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Abstract

With the enhancement in the field of generative
artificial intelligence (AI), contextual question
answering has become extremely relevant. At-
tributing model generations to the input source
document is essential to ensure trustworthiness
and reliability. We observe that when large lan-
guage models (LLMs) are used for contextual
question answering, the output answer often
consists of text copied verbatim from the in-
put prompt which is linked together with "glue
text" generated by the LLM. Motivated by this,
we propose that LLMs have an inherent aware-
ness from where the text was copied, likely cap-
tured in the hidden states of the LLM. We intro-
duce a novel method for attribution in contex-
tual question answering, leveraging the hidden
state representations of LLMs. Our approach
bypasses the need for extensive model retrain-
ing and retrieval model overhead, offering gran-
ular attributions and preserving the quality of
generated answers. Our experimental results
demonstrate that our method performs on par
or better than GPT-4 at identifying verbatim
copied segments in LLM generations and in at-
tributing these segments to their source. Impor-
tantly, our method shows robust performance
across various LLM architectures, highlighting
its broad applicability. Additionally, we present
VERIFIABILITY-GRANULAR1, an attribution
dataset which has token level annotations for
LLM generations in the contextual question
answering setup.

1 Introduction

The surge in the capabilities of Large Language
Models (LLMs) has revolutionized natural lan-
guage understanding. Their ability to comprehend
and generate human-like text has resulted in their
widespread adoption across various industries. A
prominent and pivotal application of these models

1Dataset is available at https://github.com/
Anirudh-Phukan/verifiability-granular.

is question answering, particularly in contextual
settings. The ability of LLMs to parse, interpret,
and respond to queries within a given context has
facilitated efficient information retrieval and com-
prehension.

Despite the remarkable strides made in contex-
tual question answering, challenges persist within
LLMs. While LLMs excel in generating informa-
tive responses, they often fall short in providing
explicit references or attributions to the specific sec-
tions or sources within the context from which their
answers derive (Liu et al., 2023b). The absence of
this attribution impedes the ability to verify the
authenticity and accuracy of the generated infor-
mation. Attribution not only enables verification
(Rashkin et al., 2023) but also increases user trust
and confidence in the responses generated by these
models, thus fostering their broader acceptance and
utilization across diverse domains (Bohnet et al.,
2022).

Existing methods for attribution typically align
within three primary categories (Li et al., 2023):
Systems fine-tuned or trained explicitly for attribu-
tion tasks (Weller et al., 2023; Gao et al., 2023b),
retrieve-then-read (Chen et al., 2017; Lee et al.,
2019) and approaches relying on post-generation
attribution (Gao et al., 2023a; Huo et al., 2023).
However, each of these approaches encounters sub-
stantial challenges in achieving accurate and granu-
lar attribution, thereby limiting their effectiveness.

The initial category, which consists of systems
tailored or explicitly trained for attribution tasks,
poses a significant challenge (Huang and Chang,
2023). This challenge primarily arises because
the training process demands extensive resources,
including time, computational power, and a large
corpus of annotated data.

Furthermore, the continuous development of
more sophisticated models requires retraining, per-
petuating an unending cycle of adaptation. Addi-
tionally, the need for regression testing to ensure
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Document:
 “Denitrification”: Denitrification 
can....“Nitrogen cycle”: “Where groundwater 
recharges stream flow,...a process that 
leads...”

Based on the information contained in the 
document, answer the question with details to 
the best of your abilities. Think step by step 
and explain your answer if that will help 
better understand the answer.

Q: What process releases nitrogen gas into the 
atmosphere?”
A: “Denitrification releases nitrogen gas into 
the atmosphere. It ...
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Sub-Task 2: Attribution of extractive answer span S (§4.2.2)
Match Task 1 spans to document via similarity matrix.Language Model (LM)

Figure 1: Overall picture of our proposed methodology; our method utilizes hidden layer representations from both
the document and answer to determine the attribution of answer tokens. Initially, we identify extractive answer
tokens (§ 4.2.1) through a cosine similarity matrix between document and answer tokens. Subsequently, we map
these tokens to document token sequences by identifying anchor tokens and generating candidates, later ranked
based on their cosine similarity to achieve attribution. (§ 4.2.2)

answer quality amplifies the burden, creating a con-
siderable bottleneck in practical application and
scalability.

On the other hand, the second category—post-
generation attribution—offers an alternative but not
without its own set of drawbacks. This approach
relies on leveraging retrieval models to trace the
sources of the generated answers. However, this
method suffers from the overhead associated with
these retrieval models, which often demand sub-
stantial computational resources and time. Further-
more, the granularity of attribution is constrained
by the chunk size at which retrieval is performed,
limiting the precision of attribution.

Lastly, the third category—retrieve then read
methods—also grapples with its unique set of com-
plications. Similar to the post-generation attribu-
tion approach, this method faces the problem of re-
trieval method overhead and chunking issues. The
concept here is to utilize retrieved evidence as a
basis for generating answers and consequently, at-
tributions. However, as outlined in (Gao et al.,
2023a), retrieval does not equate to attribution due
to the potential integration of external knowledge.

Our proposed method aims to surmount the lim-
itations posed by existing attribution approaches
by adopting a distinct strategy that eliminates the
need for additional training while offering granular
attributions. By delving into the inner workings of
the LLM during its generation process, we sidestep
the resource-intensive training requirements.

The crux of our approach lies in accessing the
hidden state representations of tokens produced by
the LLM when generating responses. Leveraging
the contextual cues provided by the input—context,
question, and generated answer—we extract these
hidden state representations via a forward pass

through the model. These hidden representations
which happen to be contextual embeddings of to-
kens are then matched to perform attribution. An
overview of this process is shown in Figure 1.

Operating at a token-level granularity mirrors
the natural generation process of LLMs. Unlike
conventional post generation attribution methods
that grapple with decisions on chunking at para-
graph or sentence levels, our approach bypasses
this dilemma. By steering clear of chunk-based at-
tributions, we are liberated from arbitrary segmen-
tation of the context, which often leads to imprecise
referencing and diluted contextual connections.

The existing public datasets curated for the task
of attribution (attribution of LLM generations) have
annotations only at the response level or at the sen-
tence level (for every sentence within the response).
(Kamalloo et al., 2023; Liu et al., 2023b; Malaviya
et al., 2023). To assess our method’s effectiveness,
token-level annotations are essential. Consequently,
we process the data collected by Liu et al. (2023b)
to generate token-level annotations. We release this
dataset to facilitate further research on token-level
attribution.

In essence, our approach offers a unique and
efficient solution to the problem of attribution in
contextual question answering. Additionally, we
also introduce a dataset that facilitates token-level
attribution. With this in mind, we are excited to
share our primary contributions in this paper.

• We introduce a pioneering method for attri-
bution in contextual question answering. The
strengths of our approach include its token-
level granularity ensuring precise attributions,
lack of additional retrieval model overhead
and its training-free nature which ensures con-
sistent answer quality.
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• Our experimental findings demonstrate the ef-
ficacy of our method across various model
families. This indicates that leveraging hid-
den layer representations for attribution can
be broadly applied across different LLM ar-
chitectures, highlighting the wide-ranging ap-
plicability of our approach.

• Additionally, we release the VERIFIABILITY-
GRANULAR dataset, which contains token-
level attributions for LLM generations in the
contextual question answering setup.

2 Related Work

Researchers have employed different approaches
for the attribution of generated or identified text
spans. A shared task was organized by Thorne
et al. (2018) to encourage researchers to build sys-
tems capable of performing fact verification and
attribution to the source texts. Evans et al. (2021)
emphasized the role of source attribution in fos-
tering truthful and responsible AI. The growing
concern of fake news detection in AI-based news
generation has also been considered as an attri-
bution task (Pomerleau and Rao, 2017; Ferreira
and Vlachos, 2016). In addition to automatic at-
tribution, studies on manual attribution have been
performed by domain specific individuals (Borel,
2023; Li et al., 2015). While we discuss about fact
verification as an attribution task, it is important to
note that user interactions have also been found to
require attribution (Dziri et al., 2022). Petroni et al.
(2022) has highlighted the fact that wikipedia arti-
cles needs validation and that the citations need to
be attributed. On the other hand Sarti et al. (2023b)
introduced a python library based on GPT-2 ca-
pable of identifying feature attributions generated
from the Insequence model; capable of performing
in multilingual settings (Sarti et al., 2023a). Re-
cently, researchers performed attribution task on
multimodal systems as well (Ancona et al., 2017;
Holzinger et al., 2021; Zhao et al., 2023).

However, what is missing in prior art is the utili-
sation of the contextual guidance inherently present
during generation for the attribution task. In our
work, we tackle this problem by utilising the con-
textual information encoded during generation by
the LLM and attribute spans to semantically rele-
vant parts of the source document.

Figure 2: Semi Extractive answers by LLMs

3 Problem Statement

We observe a phenomenon in contextual question
answering using LLMs which results in a com-
prehensive answer typically characterized by fac-
tual spans, replicated verbatim from various seg-
ments of the provided context, interwoven with
"glue text". An example of this phenomenon is
shown in Figure 2. Yang et al. (2023) also note this
pattern and use references to losslessly speed up
LLM inference.

Building upon the aforementioned observations,
we dissect the challenge of attribution in the con-
textual generation setting into two distinct yet inter-
connected sub-problems. The first sub-problem in-
volves the identification of tokens within the output
that have been directly copied from the provided
context.

The second sub-problem delves deeper into the
attribution of these identified tokens. This step in-
volves mapping these tokens back to their original
positions within the document. In essence, this im-
plies tracing back the tokens to the exact sections
within the document from which they were copied
verbatim.

By doing this, we aim to establish a clear flow
of information from the source document to the
generated output, thereby enabling a more nuanced
understanding of the context generation process.

The task at hand involves two distinct sub-
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tasks within the context of attributing the out-
put of a large language model (LLM). We are
given a document D represented as a sequence
of tokens (d1, d2, . . . , dn), a question Q, and an
answer A represented as a sequence of tokens
(a1, a2, . . . , am). Our objective comprises two in-
terconnected subtasks:

Subtask 1: Token Attribution Identification.
This subtask involves identifying a subset of tokens
in A, denoted as Aattr ⊆ A, that require attribution
to tokens in D. Mathematically, this can be ex-
pressed as selecting tokens ai ∈ A that are directly
influenced or copied from D. In our current study,
we restrict the scope to tokens that are verbatim
copied from D.

Subtask 2: Corresponding Token Mapping.
For each token in Aattr, this subtask aims to find
a mapping function f : Aattr → D such that for
every token ai ∈ Aattr, there exists a corresponding
token or sequence of tokens in D to which ai can
be attributed.

Formally, the mapping function can be expressed
as:

f : Aattr → D, s.t. ∀ai ∈ Aattr

f(ai) = (dj , . . . , dk) ⇐⇒
ai is attributed to (dj , . . . , dk) in D

In this formulation, the function f establishes
a connection between the tokens in the answer re-
quiring attribution and their corresponding tokens
or token sequences in the document D.

4 Proposed Work

4.1 Motivation

Humans easily identify which parts of a document
they use to answer questions. This skill to trace
information back to its source is key for effective
communication, especially when discussing com-
plex ideas. Similarly, we propose that Large Lan-
guage Models (LLMs) have an inherent awareness
of the document parts they use while generating
answers. This awareness is likely captured within
the hidden states of the LLM, which encode token
information during the generation process.

Our work is based on the idea that if LLMs can
generate responses combining copied segments
and self-generated "glue text", they must inher-
ently differentiate between copied content and self-
generated content. This differentiation is what we

aim to uncover. By accessing and analyzing the hid-
den states of an LLM, we seek to reveal how it uses
and attributes source information in its responses.

This approach allows us to trace how the LLM
processes and uses the provided context at a de-
tailed, token-level granularity. We believe that fully
understanding how LLMs generate responses re-
quires examining the process at this fundamental
level - where each token’s role in the response is
clarified and attributed to its original source. Not
only does this give us an understanding of a LLM’s
inner workings, but also accomplishes the useful
task of attributing outputs, which helps humans
easily verify/navigate the LLM outputs.

4.2 Methodology

Given a language model, denoted as M , we con-
struct a prompt P by concatenating the docu-
ment D, represented as a sequence of tokens
(d1, d2, . . . , dn), the question Q, and the an-
swer A, represented as a sequence of tokens
(a1, a2, . . . , am). This concatenation is formally
expressed as P = D +Q+A, where ‘+‘ denotes
the concatenation operation. The prompt P is then
passed through the model M in a forward pass to
obtain the hidden layer representations for each
token in P . These representations capture the con-
textual information encoded by the model for each
token. An illustrative example of this process is
provided below.

[INST]
Document:
{document}
Based on the information contained in

the document, answer the question
with details to the best of your
abilities. Think step by step and
explain your answer if that will
help better understand the answer.

Q: {question} A:
[/INST]
{answer}

Let’s denote the hidden layer representation of
each token ti for a specific layer l as hli.

4.2.1 Identifying extractive output tokens

For the first sub-task of identifying tokens in an-
swer A that are directly copied from document D,
we perform the following operation. For any spe-
cific layer l and for all tokens ai ∈ A, we say that
a token ai comes from D if there exists a token
dj ∈ D such that the cosine similarity between hli
and hlj is greater than a threshold θ.
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This can be formally represented as:

∀ai ∈ A, if ∃dj ∈ D s.t.

Cosine(hli, h
l
j) > θ =⇒ ai comes from D

4.2.2 Attributing Extractive Spans
Given a span S in A to be attributed, consisting of
tokens a1, . . . , an, we compute the average hidden
layer representation hS for each token ai ∈ S as:

hS =
1

n

n∑

i=1

hli

Next, we use hS to identify anchor tokens in D.
For each token dj ∈ D, we compute the cosine sim-
ilarity between hS and hlj and select tokens with
the highest similarities as anchor tokens, denoted
as DT .

For each anchor token da ∈ DT , we explore
windows of tokens around da, up to a maximum
length L. We calculate the average hidden layer
representation hW for each window W and iden-
tify the window with the highest similarity to hS .
The highest-ranked window is considered the final
attribution for the span S.

In cases where D is segmented into evidence
spans e ∈ E, the score for each e is the similarity
between hS and the best window within e.

5 Experimental Setup

In this section, we outline the details of our exper-
imental setup; the dataset, the evaluation metrics;
and the baselines.

5.1 Datasets

QuoteSum (Schuster et al., 2023):2 This dataset
consists of questions, relevant passages, and
human-written semi-extractive answers. In the pro-
cess of dataset construction, the human annotators
were tasked to answer multiple source questions by
combining information from various sources. They
were instructed to explicitly extract factual spans
and weave them together into a coherent, well-
grounded passage. The dataset comprises of 4,009
semi-extractive answers to 1,376 unique questions
in total and is split into train, validation and test
sets with ratios 60%, 7%, 33%, respectively.

2Downloaded from https://github.com/
google-research-datasets/QuoteSum/tree/
main. The dataset is licensed under CC-BY-SA-4.0 license.

Verifiability-Granular: We also curate
a dataset with token-level attributions called
VERIFIABILITY-GRANULAR (VERI-GRAN) by
processing the dataset introduced by (Liu et al.,
2023b)3. The original dataset contains commercial
generative search engines generated responses to
input queries along with the retrieved content used
for the generation. Annotations map sentences in
the response to portions of the source text.

We split the source text using nltk.sent_tokenize4

and filter the samples that map a response state-
ment to only one sentence of the source text. Char-
acters are matched using diff_match_patch5 and
tokens are annotated based on if all characters in
the corresponding tokens match. Some additional
post-processing (removing spans containing only
punctuation and stop words) is done to obtain anno-
tations in the same format as the QuoteSum dataset.
The dataset contains 170, 197 annotated statements
and 272, 320 annotated spans in the dev and test
set respectively.

5.2 Metrics

The evaluation metrics for the two sub-tasks are
described separately below.

5.2.1 Metrics for Sub-task 1
For the first sub-task, which involves the identifica-
tion of spans that have been directly copied from
the context, we use token-level precision, recall,
and F1 score as our metrics. The ground truth
for this task is the set of tokens marked as spans
explicitly extracted from the context.

5.2.2 Metrics for Sub-task 2
For the second sub-task, which entails attribut-
ing the identified spans to their original positions
within the document, we use accuracy as our metric.
Accuracy is computed as the fraction of instances
where the system correctly predicts the paragraph
from which the span was extracted. This allows us
to measure how effectively the system can trace the
origin of the spans within the document.

5.3 Baselines

In the context of our study, we identify and utilize
a number of baselines for both sub-tasks.

3Downloaded from https://tinyurl.com/
verifiability. The dataset is licensed under MIT
license.

4https://github.com/nltk/nltk
5https://github.com/google/

diff-match-patch
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5.3.1 Baselines for Sub-task 1
For the first sub-task, the identification of copied
spans, it is worth noting that, to our best knowledge,
no existing system can perform this task without
being explicitly trained which alters the quality
of the answers. Common methods such as few-
shot prompting and fine-tuning tend to modify the
answer. Thus, we resort to a modified version of the
SEMQA prompt (Schuster et al., 2023), whereby
instead of prompting the system to generate an
answer via few-shot prompting, we instruct it to
identify spans within a provided answer (prompt
included in Appendix A.7, Figure 13). We prompt
GPT 3.56 and GPT-47 using this modified prompt
and they serve as our baselines for the first sub-task.

5.3.2 Baselines for Sub-task 2
GPT 3.5 and GPT-4 prompted with the modified
SEMQA prompt (prompt included in Appendix
A.7, Figure 14) are used as baseline for the sec-
ond sub-task as well, i.e., attributing the identi-
fied spans to their original source paragraph. In
addition, we also employ retrieval methods such
as BM25 (sparse) (Robertson et al., 2009), GTR
(dense) (Ni et al., 2021), and MonoT5 (Nogueira
et al., 2020) as baselines for this task.

By comparing the performance of our system
against these baselines, we aim to evaluate its ef-
fectiveness in tracing the origin of the spans.

6 Results and Analysis

We perform experiments for our approach (§ 4.2)
with the following LLMs: Llama-7b (Touvron
et al., 2023), Llama-70b (Touvron et al., 2023),
Mistral-7b (Jiang et al., 2023), Yi-6b (Young et al.,
2024) and OPT-350m (Zhang et al., 2022). Note
that OPT-350m has been excluded from compari-
sion on VERIFIABILITY-GRANULAR dataset due
to its limitation of 2048 token context length and
the dataset contains samples upto 4096 tokens. All
of our experiments were run on a A100 machine
with 4 80GB GPUs.

6.1 Results for Sub-task 1

The performance of our method and the baselines
on sub-task 1, i.e., identifying the copied spans,
is summarized in Table 1 and Figure 3 for Quote-
Sum and VERIFIABILITY-GRANULAR datasets re-
spectively. We observe that our proposed method

6https://openai.com/blog/chatgpt
7https://openai.com/research/gpt-4

performs better than GPT models on the Quote-
Sum dataset and performs on par with GPT-4 on
VERIFIABILITY-GRANULAR.

As seen in Table 1, while trying to optimize for
F1 on the VERIFIABILITY-GRANULAR dataset the
scores we obtain indicate that the optimal solution
is to mark all tokens as copied. Therefore, for a
better analysis of model performance we plot the
PR curves as shown in Figure 3.

The consistency in performance metrics across
all models for this sub-task suggests that the ca-
pability to identify extracted tokens via hidden
representations is not confined to any particular
model family or size. This observation underscores
the broader applicability and versatility of our pro-
posed methodology, affirming its effectiveness re-
gardless of the underlying architecture or capacity
of the language model being used.

Figure 3: Performance of our method and baselines on
the VERI-GRAN test set illustrated using the Precision-
Recall curve.

The selection of the best hyperparameters (layer,
threshold) for each of our models was based on the
F1 performance metric. We share more details in
the Appendix (Section A.3). The results presented
in Table 1 and Figure 3 are derived from the test
set.

The results indicate a considerable shortfall in
the performance of GPT-3.5, particularly in terms
of recall. This suggests that the model is unable
to accurately identify all tokens considered by the
annotators as being extracted from the document.
A representative example of this failure case is
illustrated in the Appendix (Figure 6, Section A.4).

As can be seen from the example, GPT-3.5 tends
to identify entities rather than the specific spans
that have been directly copied from the document.
Even GPT-4, which demonstrates a better under-
standing of the task, occasionally overlooks certain
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Model QuoteSum Verifiability-Granular

P R F1 P R F1

GPT-3.5 0.92 0.46 0.56 0.46 0.29 0.36
GPT-4 0.96 0.87 0.90 0.76 0.83 0.79
Llama-7b (Ours) 0.96 0.97 0.96 0.73 0.99 0.84
Mistral-7b (Ours) 0.94 0.98 0.96 0.73 0.99 0.84
Yi-6b (Ours) 0.94 0.99 0.96 0.73 0.99 0.84
OPT-350m (Ours) 0.94 0.99 0.96 - - -

Table 1: Token level P, R & F1 scores for identifying output tokens extracted from the document on QuoteSum and
Verifiability test sets. For PR plot on VERIFIABILITY-GRANULAR dataset, please refer to Figure 3

components like "The" that are parts of the directly
copied spans.

An additional challenge with the GPT models
is their tendency to hallucinate, leading to the in-
troduction or elimination of content that doesn’t
exist in the original answer. We try to recover from
the failure by taking spans marked on the modi-
fied response and superimposing it on the original
response.

To elaborate our observations, we delve into the
performance variation across different model fam-
ilies and layers in this sub-task, as illustrated in
Figure 4. For more precise comparisons among
closely located numbers, the later layers from the
Yi-6b model have been excluded due to their sub-
stantially lower performance compared to others.

The smoothest graph among all the model fami-
lies belongs to OPT-350m which shows a gradual
increase in performance until the middle layer, fol-
lowed by a similarly gradual decrease. This per-
formance peak at the middle layers aligns with the
findings of (Zou et al., 2023), suggesting that ear-
lier layers are often dedicated to low-level tasks,
while later layers tend to be excessively focused on
next token prediction.

Interestingly, the larger models, despite their
varied architectures, exhibit a shared performance
trend, with a peak at the earlier layers followed by
a subsequent decrease. This pattern suggests that
for these larger models, the sub-task of identifying
extracted tokens tends to be a relatively low-level
or straightforward task. Consequently, the best per-
formance for these models is typically observed in
the earlier layers.

6.2 Results for Sub-task 2

Table 2 presents the performance results for the sec-
ond sub-task. For each model utilizing our method-
ology in this task, the sole hyperparameter is the
layer. The results provided in the table are derived

Figure 4: Comparison of model token F1 performance
across layers of different models, for identifying output
tokens extracted from the document on QuoteSum train
set.

from evaluations conducted on the test set of Quote-
Sum and VERIFIABILITY-GRANULAR datasets.

Model Accuracy (%)
QUOTESUM VERI-GRAN

GPT-3.5 90.18 26.40
GPT-4 90.59 62.11

BM25 75.72 68.20
GTR 72.57 53.15
MT5 89.24 67.43

Llama-7b (Ours) 87.51 77.33
Mistral-7b (Ours) 89.95 77.71
Yi-6b (Ours) 89.24 77.61
OPT-350m (Ours) 75.29 –

Table 2: Paragraph-level accuracy for attributing extrac-
tive spans on QuoteSum and VERI-GRAN test sets.

The results indicate that our methods perform
on par with GPT-4 (∼ 90%) on the QuoteSum
dataset, while they outperform GPT-4 by ∼ 15% on
VERIFIABILITY-GRANULAR. Note that the human
performance on VERI-GRAN is 92.04%, calculated
as the mean performance of 4 NLP practitioners on
the dataset.

The reason for this is the much harder nature of
the later dataset due to the larger number of pas-
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sages (3.38 vs 69.1 passages on average). Prompt-
ing GPT to attribute already generated answers is
essentially a retrieval task. It has been observed
by (Liu et al., 2023a) that LLM retrieval perfor-
mance degrades with increasing context length.
Our method benefits from the contextual represen-
tations of LLM embeddings without relying on the
LLM for retrieval and matching representations
directly.

Two noteworthy observations from the dataset
and results are:

1. The specific nature of the datasets necessi-
tate a delicate balance between two compet-
ing tasks: directly matching the substring in
the span to be attributed, and disambiguat-
ing among multiple instances of the substring.
The former is a low-level task, while the latter
requires a more nuanced, high-level under-
standing of context-based matching.

2. The successful performance of models across
different families and capacities suggests that
approach of matching based on hidden repre-
sentations is broadly applicable.

Similar to sub-task 1, we carry out a detailed
analysis of performance on sub-task 2 across vari-
ous model configurations and layers, as depicted in
Figure 5.

A fundamental difference between the OPT-
350m and larger models lies in the influence of
token positions on the layer 0 embedding. For
OPT-350m, the token’s position directly impacts
its layer 0 representation. This differs significantly
from larger models, where the layer 0 representa-
tion depends solely on the token ID like Word2Vec
(Mikolov et al., 2013), with the token’s position not
having a direct influence. Instead, in larger mod-
els, the token position is a part of the transformer’s
learning process (Su et al., 2023).

In light of this distinction, our methodology, ob-
served in Table 2, excludes layer 0 for the larger
models while choosing the best layer. Because its
representation, which is solely dependent on the to-
ken ID, tends to prioritize exact substring matches.

Therefore, OPT-350m begins with lower perfor-
mance that gradually at the middle and the final
layers. On the other hand, all larger models across
different families exhibit a similar trend where they
start with the highest performance at layer 0. This
high initial performance is largely attributable to

Figure 5: Comparison of model accuracy across layers
for attributing extractive spans on QuoteSum train set.

the dataset’s characteristics, which contain numer-
ous examples that can be unambiguously matched
using exact substring match.

However, the dataset also comprises examples
with multiple similar substrings, necessitating dis-
ambiguation. This requirement for contextual un-
derstanding is well catered to by the middle and
later layers, as our ablation study in the Appendix
(Section A.2) reveals. Thus, the slight upturns in
performance experienced by the larger models in
the middle and later layers indicates the trade-off
between exact and contextual matching.

7 Discussion & Conclusion

Through this study, we introduce a novel, efficient
solution to the challenge of attribution in contex-
tual question answering. Our method leverages the
hidden state representations of LLMs, providing
detailed, granular attributions without requiring ex-
tensive model retraining. Our approach’s ability to
perform token-level attribution easily lends itself to
end-user applications, and we have included an ac-
tual system input-output in the Appendix (Section
A.6) depicting the same.

Our experimental results, across various model
configurations and layers, demonstrate the efficacy
of our approach. Notably, our method performs
on par or better than training-free baselines in both
identifying tokens in an answer that are directly
copied from the context and attributing these to-
kens to their original positions in the document.
Additionally we make available VERIFIABILITY-
GRANULAR dataset, which contains token-level
attributions for LLM generations in the contextual
question answering setup.

Perhaps one of the most interesting findings from
our study is that the ability to identify extracted to-
kens and attribute them back to the source is not
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exclusive to a specific model family. This suggests
that our approach can be applied broadly across
different LLM architectures, underscoring its ver-
satility.

8 Limitations & Future Work

One limitation of our work stems from the spe-
cific nature of the QuoteSum and VERIFIABILITY-
GRANULAR datasets we utilized for our experi-
ments. The datasets are constructed such that only
verbatim spans from the document are annotated
and attributed in the answers. Our method, thus,
is primarily evaluated on verbatim spans. How-
ever, our method is not specifically designed for
verbatim spans only; it could potentially work with
paraphrased information as indicated in our exper-
iments with a synthetically paraphrased version
of Quotesum presented in the Appendix (Section
A.5).

In the future, we intend to employ datasets that
include paraphrased spans. Testing on such data
will allow us to assess the method’s effectiveness
in attributing paraphrased information, identify po-
tential challenges, and adapt our methodology ac-
cordingly.

We also see potential for our method to be useful
beyond the realm of contextual question answering.
We tried mapping an LLM generated text span in
Spanish to its source document in English (Figure
12).

Interestingly, our method shows potential for this
use case too. We envision applying our approach
to other tasks that involve information extraction
and attribution to a given context. This will not
only enhance our understanding of the generation
process of LLMs but also extend the applicability
and value of our method. We are currently limited
by the availability of datasets to perform detailed
analyses of other applications.
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A Appendix

A.1 Performance over target span position
In this section, we analyze if the position of the
target span (the span that needs to be attributed)
within the answer influences the efficacy of our
methodology. The start character of each span is
normalized with respect to the length of the answer
and the accuracy is measured for all the models on
Sub-task2. As shown in Figure 8, the accuracy im-
proves with increasing span position for all models.
In decoder-only models each step can access in-
formation from previously generated or processed
tokens only. As the model progresses through the
text, it accumulates more information and context
about the text it is analyzing. We believe that this
behaviour is the reason why accuracy increases
when we attribute later text spans.

A.2 Performance of layers in the
disambiguation task setting

Given a span that needs to be attributed, there are
instances in the dataset where ground truth attribu-
tion sub-string is present multiple times over dif-
ferent sources. During inference, our approach has
to both identify the correct attribution sub-string
and also disambiguate between the multiple oc-
curances of the sub-string. Disambiguating over
these multiple occurences, requires contextual un-
derstanding of the span to be attributed in order to
choose between the occurences. Data points that
require disambiguation are collected from the test
set of the QuoteSum dataset.

We measure performance across all layers for
different models on this subset (Figure 9). We
compute the performance when one of the multiple
occurrences of the sub-string is chosen randomly.
This is highlighted as the random baseline in the
figure.

Figure 9 shows an interesting trend, where early
layers perform worse than the random baseline on
the disambiguation task. Early layers capture low
level, basic features of the input text, making them
less suitable for a complex task such as disam-
biguation. Performance improves as we use later
layers, with the middle layers yielding the best per-
formance for Llama-70b and Mistral-7b, and later
layers yielding the best performance for Llama-7b
and OPT-350m.

A.3 Effect of hyper-parameters on Sub-task 1
performance

We present graphs for precision, recall and F1 in
Figure 7 generated during our experiments on the
QuoteSum train set, which show the impact of the
threshold θ, and the choice of layer on the perfor-
mance of our method (Llama-7b) for Sub-task 1. θ
was chosen for each layer-model setup to achieve
the best f1 score. Interestingly we note that in the
earlier layers, higher thresholds are preferred. We
hypothesize that there’s a higher chance of low-
level information overlapping, necessitating more
stringent filtering at the earlier layers.

A.4 Limitations of GPT models for Sub-task 1

Figure 6 depicts a qualitative example where GPT
models fail in identifying directly copied spans
from a source document on the QuoteSum dataset.
In this example GPT-3.5 is only attributing enti-
ties like Lincoln Castle, Battle of Lincoln and the
Second Battle of Lincoln. GPT-4 has a better un-
derstanding of the task but leaves out tokens like
’The’ which were copied verbatim from the source.

A.5 Synthetic Paraphrasing of QuoteSum

We paraphrase the QuoteSum dataset by prompting
GPT-4 as shown below. A sample from the dataset
is shown in Figure 10.

Document:
{document}
Based on the information contained in

the document, answer the question
with details to the best of your
abilities. Think step by step and
explain your answer if that will
help better understand the answer.

Q: {question} A:
{answer}
Given the above source passages, a

question and an answer. The answer
summarizes the given sources while
explicitly copying spans from the
sources. Paraphrase the non-entity
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Figure 6: Limitations of GPT models in identifying directly copied spans from a source document

Figure 7: Effect of the threshold θ on the performance of our method across different layers of Llama-7b on
QuoteSum train set.

Figure 8: Performance of different models over span
position on Sub-task 2.

parts of the answer within [] while
keeping entities intact and rewrite
in the same format as original
answer.

Paraphrased Answer:

We computed the sub-task 2 performance of the
various methods on the paraphrased test set and
summarize the results in Table 3.

We observe that the performance of all the meth-
ods drop on the paraphrased version of QuoteSum
by nearly the same amount(1-3%). This prob-
ably implying that synthetic paraphrasing setup
while harder than the original dataset is not diffi-
cult enough to offer additional insights.

A.6 Qualitative Example for Sub-task 1 and
Sub-task 2

To illustrate the utility of our method, a qualitative
example is presented in Figure 11.

Figure 9: Performance of different models over the
disambiguation task.

A.7 Prompts for GPT baselines
We present the prompts used for our GPT-based
baselines for Sub-task 1 and Sub-task 2 in Figure
13 and Figure 14 respectively. For Sub-task 1, the
LLM has to respond with copied spans along with
the source paragraph number. For Sub-task 2, we
mark the verbatim copied spans in "[]" and prompt
the LLM to identify the source paragraph only.
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Figure 10: Sample datapoint from the paraphrased QuoteSum dataset

Figure 11: Given a document and a question, the user selects generate response to get the answer. Once the answer
is generated, to identify extractive answer tokens, the user selects the Generate attributions button. Answer tokens
copied from the document are highlighted and are clickable. When the user selects ’Debt Obligations..’ in the
generated response, the corresponding attribution is shown on the left panel.

Model Accuracy

BM25 73.99
GTR 71.79
MT5 88.46

Llama-7b (Ours) 85.74
Mistral-7b (Ours) 87.06
Yi-6b (Ours) 86.99
OPT-350m (Ours) 71.18

Table 3: Paragraph-level accuracy for attributing extrac-
tive spans on paraphrased QuoteSum test set.
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Figure 12: Given a document and a question, the user selects "Generate response" to get the answer. Once the
answer is generated, to identify extractive answer tokens, the user selects the "Generate Attributions" button. Answer
tokens copied from the document are highlighted and are clickable. When the user selects "auto super.." in the
generated response, the corresponding attribution is shown on the left panel.

Given source passages, a question and an answer. The answer summarizes the given sources while explicitly copying spans from the 
sources. Identify the copied spans using brackets and the respective source number to indicate that this span was copied. Make 
sure to use all relevant sources and properly quote them. Here are some examples:

Question: Who was the bond girl in you only live twice?
[1]You Only Live Twice (film) : Blofeld then orders Osato to kill Bond. Bond then meets ...
[2]Aki (James Bond) : Aki is a fictional character created for the 1967 "James Bond" film "You Only Live Twice” ...
[3]Aki (James Bond) : Following her death, Aki is almost immediately replaced by Kissy Suzuki and is not ... [4]You Only Live
Twice (film) : The tall set could be seen from away, and attracted many people from ...
[5]Aki (James Bond) : Aki does not appear in Ian Fleming's 1964 novel. She was originally named Suki ...
Answer: Aki is the Bond girl in You Only Live Twice , although Kissy Suzuki is considered the 'main' Bond girl in this film, but
Aki has a bigger role and is more memorable .
Quoted answer: [ 3 Aki ] is [ 3 the ] [ 3 Bond ] girl in [ 1 You Only Live Twice ] , although [ 3 Kissy Suzuki is considered the
'main' Bond girl in this film, but Aki has a bigger role and is more memorable ] .

Question: who are the new cast members in american horror story?
[1]American Horror Story: Roanoke : American Horror Story: Roanoke is the sixth season of the FX horror anthology television  ...
[2]American Horror Story: Coven : Returning cast members from the previous seasons of the series include: Sarah Paulson ...
[3]American Horror Story: Freak Show : Returning cast members from the of the series include: Sarah Paulson, Evan Peters ...
[4]American Horror Story: Cult : Returning cast members from previous seasons include Sarah Paulson, Evan Peters, Cheyenne ...
[5]American Horror Story : cast. In September 2016, the full main cast was announced after the first episode with the ... 
Answer: According to sources, the new cast members in Roanoke are Cuba Gooding Jr. and André Holland . In Coven, sources say the 
new cast members are Emma Roberts and Kathy Bates. In Freak Show, the new cast members are Michael Chiklis and Finn 
Wittrock. In Cult, the new cast members are Billie Lourd and Alison Pill.
Quoted answer: According to sources, the new [ 1 cast members ] in [ 1 Roanoke ] are [ 1 Cuba Gooding Jr. and André Holland ] . In 
Coven, sources say the [ 2 new cast members ] are [ 2 Emma Roberts and Kathy Bates. ] In Freak Show, the [ 3 new cast members ] 
are [ 3 Michael Chiklis and Finn Wittrock. ] In Cult, the [ 4 new cast members ] are [ 4 Billie Lourd and Alison Pill. ]

Question: {question}
{document}
Answer: {clean_answer}
Quoted answer:

Figure 13: Prompt for GPT-based baselines for Task-1.
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Given source passages, a question and an answer. The answer summarizes the given sources while explicitly copying spans from the 
sources. Identify the copied spans using brackets and the respective source number to indicate that this span was copied. Make 
sure to use all relevant sources and properly quote them. Here are some examples:

Question: Who was the bond girl in you only live twice?
[1]You Only Live Twice (film) : Blofeld then orders Osato to kill Bond. Bond then meets ...
[2]Aki (James Bond) : Aki is a fictional character created for the 1967 "James Bond" film "You Only Live Twice” ...
[3]Aki (James Bond) : Following her death, Aki is almost immediately replaced by Kissy Suzuki and is not ... [4]You Only Live
Twice (film) : The tall set could be seen from away, and attracted many people from ...
[5]Aki (James Bond) : Aki does not appear in Ian Fleming's 1964 novel. She was originally named Suki ...
Marked answer: [ Aki ] is [ the ] [ Bond ] girl in [ You Only Live Twice ] , although [ Kissy Suzuki is considered the 'main' Bond
girl in this film, but Aki has a bigger role and is more memorable ] .
Annotated answer: [ 3 Aki ] is [ 3 the ] [ 3 Bond ] girl in [ 1 You Only Live Twice ] , although [ 3 Kissy Suzuki is considered
the 'main' Bond girl in this film, but Aki has a bigger role and is more memorable ] .

Question: who are the new cast members in american horror story?
[1]American Horror Story: Roanoke : American Horror Story: Roanoke is the sixth season of the FX horror anthology television  ...
[2]American Horror Story: Coven : Returning cast members from the previous seasons of the series include: Sarah Paulson ...
[3]American Horror Story: Freak Show : Returning cast members from the of the series include: Sarah Paulson, Evan Peters ...
[4]American Horror Story: Cult : Returning cast members from previous seasons include Sarah Paulson, Evan Peters, Cheyenne ...
[5]American Horror Story : cast. In September 2016, the full main cast was announced after the first episode with the ...
Marked answer: According to sources, the new [ cast members ] in [ Roanoke ] are [ Cuba Gooding Jr. and André Holland ] . In
Coven, sources say the [ new cast members ] are [ Emma Roberts and Kathy Bates. ] In Freak Show, the [ new cast members ] are [
Michael Chiklis and Finn Wittrock. ] In Cult, the [ new cast members ] are [ Billie Lourd and Alison Pill. ]
Annotated answer: According to sources, the new [ 1 cast members ] in [ 1 Roanoke ] are [ 1 Cuba Gooding Jr. and André Holland ] .
In Coven, sources say the [ 2 new cast members ] are [ 2 Emma Roberts and Kathy Bates. ] In Freak Show, the [ 3 new cast members ]
are [ 3 Michael Chiklis and Finn Wittrock. ] In Cult, the [ 4 new cast members ] are [ 4 Billie Lourd and Alison Pill. ]

Question: {question}
{document}
Answer: {clean_answer}
Quoted answer:

Figure 14: Prompt for GPT-based baselines for Task-2.
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