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Abstract

Recent advancements in joint speech-text pre-
training have significantly advanced the pro-
cessing of natural language. However, a key
limitation is their reliance on parallel speech-
text data, posing challenges due to data acces-
sibility. Addressing this, our paper introduces
an innovative framework for jointly performing
speech and text processing without parallel cor-
pora during pre-training but only downstream.
Utilizing pre-trained unimodal models, we ex-
tract distinct representations for speech and
text, aligning them effectively in a newly de-
fined space using a multi-level contrastive learn-
ing mechanism. A unique swap reconstruc-
tion mechanism enhances the alignment and
is followed by fusion via a multi-head mecha-
nism, seamlessly merging modality-invariant
and modality-specific representations. Testing
for emotion recognition (Spoken Language Un-
derstanding task) and idiom usage detection
(Natural Language Understanding task) demon-
strates robust performance, with commendable
robustness to noise in text or speech data.

1 Introduction

In recent years, advancements in speech-text pre-
training for learning universal feature representa-
tions from large training corpora have been signifi-
cant (Bapna et al., 2021; Li et al., 2021; Tang et al.,
2022), leading to notable success in various uni-
modal (Lin and Xu, 2019; Zhang et al., 2022) and
multimodal downstream tasks (Busso et al., 2008;
Zadeh et al., 2016, 2018). These approaches lever-
age multimodal self-supervised learning objectives,
including cross-modal masked data modeling (Li
et al., 2021; Kang et al., 2022) and cross-modal
contrastive learning (Sachidananda et al., 2022),
aimed at aligning speech representations with their
corresponding text representations. However, a pri-
mary drawback of these methods is their reliance
on parallel speech-text data during the pre-training
phase.

Unlike non-parallel unimodal corpora collec-
tions, acquiring parallel corpora (e.g., datasets like
LibriSpeech (Panayotov et al., 2015)) often re-
quires extensive manual filtering and annotation ef-
forts. This necessity significantly limits the amount
of parallel corpora compared to their unimodal
counterparts, particularly in modality-scarce sce-
narios, such as when data is available in only one
modality (e.g., languages that are primarily spo-
ken). Our paper addresses this limitation.

Our approach involves leveraging unimodal
models pre-trained on non-parallel corpora to ob-
tain speech and text representations, subsequently
aligning them using a small sample of task-specific
parallel data. This strategy not only reduces the
dependence on large parallel corpora during pre-
training but also enables the utilization of extensive
and diverse repositories of unimodal data, expand-
ing the effectiveness and applicability of speech
and text pre-training methods.

Our study introduces a framework (CLASP) for
processing multimodal information in speech and
text by learning both factorized and shared repre-
sentations for each modality, followed by fusing
the learned representations with only parallel data
from downstream tasks. Inspired by previous at-
tempts to disentangle representations from differ-
ent modalities into modality-specific and modality-
invariant components (Hazarika et al., 2020), and
innovating beyond solely using contrastive learn-
ing at the modality level; we incorporate a multi-
level contrastive learning mechanism for repre-
sentation disentanglement. Additionally, we pro-
pose a novel swap reconstruction mechanism based
on the intuition that ideal modality-invariant and
modality-specific representations should be capa-
ble of reconstructing their original unimodal rep-
resentations when combined. This mechanism
promotes tighter cross-modal alignment by align-
ing modality-invariant representations between text
and speech within each batch of data. Acknowledg-
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ing the significance of modality-specific represen-
tations for certain tasks, such as emotion recogni-
tion (e.g., prosodic elements for emotion (Hazarika
et al., 2020)), and the varied roles of different heads
in pretrained models of different modalities, we in-
tegrate a multi-head fusion mechanism to merge
modality-specific and modality-invariant represen-
tations.

CLASP’s efficacy is validated through extensive
experiments on different language understanding
tasks that benefit from combining the speech and
text modalities. We experiment with two spoken
language understanding (SLU) tasks with parallel
text input (emotion recognition (Busso et al., 2008)
and intent classification (Bastianelli et al., 2020))
and an natural language understanding (NLU) task
with parallel speech input. The latter, which we
call multimodal idiom usage detection, is novel
(innovating over text-only idiomatic/literal disam-
biguation previosuly studied (Zeng and Bhat, 2021;
Zhou et al., 2023) and aims to differentiate be-
tween literal and figurative uses of idioms using
both text and speech data. This task operates at a
more granular level than emotion detection and is
significant because many emotions are expressed
through abstract feelings conveyed using figurative
expressions (Gibbs Jr et al., 2002; Glucksberg and
McGlone, 2001; Fussell and Moss, 2014). Our
approach results in consistent gains over several
competent multimodal methods for both tasks.

Overall, the main contributions are as follows:

• We propose CLASP, a framework for learning
multimodal representations from pre-trained
unimodal models for tasks involving speech
and text without requiring pre-training on par-
allel speech-text corpora.

• We conduct the first study on multimodal id-
iom usage detection using both speech and
text, by creating a dataset consisting of 6,325
annotated text-speech pairs. Our dataset will
be available at https://github.com/
zhjjn/CLASP.git.

• Evaluating our proposed framework across
three tasks in multimodal settings—the classi-
cal emotion recognition, intent classification
(text enhancing the SLU task) and our newly
proposed idiom usage detection task (a less ex-
plored area where speech enhances the NLU
task)—confirm the effectiveness and general-
ity of our framework.

• CLASP demonstrates exceptional resilience
to noisy multimodal data, achieving signifi-
cant improvements over prior models. This
robustness is crucial in modality-scarce sce-
narios (e.g., languages with mostly speech
data), where the missing modality may be
automatically generated (potentially noisily)
from available unimodal data. Detailed abla-
tion studies and analyses further substantiate
our claims.

2 Related Work

Multimodal Pre-training with Speech and Text.
Compared to the extensive explorations in the
realm of multimodal pre-training for vision-and-
text (Radford et al., 2021; Li et al., 2022a,b), the
area of speech-text pre-training remains under-
explored. A few notable works in this domain
include SpeechBERT (Chuang et al., 2020), CTAL
(Li et al., 2021), SLAM (Bapna et al., 2021), ST-
BERT (Kim et al., 2021), CALM (Sachidananda
et al., 2022), Maestro (Chen et al., 2022) and STPT
(Tang et al., 2022), which focus on the joint train-
ing of speech and text with aligned data in the
pretraining corpus, including those in low-resource
data environments (Kang et al., 2022) and conver-
sational settings that improve modeling the contex-
tual information (Yu et al., 2023). All these works
rely on aligning the modalities during large-scale
pre-training utilizing parallel data from speech and
text. In contrast, our work utilizes unimodal pre-
trained models for speech and text, but relies on
aligning the modalities using task-specific parallel
data (potentially in smaller numbers compared to
the large pre-training data), thereby achieving the
multimodal alignment in a task-specific finetuning
setting.
Multimodal Fusion. In addition to the body of
research on multimodal pre-training summarized
above, the realm of modality fusion strategies has
seen advances, particularly focusing on the integra-
tion of features extracted from unimodal modules.
A few notable examples are works focusing on di-
rectly fusing extracted multimodal representations
including the Tensor Fusion Network (TFN) pre-
sented by Zadeh et al. (2017) and Low-rank Mul-
timodal Fusion (LMF) (Liu et al., 2018), works
focusing on first disentangling multimodal repre-
sentations and then fusing them together (Hazarika
et al., 2020; Yang et al., 2022), works utilizing mu-
tual information maximization (Han et al., 2021;
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Colombo et al., 2021) and works focusing on fu-
sion of multimodal representations from uni-modal
transformers including LFMIM (Sun et al., 2023).
However, previous research in this area performs
contrastive learning at the modality level, ignoring
the semantic level constrasts and overlooking the
importance of multi-level disentanglement, encom-
passing both semantic and modality levels. In con-
trast, our research introduces a novel swap recon-
struction mechanism that innovatively combines
these two crucial aspects. Additionally, little is
known about the extent to which the synthesis of
semantic-related and modality-related information
can replace the missing modality, which we cen-
trally study in our experiments.

3 Framework

Our framework combines unimodal representations
from pre-trained speech and text models into a mul-
timodal representation in a fine-tuning stage for
downstream tasks. This eliminates the necessity for
pre-training on parallel speech-text data, and that
of extensive parallel data. The functioning of our
proposed framework can be divided into three main
stages: (1) Disentangling multimodal representa-
tion using a multi-level contrastive learning mech-
anism as previous works only perform contrastive
learning on the modality level but ignoring the se-
mantic level whereas both levels are important; (2)
cross-modal alignment through a swap reconstruc-
tion mechanism which reconstructs the unimodal
encoding from the shared modality-invariant en-
coding and modality-specific encoding from oppo-
site modalities because the ideal modality-invariant
and modality-specific representations should be
capable of reconstructing their original unimodal
representations when combined; and (3) Fusing
multimodal representation via a multi-head fusion
mechanism to pay different attentions to different
heads for different modalities. Figure 1 illustrates
the workflow of our proposed framework and its
details follow.
Unimodal Representations. We utilize unimodal
pre-trained models to extract representations—
RoBERTa-base (Liu et al., 2019) for text and
wav2vec2-base (Schneider et al., 2019) for speech:

ria = wav2vec2(Xi
a)

rit = RoBERTa(Xi
t),

where Xi
a and Xi

t are the speech data and text data
respectively, and ria and rit refer to the speech repre-

sentations and text representations correspondingly.
Next, we disentangle, align, and fuse these two
representations as detailed below.

Here we briefly define notations used in the fol-
lowing model formulation. For the representation,
the subscripts denote the modality (a for speech
and t for text) and whether the representation is in-
variant (inv) or specific (spe) to the modality. Thus,
hi
a,inv, stands for a representation in the speech

modality in the modality-invariant setting.

3.1 Multi-Level Contrastive Learning for
Disentanglement

Once we have the unimodal speech and text rep-
resentations, we disentangle each into two sepa-
rate representations: the modality-invariant and the
modality-specific representations. The modality-
invariant representation captures the shared seman-
tics between modalities. Ideally, the modality-
invariant components extracted from parallel uni-
modal representations should be identical. Thus,
for a given example, we first use a linear layer to
learn the hidden modality-invariant representations
from the speech and text unimodal representations:

hi
a,inv = Einv(ria), hi

t,inv = Einv(rit).

To ensure consistency across modalities, we treat
modality-invariant representations derived from
matching speech and text examples as positive
pairs. Conversely, modality-invariant represen-
tations from different examples within the same
batch are considered negative pairs. We then apply
contrastive learning at the semantic level to learn
these modality-invariant representations.

Lsem
cts = −log

f(hi
a,inv,hi

t,inv)∑
m∈{a,t}

∑
j ̸=i f(h

i
m,inv,hj

m,inv)
(1)

In contrast, modality-specific representations
only contain information unique to each modal-
ity, without encoding any semantics. Therefore,
given the text and speech representations for the
same example, we employ two distinct linear layers
to extract their modality-specific representations:

hi
a,spe = Ea(ria), hi

t,spe = Et(rit)

To ensure that the modality-specific representa-
tion for the same modality contains consistent in-
formation across different examples, we treat the
extracted modality-specific representation for the
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Figure 1: The overview of our framework.

same modality as positive pairs and cross-modality
ones as negative pairs. We then apply contrastive
learning at the modality level to learn the modality-
specific speech and text representations.

Lmod
cts = log

f(hi
a,spe,hi

t,spe)∑
m∈{a,t}

∑
j ̸=i f(h

i
m,spe,hj

m,spe)
(2)

In the end, each unimodal speech and text repre-
sentation is disentangled into two parts: a modality-
invariant representation that solely encodes seman-
tics, and a modality-specific representation that
captures the modality signatures. This results in
four distinct representations.

3.2 Swap Reconstruction Mechanism

We enhance the quality of both modality-invariant
and modality-specific representations derived from
each modality by employing a reconstruction mech-
anism. Our assumption is that the ideal modality-
invariant and modality-specific representations
should be capable of reconstructing their original
unimodal representations when combined, i.e., the
fusion of modality-invariant representation from
a single modality with its modality-specific rep-
resentation should yield that modality’s original
representation.

This mechanism assumes that modality-invariant
representations from various modalities encapsu-
late the same semantic information, while modality-
specific representations hold unique modality-
related information. Together, we devise a swap
reconstruction process that uses modality-invariant
and modality-specific representations from differ-
ent modalities to reconstruct their original repre-
sentations. For instance, we reconstruct the orig-
inal unimodal speech representations by merging
the text modality-invariant representation with the

speech modality-specific representation:

r̂ia = Êa(hi
a,spe + hi

t,inv)

where Êa is a linear layer. A parallel process is ap-
plied for text representations, wherein semantic in-
formation from speech-derived modality-invariant
representations is combined with modality-specific
representation from text:

r̂it = Êt(hi
t,spe + hi

a,inv)

where Êt is a linear layer. Finally, we compute
the reconstruction loss as the mean squared error
between the original and the reconstructed repre-
sentations:

Lrecon =
1

2
(

∑

m∈{a,t}

∥ rim − r̂im ∥
dh

) (3)

where dh is the hidden size.

3.3 Multi-Head Fusion Mechanism
Next, we propose a multi-head fusion mechanism
to synthesize a cohesive joint speech-text repre-
sentation which is pivotal for downstream tasks.
Traditional fusion methodologies in this domain
typically employ self-attention mechanisms, rooted
in the Transformer architecture, to merge a con-
catenation of the original, modality-invariant, and
modality-specific representations (Hazarika et al.,
2020). Towards this end, leveraging the self-
attention mechanism based on the Transformer
model, our approach innovatively incorporates a
multi-head fusion mechanism.

The multi-head attention operationalizes each
head with distinct key, query, and value transfor-
mation matrices. In this setup, the token represen-
tation transforms into key, query, and value vec-
tors through these matrices. Subsequently, each
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attention head calculates the degree of attention
this token should allocate over the entire input se-
quence, which is based on the correlation between
its query vector and the key vectors of other tokens.
The value vectors, modulated by these attention
weights, constitute the contextualized representa-
tion of the token. These are then subject to a linear
projection, forming the output of each attention
head. The outputs from all heads are then concate-
nated to yield the final integrated output:

ria = ri,(1)a ⊕ · · · ⊕ ri,(h)a ⊕ · · · ⊕ ri,(H)
a

where H is the number of attention heads and ⊕
denotes the vector concatenation. Given that our
projected and original representations are derived
directly from pre-trained unimodal models, whose
outputs are concatenated from all heads, they en-
ter the fusion stage as fully formed entities while
losing focus on different heads.

A critical insight driving our approach is that
uniformly assigning attention scores across differ-
ent heads within the same representation may not
be ideal. This is because the heads may capture
distinct patterns and features, which could have a
differential impact on downstream tasks. To ac-
count for this, our multi-head fusion mechanism
initially dissects each representation into separate
outputs based on their respective heads:

rim ⇒ {ri,(1)m , · · ·, ri,(h)m , · · ·, ri,(H)
m },m ∈ {a, t}

hi
m,s ⇒ {hi,(1)

m,s , · · ·,hi,(h)
m,s , · · ·,hi,(H)

m,s },m ∈ {a, t},
s ∈ {inv, spe}

These are then assembled into a matrix:

Mi = [ria, rit,hi
a,inv,hi

t,inv,hi
t,spe,hi

t,spe]

over which a multi-head self-attention is performed.
This procedure ensures that each representation
becomes aware of the other cross-modal, cross-
subspace, and cross-head representations. The out-
puts from this fusion process are then concatenated
to form the input for the final multimodal classifier.

3.4 Learning
The overall learning of the model is governed by
the following losses.
Task Loss. The task-specific loss, used to esti-
mate prediction quality during training, employs
the standard cross-entropy loss. This loss is cal-
culated using output logits from three linear-layer

classifiers: a text classifier, a speech classifier, and
a multimodal classifier, with their respective losses
Lt, La, and Lm. The text classifier uses the origi-
nal text representations from RoBERTa; the speech
classifier the original speech representations from
wav2vec2, and the multimodal classifier our fused
multimodal representations. Therefore, the task
loss is calculated as follows:

Ltask = Lt + La + Lm

KL Loss. Ideally, the three sets of logits from the
above classifiers, namely text, speech, and multi-
modal, should have similar distributions since they
correspond to the same ground truth labels. To
estimate and minimize the distribution distance be-
tween the text and multimodal logits, as well as
the speech and multimodal logits, we employ two
KL-divergence losses:

Lkl = Lt,m
kl + La,m

kl

Contrastive Loss. Lsem
cts and Lmod

cts represent the
loss corresponding to our multi-level constrastive
learning, which are described in equations 1 and 2.
Reconstruction Loss. Lrecon represents the loss
corresponding to our swap reconstruction mecha-
nism, described in equation 3.

Finally, the overall loss function is the sum of
the above losses, which we minimize during model
training.

L = Ltask + αLsem
cts + βLmod

cts + γLrecon + δLkl

4 Idiom Usage Detection

When individuals articulate their emotions verbally,
they delve into a somewhat abstract realm, often
prompting the use of figurative language (Gibbs Jr
et al., 2002; Fussell and Moss, 2014). Thus, a
precursor to detecting emotions is to detect the
occurrence of figurative language, typically done
using idiomatic expressions. Here, we study this
in the specific context of the use of idioms, which
can be in their literal sense or idiomatic sense in a
context-dependent manner (Sag et al., 2002). Our
key insight is that detecting whether an idiom is
used in a literal or figurative sense from text (see
Table 1) is aided by accessing the corresponding
utterance and its prosodic features (e.g., stress pat-
terns), among other speech attributes. For instance,
in the sentence, “Relax, I’m just pulling your leg!"
the prosody of the latter part can help label the
idiom as figurative.
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Input
He can blow this trumpet after success .

Output Figurative
Input

A band blew long brass trumpets .
Output Literal

Table 1: Examples of input and output for the idiom
usage detection task. Idioms used figuratively are high-
lighted in bold red. Idioms used literally are highlighted
in bold blue.

Statistics Idiomatic Literal All
Number of Idioms 711 613 1107

Avg. length of idioms 2.67 2.42 2.60
Number of instances 1,733 4,592 6,325

Avg. length of instance 36.77 37.65 37.41
Avg. duration of instance 13.25 13.33 13.31

Table 2: Statistics of our parallel corpus.

Here, we detail the process of data collection
and annotation of the Multimodal Idiom uSage
deTection dataset (MIST) for this task.

4.1 Data Collection

We developed a comprehensive multimodal dataset
for idiom usage detection based on the widely
recognized LibriSpeech dataset (Panayotov et al.,
2015). We curated text-speech pairs, each contain-
ing an idiomatic expression, to support our goal of
detecting literal and figurative idiom usage from
textual and spoken samples.

The methodology for assembling text-speech
pairs is inspired by the approach used in construct-
ing the MAGPIE dataset, as detailed in Haagsma
et al. (2020). We begin by selecting a compre-
hensive set of idioms from Wiktionary, given its
expansive scope and diverse coverage of idiomatic
expressions. Subsequently, we employed the pre-
extraction system delineated by Haagsma et al.
(2019) to systematically extract all variants of these
idioms from our base corpus, the LibriSpeech
dataset transcriptions. This method identified ap-
proximately 13,000 instances from the 100-hour
LibriSpeech dataset. However, to reduce the com-
plexity in the idiom usage detection task, we filter
out instances containing multiple idioms, retaining
only those with a single idiom.

The data collection process ultimately yielded
a corpus comprising 1,107 distinct idiomatic ex-
pressions, appearing in a total of 6,325 text-speech
pairs (see Table 2 for detailed statistics).

4.2 Data Annotation

A crucial aspect in the creation of the multimodal
idiom dataset is the accurate annotation of idioms
for their literal or figurative usage. To address this
need, we employed a state-of-the-art neural model
for idiom usage detection with an accuracy over
0.96, referred to as CLCL (Zhou et al., 2023), to
automatically generate preliminary labels for each
text instance. The model processes the provided
transcriptions and the list of idioms, subsequently
classifying each as either literally or figuratively
used. As demonstrated by Zhou et al. (2023), the
capabilities of the CLCL model extend to recogniz-
ing the usage of idioms not encountered in training
data. This feature is particularly beneficial for ap-
plying the model to detect the usage of the diverse
idioms found in the LibriSpeech dataset.

4.3 Corpus Analysis

We summarize the statistics of the newly con-
structed MIST dataset in Table 2. Total duration
of the entire dataset is 23.28 hours. There are in
total 6,325 audio segments of literal and figurative
instances. The average duration of each data in-
stance is 13.31 seconds, with idiomatic instance an
average of 13.25 seconds and literal instance with
an average of 13.33 seconds. The average number
of words per idiom is 2.6 and the average number
of words in sentences is 37.41, sentences with id-
iomatic instance had an average of 36.77 words
and those with a literal instance had an average of
37.65 words. Therefore, both audio duration and
sentence length cannot be used to infer the usage
of idiomatic or literal.

5 Experiments

5.1 Dataset

We conduct experiments on the popular multimodal
task of emotion recognition using the IEMOCAP
dataset (Busso et al., 2008), intent recognition us-
ing the SLURP dataset (Bastianelli et al., 2020)
and our proposed idiom usage detection using the
purposefully created MIST dataset (see Section 4).
For the IEMOCAP dataset, we adhered to the set-
tings outlined in (Kang et al., 2022) and perform
a 4-way classification (referred as IEMOCAP4).
Note that our experiments were conducted solely at
the utterance level for emotion recognition, rather
than at the conversation level.
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Task Given Example Truth Text Speech Ours
IEMOCAP4 You’re the only one I know who loves his parents. Neutral Sad Sad Neutral
IEMOCAP4 You infuriate me sometimes. Do you know that? God. Angry Neutral Happy Angry

MIST we had just left it outside and were all on fire to get back to it Figurative Literal Literal Figurative
MIST then she heaved a sigh and wiped her eye and ran o’er hill Literal Figurative Figurative Literal

Table 3: Qualitative Examples

Methods Roberta Wav2vec2 LFMIM Ours
Acc 0.86+.005

−.005 0.72+.005
−.002 0.87+.01

−.005 0.88+.005
−.003

F1 0.85+.01
−.01 0.71+.01

−.005 0.86+.003
−.005 0.87+.005

−.002

Table 4: Performance on SLURP. Numbers in super-
script and footscript represent the 95% confidence inter-
val based on significance test.

Table 1

F1-IEMOCAP4 F1-MIST Error+ Error- Error+ Error-

Roberta-Text Only 0.7 0.77 0.01 0.01 0.01 0.005

Wav2vec2-Audio Only 0.67 0.73 0.005 0.01 0.003 0.01

LMF 0.71 0.78 0.01 0.01 0.01 0.005

MISA 0.71 0.78 0.01 0.02 0.01 0.01

LFMIM 0.73 0.80 0.01 0.01 0.01 0.01

LRMP 0.74 0.79 0.005 0.01 0.003 0.01

Ours 0.77 0.83 0.005 0.005 0.005 0.005

w/o sem cts 0.72 0.81 0.01 0.01 0.002 0.006

w/o mod cts 0.73 0.82 0.005 0.005 0.003 0.01

w/o cts 0.71 0.79 0.02 0.01 0.002 0.005

w/o swap 0.72 0.79 0.01 0.01 0.01 0.002

w/o  multi-head fusion 0.76 0.8 0.005 0.01 0.01 0.01

0.66
0.69
0.72
0.75
0.78
0.81
0.84

Roberta Wav2vec2 LMF MISA LFMIM LRMP Ours

F1-IEMOCAP4 F1-MIST

0.68

0.72

0.76

0.80

0.84

Ours w/o sem cts w/o mod cts w/o cts w/o swap w/o  fusion

F1-IEMOCAP4 F1-MIST

.70+.01−.01

.77+.01−.005

.67+.005−.01

.73+.003−.01 .71+.01−.01

.78+.01−.005

.71+.01−.02

.78+.01−.01

.73+.01−.01

.80+.01−.01

.74+.005−.01

.79+.003−.01
.77+.005−.005

.83+.005−.005

.77+.005−.005

.83+.005−.005

.72+.01−.01

.81+.002−.006
.82+.003−.01

0.79+.002−.005
.79+.01−.002

.80+.01−.01

.76+.005−.01

.72+.01−.01.71+.02−.01
.73+.005−.005

1

Figure 2: Performance of different methods on two
benchmark datasets. Difference between different mod-
els is significant based on our statistic significance test.
Numerical results are presented in the appendix.

5.2 Baselines

We select state-of-the-art multimodal emotion
recognition models—LMF (Liu et al., 2018), MISA
(Hazarika et al., 2020) and LFMIM (Sun et al.,
2023)— as baseline models.

Additionally, we compare three types of uni-
modal pre-trained models, including Wav2vec2-
base model (Schneider et al., 2019) for speech data,
RoBERTa-base model (Liu et al., 2019) for only
text data, and a single speech-text multimodal pre-
trained model, LRMP (Kang et al., 2022).

5.3 Experimental Settings

We utilize wav2vec2-base model as our speech
encoder and a RoBERTa-base model as our text
encoder. For our multi-head fusion mechanism,

Table 1

F1-IEMOCAP4 F1-MIST Error+ Error- Error+ Error-

Roberta-Text Only 0.7 0.77 0.01 0.01 0.01 0.005

Wav2vec2-Audio Only 0.67 0.73 0.005 0.01 0.003 0.01

LMF 0.71 0.78 0.01 0.01 0.01 0.005

MISA 0.71 0.78 0.01 0.02 0.01 0.01

LFMIM 0.73 0.80 0.01 0.01 0.01 0.01

LRMP 0.74 0.79 0.005 0.01 0.003 0.01

Ours 0.77 0.83 0.005 0.005 0.005 0.005

w/o sem cts 0.72 0.81 0.01 0.01 0.002 0.006

w/o mod cts 0.73 0.82 0.005 0.005 0.003 0.01

w/o cts 0.71 0.79 0.02 0.01 0.002 0.005

w/o swap 0.72 0.79 0.01 0.01 0.01 0.002

w/o  multi-head fusion 0.76 0.8 0.005 0.01 0.01 0.01
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0.72
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Figure 3: Ablation study on two benchmark datasets.
Difference between different models is significant. Nu-
merical results are presented in the appendix.

we utilize a Transformer encoder (Vaswani et al.,
2017) with 4 layers, 8 attention heads and a hidden
size of 768. We use accuracy and F1 Score to
evaluate prediction performances. Other details are
presented in the Appendix.

6 Results

From the results presented in Table 2 for the two
benchmark datasets, we observe that the proposed
framework significantly enhances performance on
the IEMOCAP4 dataset, surpassing unimodal mod-
els. It improves the F1 score by over 6 points com-
pared to the text-based RoBERTa model. It also
outperforms the speech-based wav2vec2 model by
over 10 points in F1 score. Similarly, on the MIST
dataset, our method increases the F1 score by 5
points over the RoBERTa model and 10 points over
the wav2vec2 model.

Furthermore, our proposed framework demon-
strates superior performance over the other mul-
timodal models (baselines). This is evident in
the IEMOCAP4 dataset, where our method sur-
passes the top-performing baseline models (LRMP
and LFMIM) by more than 3 points in both ac-
curacy and F1 score. A similar trend is observed
in the MIST dataset. These results ascertain the
effectiveness of our method, highlighting its ad-
vantages over both unimodal and multimodal pre-
trained models. To further evaluate our method
on other SLU tasks, we also perform experiments
on intent classification using SLURP dataset. We
compare our method with the baseline of Roberta,
Wav2vec2 and LFMIM which has the best overall
performance on previous two tasks. The results are
presented in Table 4. Our framework also achieved
best performance on intent classification.

7 Analysis

7.1 Ablation Study

In order to evaluate the impact of various modules
in our framework, we conduct ablation studies on
the two benchmark datasets. The results are sum-
marized in Figure 3.
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Methods IEMOCAP4-ASR IEMOCAP4-TTS MIST-ASR MIST-TTS
LMF 0.73 0.69 0.80 0.80
MISA 0.74 0.68 0.80 0.80

LFMIM 0.74 0.70 0.80 0.81
LRMP 0.74 0.69 0.79 0.80
Ours 0.77 0.74 0.82 0.83

Table 5: Performance (F1 score) of different meth-
ods on two benchmark datasets in a unimodal scenario
(modality-scarce scenario, when only one modality is
available). ASR represents the results based on original
speech data and generated text data. TTS refers to the
results based on original text and generated speech.

Table 1

IEMOCAP4 ASR-0.25 ASR-0.3 ASR-0.35 ASR-0.4 MIST

LMF 0.72 0.73 0.72 0.7 0.68 0.79

MISA 0.72 0.74 0.73 0.7 0.66 0.79

LFMIM 0.74 0.74 0.73 0.7 0.68 0.8

Ours 0.77 0.77 0.76 0.75 0.73 0.83

0.65
0.715
0.78

IEMOCAP4 ASR-0.25 ASR-0.3 ASR-0.35 ASR-0.4

LMF MISA LFMIM Ours

0.69
0.765
0.84

MIST ASR-0.05 ASR-0.15 ASR-0.3 ASR-0.5

1

Figure 4: Performance of different methods on the
IEMOCAP4 dataset and MIST dataset in a noisy text
scenario. Numerical results are in the appendix.

Impact of Disentanglement. Our multi-level con-
trastive learning disentanglement is validated by
separately removing each level of contrastive loss.
The performance decrease underscores their ne-
cessity. Without either modality level (Lsem

cts ) or
semantic level contrastive loss (Lmod

cts ), the model
focuses only on semantic-/modality-related infor-
mation, leading to subpar performance. Interest-
ingly, the performance degradation is more severe
without semantic level contrastive loss, indicating
its greater importance. When both levels of con-
trastive loss are omitted, the performance signif-
icantly deteriorates, reaffirming the value of our
proposed multi-level contrastive learning.

Impact of Swap Reconstruction. Without our
proposed swap reconstruction mechanism, there
is a degradation of over 4 points in both accuracy
and F1 score. This suggests that our mechanism
enhances the quality of modality-invariant represen-
tation by improving alignment between modality-
invariant representations from different modalities.

Impact of Multi-Head Fusion. To underscore the
significance of our multi-head fusion, we substitute
it with a traditional attention-based fusion mecha-
nism proposed in (Hazarika et al., 2020). Results
reveal a performance drop of 1 point in F1 score
on IEMOCAP4, and over 2 points on MIST. Thus,
our mechanism improves representation quality.

Table 1

IEMOCAP4 SNR-10 SNR-3 SNR-1 SNR-0.5 MIST

LMF 0.72 0.7 0.69 0.67 0.65 0.79

MISA 0.72 0.69 0.7 0.7 0.68 0.79

LFMIM 0.73 0.72 0.68 0.66 0.65 0.8

Ours 0.77 0.74 0.73 0.71 0.71 0.83

0.64
0.71
0.78

IEMOCAP4 SNR-10 SNR-3 SNR-1 SNR-0.5

LMF MISA LFMIM Ours

0.69
0.765
0.84

MIST SNR-10 SNR-3 SNR-1 SNR-0.5

1

Figure 5: Performance of different methods on the
IEMOCAP4 dataset and MIST dataset in a noisy speech
scenario. Numerical results are in the appendix.

(a) modality-invariant (b) modality-specific
Figure 6: t-SNE visualization on IEMOCAP4. The hor-
izontal line (‘-‘) denotes the representations extracted
from speech and vertical line (‘|‘) denotes the represen-
tations extracted from text. Lines in purple denote the
emotion Angry, lines in blue denote Happy, lines in
green denote Neutral and lines in yellow denote Sad.

7.2 Qualitative Analysis

Integrating modalities. We present a qualitative
analysis to demonstrate the effectiveness of inte-
grating different modalities. Table 3 shows that
on the IEMOCAP4 dataset, predictions based on a
single modality may be inaccurate. However, when
both speech and text are incorporated, the predic-
tions are correct. This pattern is consistent with the
results from the MIST dataset.
Disentangled representations. We note that the
modality-invariant and modality-specific represen-
tations capture intended information as shown
in the visualizations for IEMOCAP4 and MIST
datasets (see Figures 6 and 7). Importantly, we note
that the modality-invariant representations conform
to the input and do not degenerate by posterior col-
lapse (Lucas et al., 2019; Wang et al., 2021).
Visualization. Based on our multi-level con-
trastive learning, the modality-related information
is expected to be encoded into modality-specific
representations and semantic-related information is
expected to be encoded into modality-invariant rep-
resentations. Figures 6 and 7, visualize the IEMO-
CAP4 contextual embeddings and MIST contextual
embeddings for the respective test set sentences.
From Figure 6 we observe that: (1) the modality-

11525



(a) modality-invariant (b) modality-specific
Figure 7: t-SNE visualization on MIST. The horizon-
tal line (‘-‘) denotes the representations extracted from
speech and vertical line (‘|‘) denotes the representations
extracted from text. Lines in purple denote the figurative
usage and lines in yellow denote the literal usage.

specific representations are well separated into
the spoken and written clusters demonstrating
the correspondence to specific modalities, (2) the
modality-invariant representations capture the se-
mantic content of the emotions and are broadly
clustered corresponding to the input distribution. It
is also noteworthy that the Neutral emotion (green
lines) and the Happy emotion (blue lines) are diffi-
cult for the model to distinguish, which is in align-
ment with the observations noted by Busso et al.
(2008). Likewise, most of the wrongly annotated
Neutral examples are annotated as Happiness and
Excitement.(3) The modality-specific representa-
tions extracted from both modalities cluster into
four groups that roughly correspond to the four
emotions. Additionally, we note that there are emo-
tions that span both modalities (e.g., Angry denoted
by purple). Therefore, the emotion-related fea-
tures are disentangled into their modality-specific
representations for the emotion recognition task.
Similarly, in Figure 7, the modality-specific repre-
sentations are well separated whereas the modality-
invariant representations are overlapped (and con-
form to the input distribution). Note that the yellow
lines are much more than the purple lines, which
is in alignment with the statistics in Table 2 where
the literal examples are more numerous than the
figurative examples. Besides, we observe that the
modality-invariant representations cluster into two
groups which correspond to the two usages. Here
again, we note that the task-related features are well
captured by the modality-invariant representations
for the idiom usage recognition task.

7.3 Efficacy in Modality-Scarce Scenarios

Parallel multimodal data, crucial for pre-training
and fine-tuning, may not always be available. Un-

like previous studies, we explore our framework
in a unimodal scenario, by generating data for the
missing modality.For example, we use ASR (Whis-
per model (Radford et al., 2023)) to generate text
from speech data and a TTS model (Bark model1)
to generate speech from text data. CRISP, as shown
in Table 5, outperforms all baselines across both
benchmark datasets, even in an unimodal scenario.
Additionally, we observe that the results vary based
on the modality of the generated data and the spe-
cific benchmark dataset. On IEMOCAP4, the re-
sults using original speech and generated text data
are the best, suggesting that multimodal emotion
recognition relies more on speech; and generated
speech may lack crucial features like tone and
stress. However, on MIST, results using original
text and generated speech data are better, indicating
a greater reliance on text for this task.

7.4 Efficacy in the Presence of Noise

Our framework’s robustness against noise in data is
analyzed against baseline methods with noise levels
varying across the different modalities. For text
data, we employ various ASR models (Whisper-
tiny, small, base, and large (Radford et al., 2023))
to generate text from original speech, with different
word error rates (WER) indicating the noise levels.
For speech data, we introduce varying levels of
white noise into the original speech signals, with
the noise level represented by the Signal-to-Noise
Ratio (SNR; lower SNR indicates higher noise).
As Figures 4 and 5 illustrate, our model is robust
to both text and speech noise.

8 Conclusion and Future Work

We introduced a novel approach, CLASP, that uses
unimodal pre-trained models for multimodal tasks,
eliminating the need for parallel speech-text cor-
pora during pre-training. Our framework includes
a disentanglement mechanism, a swap reconstruc-
tion mechanism, and a multimodal representation
fusion module. Empirical evaluations on the SLU
and NLU tasks justify the efficacy of CLASP and
its broad applicability. Notably, it demonstrated ro-
bustness against noisy multimodal data, highlight-
ing its real-world utility and adaptability. Addition-
ally, given the substantial size of CLASP, future ef-
forts could focus on developing parameter-efficient
methods for its training.

1https://github.com/suno-ai/bark
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9 Limitations

One drawback of our proposed framework lies in
the large size of our proposed framework. Due to
the fact we utilize two unimodal pre-trained models
as text encoder and speech encoder, the size of the
whole framework is very large. Future works could
be done to propose parameter-efficient methods for
training of our proposed whole framework.

Furthermore, compared to a jointly pre-trained
speech-text model, our proposed method requires
two uni-modal pre-trained models, which is still
inconvenient. Actually our proposed method could
be utilized for jointly pre-training a speech-text
model, which we leave for future work.

Another limitation lies in our dataset that was
automatically labelled resulting in a noisy training
data. Future works could improve the quality and
scale of our proposed dataset for multimodal idiom
usage detection.

Besides, our method still requires a small num-
ber of parallel speech and text data for downstream
fine-tuning and a large number of unimodal data for
pre-training of the text encoder and speech encoder.
However, for some languages and dialects, espe-
cially the spoken ones, parallel speech-text data
and large-scale unimodal pre-training data might
not be available. Therefore, it is necessary to ex-
plore the scenarios where no parallel speech-text
data and large-scale unimodal pre-training data are
available, which we leave for future work.
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Methods exShort Short Medium Long
Text Only 0.55 0.68 0.68 0.77

Audio Only 0.67 0.62 0.64 0.70
Ours 0.69 0.73 0.72 0.84

Table 6: Performance on examples with different
lengths.

Methods Happy Sad Angry Neutral
Text Only 0.75 0.71 0.70 0.67

Audio Only 0.64 0.71 0.76 0.72
Ours 0.78 0.78 0.79 0.73

Table 7: Performance on examples with different emo-
tions.

A Experimental Settings

The model is trained with a batch size of 4 for 25
epochs. Adam optimizer (Kingma and Ba, 2014)
is used and the learning rate is set to 1 × 10−5.
All the other parameters are set to their default.
The hyperparameters of α, β γ and ζ are set to
0.01, 0.01, 0.01 and 0.05 respectively. All of our
experiments were conducted using two GPUs with
16GB RAM (NVIDIA V100).

We utilize grid search to tune these hyperparam-
eters. Each hyperparameter is selected from 0.01,
0.05, 0.1, 0.5. Our model achieves the best per-
formance for α, β and γ each equal to 0.01 and δ
= 0.05. For other values of the hyperparameters,
our model performance degrades at most by 0.02
on IEMOCAP4. We only perform the hyperpa-
rameter tuning on IEMOCAP4 and fix the optimal
hyperparameters for MIST.

B Analysis

Performance with respect to length of utter-
ance based on IEMOCAP4: Considering that the
amount of information at the utterance level can
impact emotion recognition, we calculate the accu-
racy on extremely short examples (only 1 word),
short examples (less than 4 words but more than
1 word), medium examples (between 4 and 10
words), and long examples (more than 10 words).
The results are presented in Table 6. Compared
with the unimodal models, we notice the gains in
performance on account of harnessing information
in both modalities across all length categories.

We also report the accuracy on the emotion cat-
egories of Happy, Sad, Angry and Neutral in Ta-

Methods
IEMOCAP4 MIST
Acc F1 Acc F1

RoBERTa-Text Only 0.71 0.7 0.78 0.77
wav2vec2-Audio Only 0.67 0.67 0.73 0.73

LMF 0.72 0.71 0.79 0.78
MISA 0.72 0.71 0.79 0.78

LFMIM 0.74 0.73 0.8 0.8
LRMP 0.74 0.74 0.8 0.79
Ours 0.77 0.77 0.83 0.83

Table 8: Performance of different methods on two
benchmark datasets. Best performance is labeled in
bold.

ble 7. We observe that our proposed model that
effectively leverages both audio and text outper-
forms unimodal models in all the categories, further
demonstrating the benefits of multimodal language
understanding.

Methods IEMOCAP4 MIST
Acc F1 Acc F1

Ours 0.77 0.77 0.83 0.83
w/o Lsem

cts 0.73 0.72 0.81 0.81
w/o Lmod

cts 0.74 0.73 0.82 0.82
w/o Lsem

cts and Lmod
cts 0.72 0.71 0.79 0.79

w/o Lrecon 0.73 0.72 0.8 0.79
w/o multi-head fusion 0.76 0.76 0.81 0.8

Table 9: Ablation study on two benchmark datasets.
Best performance is labeled in bold.

Methods IEMOCAP4 ASR-0.25 ASR-0.3 ASR-0.35 ASR-0.4
LMF 0.72 0.73 0.72 0.70 0.68
MISA 0.72 0.74 0.73 0.70 0.66

LFMIM 0.74 0.74 0.73 0.70 0.68
Ours 0.77 0.77 0.76 0.75 73

Table 10: Performance (F1 score) of different meth-
ods on IEMOCAP4 under the noisy scenario. Different
numbers after ASR refers to different WER. Best per-
formance is labeled in bold.

Methods IEMOCAP4 SNR-10 SNR-3 SNR-1 SNR-0.5
LMF 0.72 0.70 0.69 0.67 0.65
MISA 0.72 0.69 0.70 0.70 0.68

LFMIM 0.73 0.72 0.68 0.66 0.65
Ours 0.77 0.74 0.73 0.71 0.71

Table 11: Performance (F1 score) of different methods
on IEMOCAP4 under the noisy scenario. The numbers
after SNR refer to different levels of white noise.

C Case Study

Here we elaborate further on the qualitative analy-
sis as shown in Table 14. We observe that on the
IEMOCAP4 dataset, our proposed method effec-
tively incorporates the speech and text modality,

11530



Methods MIST ASR-0.05 ASR-0.15 ASR-0.3 ASR-0.5
LMF 0.79 0.79 0.80 0.74 0.71
MISA 0.79 0.80 0.80 0.74 0.72

LFMIM 0.80 0.80 0.81 0.76 0.73
Ours 0.83 0.82 0.82 0.80 0.77

Table 12: Performance of different methods on the
MIST dataset in a noisy text scenario.

Methods MIST SNR-10 SNR-3 SNR-1 SNR-0.5
LMF 0.79 0.79 0.77 0.74 0.71
MISA 0.79 0.79 0.78 0.73 0.70

LFMIM 0.80 0.80 0.79 0.76 0.72
Ours 0.83 0.83 0.83 0.82 0.80

Table 13: Performance of different methods on MIST
in a noisy speech scenario.

which is especially noteworthy on short utterances,
such as ‘Uh-huh.’ or ‘Right’, where the use of a
single modality can be insufficient.

Task Given Example Truth Text Speech Ours
IEMOCAP4 Uh-huh. Happy Sad Neutral Happy
IEMOCAP4 Yeah so- That –that did go through. Neutral Sad Happy Neutral
IEMOCAP4 Right. Happy Sad Angry Happy

IEMOCAP4
You can’t make fun of me because I’m not going
to school, though, because I’m going to be working
though.

Happy Neutral Neutral Happy

IEMOCAP4 He was out here when it broke. Sad Neutral Happy Sad

MIST
his book of leaves would not have told him in my
own handwriting that i believed in his better nature

Figurative Literal Literal Figurative

MIST
fortunately he had no children to run the risk of mad-
ness in their turn

Figurative Literal Literal Figurative

MIST
which made the animal’s legs almost give waydarta-
nian burst out laughing as he said take care o planchet

Figurative Literal Literal Figurative

MIST
homo turned his head now and then to make sure that
guenplane was behind him

Literal Figurative Figurative Literal

MIST
in a moment it came again a thumping of the old
knocker on the front-inner door

Literal Figurative Figurative Literal

Table 14: Qualitative Examples
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