01 0.00  0.03 0.07 | 0.05 0.07  0.06 0.09
BLIP-base+BERT | Al | 995 1842  12.09 18.63 | 11.17 19.27  11.63 20.25 | 13.44 2339  14.60 25.04
BLIP2-FLAN-T5-XL | All | 675 1134 4.06 8.56 | 5.99 10.41 3.16 6.44 | 4.69 8.27 241 4.64

Table 5: The results of fine-tuning models on Figure subsets of our SciMMIR benchmark.

Table Result Table Parameter

Model Training Data txt—img img—txt txt—img img—txt
MRR Hits@10 MRR Hits@l0 | MRR Hits@l0 MRR Hits@10
All 5.40 9.01 5.52 8.82 | 445 7.37 4.55 7.37
Fig-Architecture 1.22 2.06 1.34 2.34 1.35 2.58 1.47 295
CLIP-base Fig-Illustration 1.42 2.70 1.79 3.14 1.93 2.95 2.60 4.42
Fig-Result 2.71 4.49 2.53 4.52 2.19 4.05 2.30 4.79
Table-Parameter 1.46 2.70 1.56 2.62 1.52 331 1.82 3.68
Table-Result 4.28 7.26 1.28 2.29 3.77 6.63 0.87 1.29
CLIP-base+BERT | Al | L8 2.41 1.46 293 | 131 2.58 1.33 221
CLIP-base+OCR ‘ All ‘ 20.36 29.87  20.68 29.96 ‘ 17.15 2652  18.22 26.70
All 4.77 842 454 8.23 3.16 6.63 3.99 7.55
Fig-Architecture | 0.01 0.00  0.03 0.02 | 0.01 0.00  0.02 0.00
. Fig-Illustration 0.00 0.00 0.01 0.00 0.01 0.00 0.02 0.00

BLIP-base .

Fig-Result 0.70 1.32 0.65 1.16 | 0.32 1.29  0.56 0.74
Table-Parameter 0.01 0.02 0.01 0.00 | 0.02 0.00  0.06 0.00
Table-Result 0.92 1.80 092 1.82 | 0.83 074 052 1.10
BLIP-base+BERT | Al | 817 14.35 9.70 1648 | 6.01 11.05 6.19 12.89
BLIP2-FLAN-TS5-XL ‘ All ‘ 3.11 5.29 1.33 2.90 ‘ 4.22 6.99 3.00 4.97

Table 6: The results of fine-tuning models on Table subsets of our SciIMMIR benchmark.

features. Conversely, as for the img—txt direc-
tion, on the Figure subset, the performance of all
VLMs in the reverse direction is marginally lower
than in the forward direction. This proves that the
image feature captured by visual encoder of current
VLMs is unable to model effective relation with
the relevant text.

5.3 Analysis in Fine-tuning Setting

Overall Analysis. As shown in Table 11 in Ap-
pendix E, we fine-tune the models using data of
different categories. The results indicate that train-
ing the model only with data from a specific sub-
category leads to a significant performance gap
compared to the models fine-tuned on all the data.
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There are two main factors contributing to this.
Firstly, the dataset size of a specific subcategory
is relatively small. Secondly, there are significant
differences in data distributions among different
subcategories.

Among all the models, BLIP-base+BERT per-
forms the best across all fine-tuned settings, while
the performance of the CLIP model drops when
its text encoder is replaced with BERT. Notably,
merely fine-tuning the Q-Former parameters of
BLIP2-FLAN-T5-XL to adapt the large VLM to
the scientific domain did not yield as effective re-
sults as the smaller models. Consequently, there re-
mains a need for efficiently fine-tuning small mod-
els to construct robust connections between the
representations of the visual and textual modalities.

The Impact of Subcategory Training Data. As
shown in Table 5 and Table 6, we report the result
on testing samples of specific subcategories, for the
sake of comprehensively investigating the impact
of different subcategory training data.

For BLIP, training on a certain subcategory re-
sults in performance improvements on the cor-
responding part of the test set, whilst its perfor-
mance on other subcategories remains relatively
poor. This demonstrates the distribution gap among
our labelled subcategories and proves the rational-
ity of our subset-subcategory hierarchy. As for
CLIP, the models trained on different subcategories
consistently perform best in the Fig-Architecture
subcategory. This may be because CLIP has been
trained on data with a more similar distribution to
our data.

The model trained on Figure-Results data
demonstrates the best performance across the en-
tire Figure subset. One reason could be that the
Figure-Result subset has the largest training pro-
portion (54.02%) and contains text documents with
a relatively longer average length (52.93 words
compared to the dataset’s overall average length
of 43.23 words) in the training dataset. This high-
lights the impact of training dataset size and its
length coverage of text (Xiao et al., 2023a) on the
performance and generalisability of retrieval mod-
els.

The Impact of OCR. After fine-tuning the CLIP
model with OCR-extracted text data, we observe
a notable improvement on the Table subset com-
pared to the Figure subset. Furthermore, as for
the subcategories related to results (i.e., the Table
Result and Fig Result subcategories), the VLMs

achieve their best performance, with MRR exceed-
ing 20%, compared to other models and subcat-
egories. These findings indicate that the OCR-
extracted text data can provide textual information
from the images, which may not be completely cap-
tured by the VLMs. This underscores the value of
incorporating OCR data to enhance the text percep-
tion ability of VLMs, particularly in the domain of
scientific multi-modal information retrieval.

5.4 Text Encoder Generalisability

To investigate the impact of text encoders on SciM-
MIR, we substitute the text encoders in both BLIP-
base and CLIP-base models with BERT-base. As
shown in Table 11 in Appendix E, replacing the
text encoder of BLIP with BERT results in a signif-
icant improvement, while that of CLIP experiences
a decline. The reason for the performance changes
after replacing the text encoder with BERT in both
CLIP and BLIP may be as follows:

CLIP. With effective contrastive learning (Wang
and Isola, 2020), the textual and visual embeddings
are well-aligned in an isotropic space in the pre-
training phase of CLIP, which is demonstrated by
the zero-shot setting experiments. However, re-
placing the text encoder with a highly anisotropic
vanilla text encoder (e.g., BERT) hinders the stable
alignment with the already learned vision encoder
(Xiao et al., 2023b). We hypothesise that freezing
the vision encoder in early fine-tuning may help
guide the replaced language model.

BLIP. Unlike CLIP, BLIP incorporates BERT as
its text encoder from the pre-training phase. This
structural consistency significantly contributes to
the model’s enhanced adaptation to the scientific
domain. Besides, employing BERT as the text en-
coder may facilitate the learning of more effective
text representations. This is particularly advanta-
geous in establishing associations between images
and text, especially since tables, a common ele-
ment in scientific documents, are rich in textual
information.

5.5 Error Analysis

For better analysis of the performance, we con-
duct experiments on test data spanning different
subcategories and calculate the ratio of all subcate-
gories within the top 10 answers predicted by the
fine-tuned and vanilla CLIP models. Predictions
matching the test subcategory were considered cor-
rect.
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Model Testing Data Fig-Architecture Fig-Illustration Fig-Result Table-Result Table-Parameters
txt—img img—txt | txt—img img—txt | txt—img img—txt | txt—img img—txt | txt—img img—txt
Fig Architecture 12.85 12.72 16.62 18.22 69.57 67.22 0.84 1.65 0.13 0.19
Fig Ilustration 5.16 4.66 20.59 22.66 73.30 71.47 0.83 0.98 0.13 0.23
FT-CLIP-base Fig Results 3.80 3.62 13.01 14.25 81.48 80.15 1.48 1.64 0.22 0.34
Table Results 0.12 0.15 0.24 0.70 4.16 4.97 85.68 84.29 9.81 9.89
Table Parameters 0.29 0.35 0.53 1.34 5.08 9.61 73.44 72.19 20.64 16.50
Fig Architecture 7.34 6.72 28.54 23.06 59.42 66.62 4.20 2.70 0.49 0.90
Fig Illustration 3.99 3.68 30.56 23.44 61.74 71.04 3.40 1.47 0.31 0.36
7S-CLIP-base Fig Results 4.12 4.17 2431 19.59 63.04 73.52 7.74 2.29 0.79 0.44
Table Results 0.36 2.55 1.48 491 9.28 38.69 75.89 41.92 12.99 11.92
Table Parameters 0.26 3.00 238 7.38 9.52 42.43 74.40 34.68 13.44 12.50

Table 7: The accuracy and error analysis of CLIP models on our SciMMIR benchmark.

As shown in Table 7, due to the larger volume of
samples in our dataset are labelled as Fig-Results
and Table-Results (58.00% and 26.16%, calculated
through Table 1, respectively), the models tend to
predict samples from these categories as answers.
When comparing zero-shot and fine-tuned models,
it can be observed that fine-tuning helps reduce
incorrect predictions across almost all categories.

Compared with zero-shot results, the fine-tuned
models show the largest improvement in prediction
accuracy on the Figure-Architecture and Figure-
Result test data. However, the increase in predic-
tion accuracy on the Table subset after fine-tuning
is not obvious, indicating that retrieving informa-
tion from Tables still poses significant challenges.

6 Conclusion

In summary, we introduce a novel benchmark and
a corresponding dataset designed to address the
gap in evaluating multi-modal information retrieval
(MMIR) models in the scientific domain. Addi-
tionally, we categorise the images into fine-grained
subcategories based on the characteristics of the fig-
ures and tables to facilitate a more comprehensive
evaluation and analysis. Our evaluation of zero-
shot and fine-tuned approaches, which we conduct
on extensive baselines within various subsets and
subcategories, offers valuable insights for future
research.

Limitations

Due to computational resource constraints, we only
fine-tune BLIP2-FLAN-T5-XL on our SciMMIR
dataset and did not investigate the fine-tuning ef-
fects of other large VLMs on our benchmark. In
this work, we find that BLIP+BERT could improve
the model’s ability in our benchmark, specifically
for the Table subset. However, we do not design ex-
periments to explore which kind of models would
be better suited to the replacement of the textual en-
coder with BERT or other language models.Despite

our best efforts to ensure data quality, given the
sheer volume of data, we cannot guarantee that
all results and content within the scientific domain
dataset are accurate. This inherent limitation could
potentially lead to models generating misleading
or deceptive outputs in future use, necessitating
further filtering in future work.

Ethics Statement

The dataset used in our research is constructed us-
ing publicly available data sources, ensuring that
there are no privacy concerns or violations. We
do not collect any personally identifiable informa-
tion, and all data used in our research is obtained
following legal and ethical standards. In the stage
of designing keywords and human evaluation clas-
sification of image-text pair, we employed three
graduate students experienced in natural language
processing for human evaluation. We paid the grad-
uate students approximately $13 per hour, well
above the local average wage, and engaged in con-
structive discussions if they had concerns about the
process.
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A The Baseline Pre-training Datasets

Enhancing model performance through additional
knowledge has garnered considerable attention
(Cheng et al., 2023a,b,c; Wang et al., 2023b) mak-
ing it is essential to boost model capabilities in
the scientific domain through multi-modal retrieval.
Besides, retrieving the related specific domain
knowledge could significantly relieve the halluci-
nation of LLM and VLMs (Choi et al., 2023) and
improve the interpretability of them (Wang et al.,
2022, 2024). To this end, we have designed a se-
ries of baselines and provided a reference list for
the pre-training image-text datasets mentioned in
Table 3. COCO (Lin et al., 2014), consists of over
200,000 images across various categories includ-
ing people, animals, everyday objects, and indoor
scenes. The VG dataset (Krishna et al., 2017) con-
sists of over 100,000 images and covers a diverse
range of visual concepts, including objects, scenes,
relationships between objects, and other contex-
tual information within images. CC3M (Sharma
et al., 2018) contains over 3.3 million of images
paired with descriptive captions, covering a wide
range of topics and scenes. CC12M (Changpinyo
et al., 2021) contains 12.4 million image-text pairs,
which is 3 times larger in scale compared to CC3M
with a higher diversity degree containing more in-
stances of out-of-domain (OOD) visual concepts.
SBU (Ordonez et al., 2011) contains over 1 mil-
lion images with visually relevant captions. The
dataset is designed to be large enough for reason-
able image-based matches to a query and the cap-
tions are filtered to ensure they are visually descrip-
tive and likely to refer to visual content. LAION-
400M (Schuhmann et al., 2021) is an open dataset
that consists of 400 million image-text pairs, their
CLIP embeddings, and KNN indices for efficient
similarity search. It includes image URLs, corre-
sponding metadata, CLIP image embeddings, and
various KNN indices for quick search. LAION-
5B (Schuhmann et al., 2022) is an open, large-scale
dataset that consists of 5.85 billion image-text pairs,
with 2.32 billion pairs in English. COYO (Byeon
et al., 2022) is a large-scale dataset containing
747M image-text pairs as well as many other meta-
attributes to increase the usability to train various
models. MMC4 (Zhu et al., 2023) consists of 101.2
million documents with 571 million images inter-
leaved with 43 billion English tokens. It covers
a wide range of everyday topics such as cooking,
travel, and technology. GRIT (Peng et al., 2023) is

a large-scale dataset of Grounded Image-Text pairs
that consists of approximately 91 million images,
115 million text spans, and 137 million associated
bounding boxes. DataCamp (Gadre et al., 2023) is
a participatory benchmark that focuses on dataset
curation for large image-text datasets. It provides a
new candidate pool of 12.8 billion image-text pairs.
The dataset size in DataComp is a design choice
and not predetermined.

B Used Visual Language Models

 BLIP-2 (Li et al., 2023) series models use
a querying transformer module to address
the modality gap. We choose the models
grounded in large language models (LLMs),
BLIP2-OPT-2.7B, BLIP2-OPT-6.7B, BLIP2-
FLAN-T5-XL and BLIP2-FLAN-T5-XXL, as
our baselines.

LLaVA-V1.5-7B (Liu et al., 2023) use two
simple methods, namely, an MLP cross-modal
connector incorporating academic task related
data such as VQA to improve the ability of
the LLaVA.

LLaMA-Adapter2-7B (Gao et al., 2023) effi-
ciently fine-tunes additional parameters based
on the LLaMA model (Touvron et al., 2023),
where the extra expert models further boost
its image understanding capability.

Kosmos-2 (Peng et al., 2023) aligns percep-
tion with language and adds the ability to
recognise and understand images based on
its multi-turn dialogue and reasoning capabili-
ties. Specifically, it achieves the capability of
grounding images, allowing it to interact with
inputs at the object level.

mPLUGwW-OWL2 (Ye et al., 2023) introduces
a Modality-Adaptive Module (MAM) into the
large language model. By adding a small num-
ber of parameters during the attention process,
it further learns a shared space for both vision
and language representations.

C Effects of Visual Encoder Resolution

In Table 4 for overall results, we compare the fine-
tuned BLIP with the default image preprocessing
dimensions of 384 and fine-tuned CLIP with the
default image preprocessing dimensions of 224,
where the results are relatively close. To make a
fairer comparison, we decrease the image dimen-
sions of BLIP-base model from 384 to 224 to be
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Fig Architecture Fig Illustration Fig Result

Model txt—img img—txt txt—img img—txt txt—img img—txt

MRR Hits@l0 MRR Hits@10 | MRR Hits@l0 MRR Hits@l0 | MRR Hits@l10 MRR Hits@10
CLIP-base 1.351 1.927 1.074 2.141 | 0.750 1.237  0.458 0.716 | 0.373 0.643  0.386 0.738
BLIP-base 0.003 0.000  0.001 0.000 | 0.003 0.000  0.002 0.000 | 0.006 0.011  0.002 0.000
BLIP2-FLAN-T5-XL 0.010 0.000  0.003 0.000 | 0.010 0.000  0.004 0.000 | 0.032 0.042  0.019 0.042
BLIP2-FLAN-T5-XLL 0.056 0.214  0.003 0.000 | 0.037 0.065  0.005 0.000 | 0.062 0.105  0.004 0.000
BLIP2-OPT-2.7B 0.130 0.214  0.005 0.000 | 0.033 0.130  0.006 0.000 | 0.031 0.042  0.014 0.032
BLIP2-OPT-6.7B 0.001 0.000  0.001 0.000 | 0.009 0.065  0.001 0.000 | 0.002 0.000  0.002 0.000
LLaVA-V1.5-7B 0.003 0.000 0.004 0.000 | 0.003 0.000  0.004 0.000 | 0.009 0.021  0.002 0.000
Kosmos-2 0.123 0.428  0.008 0.000 | 0.011 0.000 0.004 0.000 | 0.006 0.011  0.002 0.000
mPLUG-OwI2-LLaMA2-7B | 0.022 0.000  0.003 0.000 | 0.302 0.521  0.003 0.000 | 0.019 0.021  0.002 0.000
LLaMA-Adapter2-7B 0.001 0.000  0.001 0.000 | 0.008 0.000  0.002 0.000 | 0.002 0.000  0.002 0.000

Table 8: The zero-shot results of multimodal models on Figure subsets of our SciMMIR benchmark.

Table Result Table Parameter

Model txt—img img—txt txt—img img—txt

MRR Hits@10 MRR Hits@10 | MRR Hits@10 MRR Hits@10
CLIP-base 0.281 0.544  0.177 0.284 | 0.545 0.921 0.558 1.105
BLIP-base 0.001 0.000  0.007 0.024 | 0.000 0.000 0.003 0.000
BLIP2-FLAN-T5-XL 0.021 0.024  0.003 0.000 | 0.010 0.000  0.005 0.000
BLIP2-FLAN-T5-XLL 0.041 0.095 0.003 0.000 | 0.030 0.184  0.003 0.000
BLIP2-OPT-2.7B 0.076 0.213  0.010 0.024 | 0.228 0.368 0.101 0.184
BLIP2-OPT-6.7B 0.002 0.000 0.002 0.000 | 0.001 0.000 0.002 0.000
LLaVA-V1.5-7B 0.002 0.000 0.002 0.000 | 0.003 0.000 0.004 0.000
Kosmos-2 0.000 0.000 0.001 0.000 | 0.000 0.000 0.003 0.000
mPLUG-OwI2-LLaMA2-7B | 0.001 0.000 0.004 0.000 | 0.002 0.000 0.005 0.000
LLaMA-Adapter2-7B 0.001 0.000  0.001 0.000 | 0.001 0.000 0.001 0.000

Table 9: The zero-shot results of multi-modal models on Table subsets of our SciMMIR benchmark datasets.

. .. txt—img img—txt
Img Dim Model Training Dataset MRR  Hits@10 | MRR  Hits@10
ALL 0.958 2.034 1.138 2.294
Fig Architecture 0.002 0.000 | 0.006 0.000
Fig Illustration 0.036 0.024 | 0.011 0.000
224 BLIP-base Fig Result 0.167 0260 | 0.115 0.213
Table Result 0.408 0.757 | 0.368 0.686
Table Parameter 0.011 0.024 | 0.009 0.000
224 ‘ BLIP-base+BERT ‘ ALL ‘ 1.614 3.334 ‘ 2.102 4.375
ALL 6.14 11.3 6.18 11.71
Fig Architecture 0.02 0.04 0.02 0.02
. Fig Illustration 0.07 0.14 0.10 0.17
384 BLIP-base Fig Result 3.26 648 | 3.40 6.50
Table Result 0.30 0.54 0.30 0.57
Table Parameter 0.01 0.01 0.01 0.00
384 | BLIP-base+BERT | ALL | 1151 20.09 | 12.69 21.77

Table 10: The averaged results of fine-tuning BLIP with different preprocessing image dimensions on ALL testing

candidates of our SciMMIR benchmark.

the same as CLIP-base to conduct SciMMIR evalu-
ation, as described in Table 10.

It can be seen that the granularity of image pro-
cessing has a significant impact on model perfor-
mance. When using a lower preprocessing dimen-
sion, the performance of BLIP is significantly de-
creased in both txt—img and img—txt tasks, us-
ing all training data settings. The performance of
the CLIP model, which uses the same image pro-
cessing dimension, is almost double that of BLIP.

Furthermore, although replacing the text encoder
of BLIP with BERT during training on lower-
dimensional (224) image preprocessed data im-

proved the performance of the model, there was
still a significant gap compared to CLIP. However,
when the text encoder of BLIP was replaced with
BERT during training on higher-dimensional image
preprocessed data, the performance of the model
was far superior to both CLIP and CLIP+BERT.
This suggests that certain image-text shared inter-
active information is stored in the visual representa-
tions, and higher image quality can help the models
better establish the connection between image and
text representations.
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D MRR and Hit@K

* MRR stands for Mean Reciprocal Rank and
is calculated as the reciprocal of the golden
label’s ranking in candidates. A higher MRR
score indicates better performance.

» Hits@K assesses the accuracy of the retrieval
system by checking whether the golden la-
bel is present within the top-k ranked results.
Hits@10 are used in our measurements.

E Fine-tuning Analysis

Model Training Dataset txt— img img— txt

MRR Hits@l0 | MRR  Hits@10
ALL 8.13 1348 | 794 13.34

Fig-Architecture 223 3.67 222 3.86

Fig-Illustration 4.64 7.64 | 4.66 7.69

CLIP-base Fig-Result 6.98 1131 | 713 11.74
Table-Parameter 1.74 2.99 1.68 2.94

Table-Result 3.01 5.13 1.54 2.85

CLIP-base+BERT | ALL | 247 501 | 311 5.85
ALL 6.14 1130 | 6.18 11.71

Fig-Architecture 0.02 0.04 0.02 0.02

- Fig-Illustration 0.07 0.14 | 0.10 0.17
BLIP-base Fig-Result 3.26 648 | 340 6.50
Table-Parameter 0.01 0.01 0.01 0.00

Table-Result 0.30 054 | 030 0.57

BLIP-base+BERT | ALL | 1151 20.09 | 12.69 21.77
BLIP2-FLAN-T5-XL | All | 444 774 | 227 4.48

Table 11: The results of fine-tuning models that are
trained on different types of training data.

The effect of text-image matching task. As
shown in Table 11, the BLIP-2 series of models
outperform other large VLMs in both Figure and
Table subcategories, especially in the forward di-
rection task. We believe that this is because BLIP-2
incorporates the text-image matching task and the
image-grounded text generation task during its pre-
training process to better align textual and visual
information. The experimental results demonstrate
that other models solely relying on image-grounded
text generation tasks may not yield effective rep-
resentations for multi-modal retrieval. Therefore,
dedicated pre-training for multi-modal retrieval still
requires a primary focus on the text-image match-
ing task.

F Zero-shot Analysis

CLIP-base and BLIP-base. As shown in Ta-
ble 8 and Table 9, the CLIP-base captioning base-
line, which is specifically designed for image-text
matching, shows certain generalisability in both for-
ward and inverse retrieval across all subcategories
within the Figure and Table subsets. In contrast, the
BLIP-base model shows nearly no signs of effec-
tive learning on the scientific domain multi-modal

data. These models have strong MMIR abilities
for generic topic data, such as BLIP achieving an
IR@1 of 86.7% on the Flicker dataset in the zero-
shot setting, whilst BLIP does not surpass 0.05%
MMR. This further demonstrates the challenges
presented for MMIR in scientific domains.
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