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Abstract

Web-scale training on paired text-image data is
becoming increasingly central to multimodal
learning, but is challenged by the highly noisy
nature of datasets in the wild. Standard data
filtering approaches succeed in removing mis-
matched text-image pairs, but permit semanti-
cally related but highly abstract or subjective
text. These approaches lack the fine-grained
ability to isolate the most concrete samples
that provide the strongest signal for learning in
anoisy dataset. In this work, we propose a new
metric, Image Caption Concreteness (ICC),
that evaluates caption text without an image
reference to measure its concreteness and rele-
vancy for use in multimodal learning. Our un-
supervised approach leverages strong founda-
tion models for measuring visual-semantic in-
formation loss in multimodal representations.
We demonstrate that this strongly correlates
with human evaluation of concreteness in both
single-word and caption-level texts. Moreover,
we show that curation using /CC complements
existing approaches: It succeeds in selecting
the highest quality samples from multimodal
web-scale datasets to allow for efficient train-
ing in resource-constrained settings.

1 Introduction

Pre-training large vision-language models (VLMs)
on web-crawled datasets consisting of image-
caption pairs has become the standard practice
in achieving state-of-the-art results in vision-and-
language tasks such as image captioning and multi-
modal representation learning. However, raw web
data are often noisy and contain many low-quality
samples, which impair VLMs’ learning in terms of
quality and efficiency (Li et al., 2022; Schuhmann
etal., 2022; Radenovic et al., 2023). While various
factors impact data quality, we focus on semantic
noise, characterized by analyzing the meaning of
data items rather than, e.g., identifying low resolu-
tion images or quantifying token repetitions.
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Figure 1: Given an image caption, /CC measures
its visual concreteness. We show samples from MS-
COCO (Lin et al., 2014) illustrating captions annotated
by different annotators with low () and high (1) ICC
scores. As seen above, our method successfully dif-
ferentiates between concrete and abstract or subjective
captions, even for high-quality datasets such as MS-
COCO. This is done by quantifying visual-semantic
consistency using multimodal foundation models.

Existing datasets are commonly filtered using
VLMs such as CLIP (Radford et al., 2021) to iden-
tify image-text semantic misalignments (Sharma
et al., 2018; Schuhmann et al., 2022), i.e. captions
irrelevant to their images; using rule-based proxies
such as measuring the complexity of captions via
semantic parsing (Radenovic et al., 2023); or re-
moving images that contain text that overlaps with
the caption (Maini et al., 2023). However, these
approaches fail to identify captions that are highly
abstract and may contain subjective, non-visual in-
formation, despite being semantically aligned with
the image and having a sufficiently complex gram-
mar. Figure 1 shows examples of such image-
caption pairs. A caption such as “It does not look
like something 1 would want to eat” is semanti-
cally related to the image, yielding high CLIP sim-
ilarity, but contains subjective details which pro-
vide a confounding signal when training VLMs
(See also Figure 2). A model trained to gener-
ate such captions from images may learn to hal-
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lucinate details, e.g., liking a certain type of food
in our example, which are not visually grounded
and are highly subjective. Similarly, such image-
caption pairs provide a weaker signal for represen-
tation learning than images with visually concrete
captions (e.g. “A sandwich sits on a small blue
plate”), which may impede the learning process —
particularly in a resource-restricted setting where
data or compute is limited.

Thus, we suggest filtering image captions by
their visual concreteness, referring to the extent to
which a text describes visual aspects of a scene in
a manner that can be vividly imagined (Schwanen-
flugel, 2013; Hessel et al., 2018)'. This contrasts
with abstract text, which may correspond to many
possible visual interpretations or include subjec-
tive information. We show that this new dimen-
sion of textual quality enables selecting image-
caption pairs that provide a strong supervision
signal for vision-and-language tasks, particularly
in resource-constrained settings where training di-
rectly on noisy web-scale multimodal data fails
to converge to a satisfactory solution in a limited
number of iterations.

We propose the Image Caption Concreteness
(ICC) metric for quantifying the visual concrete-
ness of image captions calculated from text alone,
i.e., without an image reference. We measure
concreteness using unsupervised autoencoding
pipelines with visual-semantic information bottle-
necks. Specifically, we use a visual-bottleneck au-
toencoder that leverages text-to-image generative
models’ competence and a semantic-bottleneck au-
toencoder that identifies how well a large language
model (LLM) recovers the input caption from its
semantic CLIP embedding. As these models re-
quire costly inference through large generative
models, they cannot feasibly run on a large scale;
therefore, our ICC metric is distilled from these
pipelines, enabling fast, computationally-efficient
inference.

In our experiments, we demonstrate that when
dealing with limited training iterations, employing
ICC for filtering multimodal datasets leads to en-
hanced performance in image captioning and rep-
resentation learning. Moreover, our results indi-
cate a strong correlation between /CC and both

'Some works have treated this as roughly synonymous
with imageability (visual association), while others use con-
creteness to refer more generally to association with sen-
sory experiences of all types (Richardson, 1975; Khanna and
Cortese, 2021). Our work focuses on the visual modality.

(a) poaching still remains

L .
the biggest threat to tigers (c) want a ring like this!

3

(d) Someone did not ob-
serve the stop sign and now
it is knocked over

(b) Wheat bread is al-
ways the healthy choice for
lunchtime

Figure 2: Examples with high CLIP similarity and
low ICC. We show examples from Conceptual Cap-
tions dataset (a) and (c), and COCO dataset, (b) and (d).
While these captions are semantically related to the im-
ages, they are abstract or contain subjective non-visual
information that, unlike /CC, CLIP fails to detect.

single-word concreteness and caption text scores.
Stated explicitly, our contributions are as fol-
lows: (1) We propose the ICC metric distilled
from foundation VLM models with a novel com-
bination of unsupervised autoencoding pipelines;
(2) we show that /CC highly correlates to human
concreteness judgements of caption texts; (3) we
demonstrate that /CC succeeds in selecting a core
of samples from web-scale image-caption datasets
for vision-and-language tasks, with superior down-
stream performance to existing filtering methods.

2 Method

Given an image caption (of an unseen image), we
aim to predict its degree of visual concreteness.
Our underlying assumption is that more visually
concrete text can be mapped to a visual represen-
tation with less information loss. Conversely, we
expect that visually abstract or subjective text can-
not be converted to or from a visual representation
without significant information loss, since it does
not clearly describe a well-defined image.

As an example, consider the text “Wheat bread
is always the healthy choice for lunchtime” in Fig-
ure 2b. The notion of wheat bread being a healthy
choice is inherently non-visual and is unlikely to
be directly depicted in an image. Therefore, this
information is likely to be lost in an autoencoding
process that includes an image as the bottleneck,
when the encoded image is decoded back to the
textual modality.
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Figure 3: ICC pipeline for predicting visual concreteness of image captions. We first acquire training data using
a semantic-bottleneck autoencoder (SBA, top left) and an visual-bottleneck autoencoder (VBA, bottom left). We
then distill a weighted combination of their reconstruction scores into a smaller language model (LM, right), which
learns to produce ICC scores for new text. We visualize reconstruction scores for highly concrete (“A black dog”)
and highly abstract (“A nice location”) text. High and low scores are colored in green and red, respectively. Our
final score, which combines the two pipelines, yields more accurate concreteness predictions than each of them.

We model this effect with multimodal autoen-
coders (Kamath et al., 2023; Yang et al., 2023). In
our setting, we use multiple autoencoder compo-
nents that convert text to and from visual-semantic
representations using foundation VLMs, and quan-
tify the information loss of this process as a proxy
for visual concreteness. While these autoencoders
provide a strong signal, they are composed of
slow, computationally-intensive large generative
models making inference infeasible on a large
scale. Therefore, we distill their scores into a
small model which allows for an efficient calcu-
lation of the ICC scores.

We proceed to describe our proposed visual-
bottleneck autoencoder and semantic-bottleneck
autoencoder components, and their distillation
into the final /CC metric. See Figure 3 for an
overview of our full pipeline.

Visual-Bottleneck Autoencoder (VBA). Since a
caption represents an image, we construct the
VBA by using an image as an intermediate repre-
sentation via which textual information passes. In
particular, we concatenate a frozen text-to-image
model (Stable Diffusion 2, Ramesh et al.,
2022) and a frozen captioning model (BLIP-2,
Li et al., 2023) as shown in Figure 3 (bottom
left). This autoencoding pipeline measures text
concreteness by encoding and decoding a cap-
tion, followed by measuring semantic fidelity in re-
construction using BERTScore (F1) (Zhang et al.,

2019). We note that this pipeline contains no
trained parameters as it concatenates pretrained,
frozen models.

While the VBA pipeline is a simple and intuitive
way of enforcing a visual bottleneck, it may some-
times produce sub-optimal reconstructions even
for highly visual texts due to its inherently lossy
nature. For example, the caption “a small black
french bulldog” in Figure 3 may be reconstructed
by the VBA from the generated image to “a dog
with a white chest", which is relatively semanti-
cally far from the original caption and thus results
in a relatively low reconstruction score of 0.6 for
a concrete caption. This stems from the dense
information content of generated images, which
may contain details (such as the dog’s white chest)
which were not mentioned explicitly in the origi-
nal caption, and from the tendency of the caption-
ing decoder to focus on different details than those
used to generate the image. To alleviate this issue,
we proceed to propose a complementary method
using a stronger prior on caption semantics.

Semantic-bottleneck Autoencoder (SBA). Moti-
vated by findings that CLIP embeddings encode vi-
sual information in text and particularly concrete-
ness (Alper et al., 2023), we construct an autoen-
coding pipeline with CLIP text embeddings as a se-
mantic information bottleneck, as shown in Figure
3 (top left). We extract visual information from the
CLIP text embedding space by utilizing a frozen
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LLM (L1lama-2-7b, Touvron et al., 2023), by train-
ing a linear layer that converts CLIP text encoder’s
output to inputs for the LLM. The training objec-
tive aims at reconstructing the input captions via
a token-wise cross-entropy objective. By keeping
the encoder backbone (CLIP) frozen, this intro-
duces an information bottleneck preventing faith-
ful reconstruction of abstract texts.

After training the SBA over image—caption
pairs, we use it for measuring text concreteness by
encoding and decoding the text followed by mea-
suring reconstruction fidelity. To measure preser-
vation of fine-grained textual details, we quantify
this fidelity via per-character edit distance (Leven-
shtein et al., 1966), standardized by caption length,
as detailed in Appendix A.1.

This pipeline generally succeeds in reconstruct-
ing highly concrete text (such as “A small black
french bulldog” shown in the top left part of Figure
3). However, the strong textual prior of the SBA
may also leak information about abstract and sub-
jective captions as well (e.g. the abstract caption
“A nice location” yields a relatively high recon-
struction score of 0.4), limiting its correlation with
visual concreteness. Overall, the SBA and VBA
provide complementary scores, where each corre-
lates more strongly to visual concreteness in differ-
ent cases. Therefore, they perform most strongly
when combined together, as we explicitly verify in
our ablations in Section 4. We also show qualita-
tive examples in figures 8 and 9 in the appendix.

ICC Distillation.  Using the aforementioned
pipelines to quantify the concreteness at scale is
not feasible, as this requires running large mod-
els (e.g., diffusion models, LLMs) with billions of
parameters for many forward passes per instance
(up to dozens of forward passes for the diffusion
models inference and for the LLM and captioning
model decoding). This requires more than 1,000
GPU hours for a dataset of 1M samples. Therefore,
we assemble SBA and VBA reconstruction scores
over a relatively small collection of image-caption
pairs and distill their aggregated values into our
final ICC score. This enables efficient inference
that can easily run on a large scale, with over a
hundred times faster inference time and much less
compute required. Specifically, we train a small
text encoder model (Liumm et al., 2019) to predict
a logit-linear combination of the SBA and VBA
scores, computed as described in the appendix.

Implementation Details of ICC Construction.
For the construction of our /CC score, we use a
subset of CC3M (Sharma et al., 2018) composed
of 595K image-caption pairs, introduced by Liu
et al. (2023) and designed to have wider concept
coverage. We take a subset of 476K samples for
training the linear layer of the SBA, and train for
2 epochs with a batch size of 128 and learning
rate of 2e-3 with cosine scheduling function. The
remaining 118K samples are used for generating
reconstruction scores through the VBA and the
trained SBA. For each input caption, we generate
five reconstructed captions using beam search (five
beams) with the VBA’s captioner and the SBA’s
LLM and then choose the reconstructed caption
with the highest similarity to the source caption.
By generating the reconstructions and measuring
the reconstruction fidelities, we obtain a dataset
of 118K captions and corresponding reconstruc-
tion scores. We standardize by caption length to
disentangle the dependency of the reconstruction
scores to the caption length (i.e., forcing the same
distribution of scores for all caption lengths), as
described in the appendix. We train a small lan-
guage model (DistillRoberta-Base) to predict
the combined scores on these samples with a Mean
Squared Error objective. This final distilled model
is used for generating the /CC scores.

3 Results

We turn to show ICC’s benefit in data curation for
downstream tasks (Section 3.1), followed by its
correlation to human judgement (Section 3.2).

3.1 VLM Dataset Curation

Experimental Settings. We investigate the effect
of ICC and other filtering methods for curating
a core of high-quality image-caption pairs from
large multimodal datasets, comparing their effects
on downstream task performance — both discrim-
inative (representation learning) and generative
(image captioning). We follow similar settings as
described in the Datacomp (Gadre et al., 2023)
benchmark’s filtering track®, with the following
modifications to model the resource-limited set-
ting: given a training dataset comprised of M
samples, the downstream model is constrained to
train for exactly N' < M iterations over the fil-
tered subset of the dataset. This contrasts with

2As opposed to the BYOD track which allows for modify-
ing the samples, for instance by using synthetic captions.
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the original Datacomp setting where N' = M,
which requires significant compute for a web-scale
dataset. Our formulation tests the ability of filter-
ing methods to curate high-quality core subsets of
such datasets. Our initial subset of LAION-400M
is composed of M = 8M samples and we fix
N = 2M training iterations. To verify the ro-
bustness of our method, we measure downstream
performance over visually grounded benchmarks
across three different sizes of filtering.

We compare to four existing filtering methods
— CLIPScore (Hessel et al., 2021), Complexity
and Action (CA) (Radenovic et al., 2023)3, T-
MARS (Maini et al., 2023), and PACScore (Sarto
et al., 2023). CA is a rule-based filtering method
which aims to retain only sufficiently complex
captions that also contain an action, based on
semantic parsing. T-MARS filters multimodal
datasets by removing samples whenever an image
includes text that overlaps significantly with the
caption. PACScore trains a CLIP-based model
with positive-augmented contrastive learning ap-
proach, showing improved correlations with hu-
man intuition in scoring image-caption pairs. As
opposed to these methods, we focus on filtering
according to the concreteness of image captions.

Captioning Models. In Table 1 we show quan-
titative results of applying ICC filtering on top
of standard CLIPScore filtering over the subset
of LAION-400M for training a captioning model.
The captioning model used is an encoder-decoder
architecture with a pretrained Swin (Liu et al.,
2021) vision encoder and GPT-2 (Radford et al.,
2019) text decoder. We use a batch size of 100,
and learning rate of 2e-5 with a cosine scheduler.
We test our approach over two standard caption-
ing benchmarks datasets — MS-COCO (Lin et al.,
2014) and NoCaps (Agrawal et al., 2019), across
multiple captioning metrics (Papineni et al., 2002;
Banerjee and Lavie, 2005; Lin, 2004; Vedantam
et al., 2015; Anderson et al., 2016; Zhang et al.,
2019; Wada et al., 2024). As illustrated in the ta-
ble, filtering with /CC outperforms by a large mar-
gin the alternative filtering methods for captioning
given a fixed number of desired samples and train-
ing iterations. Note that unlike other methods, /CC
is directly aligned with the captioning objective,
as a captioning model should generate visually-
grounded concrete text. This may explain the large

3Using our re-implementation, as there is no publicly
available code.

gap in performance between /CC and other filter-
ing baselines. We show qualitative comparison be-
tween captioning models trained with different fil-
tering methods in Figure 4, exemplifying how fil-
tering with /CC promotes more concrete and accu-
rate captioning.

Image-Text Representation Learning. We also
perform a representation learning experiment by
training a dual text and image encoder model
on LAION-400M filtered with different methods.
Table 2 reports text-to-image retrieval over stan-
dard held-out retrieval benchmarks, namely MS-
COCO (Lin et al., 2014) and Flickr30K (Plum-
mer et al., 2015). The model is initialized from
pretrained vision and text encoders (ViT-base,
BERT-Base) (Dosovitskiy et al., 2010; Devlin
et al., 2018), as suggested by Zhai et al. (2022).
We use a batch size of 128, learning rate of 2e-5
with a cosine scheduling function. All other filter-
ing methods in the table are identical to the ones
in the captioning setting. As illustrated in the ta-
ble, ICC yields superior performance for this task,
showing that our method selects samples which
provide better signals for downstream retrieval ap-
plications in this setting.

We note that although prior work has found fil-
tering methods such as CLIPScore (Hessel et al.,
2021) to be beneficial (Gadre et al., 2023), we
find that it fails to significantly improve (or even
degrades) results in the case of selecting a small
core of samples. This accords with previous work
showing that applying filtering to LAION-400M
with CLIP degrades the performance (Maini et al.,
2023) in some of the benchmarks, likely due to
high-scoring images containing literal text that
overlaps with the caption.

3.2 Concreteness Correlation

Table 3 shows the correlations of different con-
creteness estimation methods to ground-truth con-
creteness scores on both single-word and caption-
level benchmarks. We compare ICC to three
baselines. The first baseline is zero-shot prob-
ing of CLIP through Stroop probing (SP) as pro-
posed by Alper et al. (2023). The second base-
line is aveCLIP (Wu and Smith, 2023), a learned
metric quantifying concreteness at the sentence
level, which generates multiple images from a cap-
tion and measures the average CLIP-similarity be-
tween the text and generated images. Due to its
high computational cost, we evaluate it on a ran-
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at the London 2012
Olympic Games.

New York Mets Fa-
natics Authentic 8""
x 10"" Skateboard
Deck

A view of the tennis
court from the front.

Figure 4: Qualitative examples of captions generated by captioning models trained on datasets filtered with differ-
ent filtering methods, over images from MS-COCO test split. CA denotes Complexity and Action filtering, and
T-MARS is marked by TMS. As seen above, models trained on /CC-filtered data generate much more concrete

and visually-grounded captions.

dom subset of each benchmark (as described in
the appendix). Finally, we compare to GPT-3.5-
Turbo and GPT-40 (Achiam et al., 2023), used in
the zero-shot setting by prompting them to pro-
vide concreteness scores. The prompts used are
detailed in the appendix.

Correlation to Word Concreteness. We first val-
idate our metric by measuring it on the dataset
introduced by Hessel et al. (2018). This con-
sists of 39,954 English unigrams and bigrams cou-
pled with human-labelled concreteness scores on
a scale from 1 (abstract) to 5 (concrete), averaged
over annotators. To compare with prior work, we
only use unigram nouns, totaling 14,562 items. As
seen in Table 3, ICC outperforms prior dedicated
methods for measuring word concreteness, while
performing competitively with the proprietary and
much larger GPT-4o.

Correlation to Caption Concreteness. We manu-
ally annotate concreteness scores for 500 captions
from LAION-400M (Schuhmann et al., 2022), se-
lected to cover a wide variety of levels of concrete-
ness. As seen in Table 3, ICC outperforms ex-
isting methods in this setting by a large margin,
demonstrating its advantage in selecting the most
concrete image captions.

4 Ablations

Distillation Concreteness Effect. Although the
distillation procedure is necessary to make infer-
ence feasible with respect to runtime, we provide
further motivation by measuring the effect of dis-
tillation on the correlation to ground-truth annota-
tions of concreteness scores in Table 4. As can
be seen, the distillation improves correlations val-
ues, providing further motivation beyond compu-
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MS-COCO
Method |#Samples B@4 M R C S BSc P

NoCaps
B@e4 M R C

S BSc P

Random 100k 09 47 112 5 23 064 018 1 51 119 56 1.6 0.68 0.11
CLIP 100k 1.1 55 119 25 22 075 0.12| 14 57 12 3 15 0.71 0.08
CA 100k 09 37 73 32 16 027 020 1.6 44 94 4.1 1.2 0.33 0.11
T-MARS 100k 1.2 46 106 5.6 23 053 020 1.3 49 116 63 1.7 0.61 0.11
PACScore| 100k 1.9 68 15 55 3 0820.16 29 75 16.1 7.7 24 0.79 0.1
Icc 100k 10.1 154 354 35.8 10.3 0.9 0.39| 12.1 15.8 35.9 33.3 64 09 0.2
Random 200k 09 42 98 5 22 051019 1 48 112 59 1.7 0.6 0.11
CLIP 200k 1.3 57 124 34 26 072 021 1.6 6 12.6 3.5 1.8 0.67 0.09
CA 200k 05 28 57 37 13 018 020 1.2 34 7.2 4.1 1.1 0.24 0.12
T-MARS 200k 1.1 46 107 65 24 05 021 1.7 54 123 7.8 19 0.6 0.12
PACScore| 200k 29 7 155 7 37 073 0.19] 3.8 74 158 8.8 2.6 0.67 0.12
Icc 200k 10 15.2 34.6 355 104 0.9 0.39|13.1 15.8 35.2 34.3 6.7 0.9 0.21
Random 500k 06 34 8 45 19 042 02|09 42 101 55 1.5 0.55 0.12
CLIP 500k 52 94 22 151 53 0.8 024 52 89 213 129 3 0.8 0.13
CA 500k 07 31 6 36 14 019 02|21 45 94 53 1.5 0.29 0.13
T-MARS 500k 08 37 89 57 2 042021 12 47 108 65 1.7 0.65 0.12
PACScore| 500k 26 65 15 86 3.7 065021 3 69 154 104 2.6 0.65 0.13
Icc 500k 8.3 139 314 309 9.7 0.89 0.37| 10 14.2 31.3 282 6 0.89 0.2

Table 1: Captioning results for different filtered dataset sizes. We perform evaluation of captioning models over
MS-COCO and NoCaps datasets trained over different filtering schemes of the LAION-400M dataset, with varying
dataset sizes. We compare the performance of ICC to five filtering baselines. Among these, Random refers to
random samples from LAION-400M, CLIP indicates filtering by top CLIPScore, and CA indicates Complexity and
Action filtering. B@4, M, R, C, S, BSc and P denote BLEU-4, METEOR, Rouge-L, CIDEr, SPICE, BERTScore
and Polos metrics respectively. # Samples denotes the amount of samples retained after filtering. Best results are

in bold.

tational efficiency and simplifying the inference of
our /CC model. We hypothesize that this improve-
ment is due to smoothing of noisy reconstruction
of the VBA and SBA by the distillation process.

Distillation Speed-up. We ablate the speed-up
provided by the distillation phase by running the
SBA, VBA and the distilled /CC on the same hard-
ware settings (an Nvidia A6000 GPU), the same
batch size of 1 and the same caption samples. We
find that the SBA and VBA process 0.45 and 0.2
samples per second respectively, and the distilled
score processes 45 samples per second. Note that
the time it would take to generate scores for our
8M subset of LAION-400M dataset is approxi-
mately 11,000 GPU hours for the VBA and 5,000
GPU hours for the SBA compared to just 50 GPU
hours using the distilled /CC. Additionally, for a
batch size of 1, the distilled model takes less than
700 MB of GPU memory compared to 13GB and
14GB for the VBA and SBA respectively.

Use of Both SBA and VBA Scores. We also ab-
late the use of both SBA and VBA scores for down-
stream captioning model training in Table 5. In the
figure, we show captioning metrics (CIDEr and
SPICE) of a model trained on a distilled version
of each of the scores in isolation, compared to the
combined /CC metric which outperforms both.

ICC Model Component Ablations. In Table 6,
we ablate the effect of various design choices in
the ICC pipeline by evaluating their effects on cap-
tion concreteness prediction (using the benchmark
described in Section 3.2). In particular, we test dif-
ferent LLM sizes (Zhang et al., 2024; Geng and
Liu, 2023) in the SBA pipeline, different caption-
ing model architectures in the VBA pipeline, and
the similarity measure used in each pipeline (edit
distance vs. BERTScore). To identify the effect
of each component, we evaluate SBA and VBA
predictions in isolation (without combining or dis-
tilling them). As is seen in the table, our chosen
LLM and captioning model perform comparably
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COoCoO Flickr
Filt. |Size R@1 R@5R@10R@1 R@5R@10

Rand.|100k| 5 154 23.3 |10.6 31.5 42.6
CLIP (100k| 2.1 7.5 124 |57 17.1 26
CA |100k| 5.2 15.8 24.1 [11.3 32.2 438
TMS [100k| 6.5 19.5 28.8 |14.9 37.1 495
PAC |100k| 4.8 14 212 |92 247 355
ICC |100k|14.4 34.5 45.7 |32.6 62.7 73.5
Rand.|200k| 9.6 25.5 36.2 |21.1 489 61.8
CLIP |200k| 6.9 10 158 | 69 209 309
CA |200k| 8.8 24.4 35.1 |20.8 48.6 61.2
TMS |200k| 8.2 23 32.8 |17.8 43.4 56.3
PAC |200k| 6.5 17.7 263 |12.9 31.1 429
ICC |200k|15.5 35.8 47.6 |33.6 63.2 74.5
Rand.|500k| 8 222 325|174 42.1 554
CLIP |500k| 5.3 16 239 |11.5 30 427
CA |500k| 8.2 22.6 324 | 17 433 56.7
TMS |500k| 10 26.3 37.2 |20.3 46.8 60.5
PAC |500k| 8.8 23.5 339 |17.8 404 53
ICC |500k|14.6 349 47 |30.6 609 729

Table 2: Representation learning results over differ-
ent filtered dataset sizes. We perform text-to-image
retrieval evaluation over MS-COCO and Flickr30K for
different filtering schemes of LAION-400M with vary-
ing dataset sizes. We compare our performance (/CC)
to various filtering baselines: Rand. indicates select-
ing random samples from LAION-400M, CLIP indi-
cates filtering by top CLIPScore, CA indicates Com-
plexity and Action filtering, TMS indicates filtering
with T-MARS and PAC indicates filtering with PAC-
Score. Best results are in bold.

to the alternative models tested, showcasing the ro-
bustness of the VBA and SBA across model sizes.
Moreover, while the simple edit distance similarity
measure performs acceptably for the SBA pipeline,
the BERTScore similarity measure produces sig-
nificantly better correlations in the VBA pipeline,
matching the intuition that the VBA is inherently
lossy with respect to the precise form of texts and
must rely on a more semantic measure to properly
detect abstract sentences.

5 Related Work

Evaluating Text Concreteness.  Word con-
creteness is a topic of interest in cognitive sci-
ence (Paivio et al., 1968; Richardson, 1975;
Schwanenflugel, 2013; Khanna and Cortese,
2021), and a number of works have studied auto-

Word Conc. Caption Conc.

Method p ps T ‘ p  ps T

CLIP-SP 0.6 0.62 0.44|0.34 0.33 0.25
aveCLIP 0.55 0.56 0.39(0.29 0.28 0.22
GPT-3.5 0.55 0.56 0.44|0.44 0.48 0.4
GPT-40 0.78 0.79 0.64|0.57 0.57 0.49
Icc 0.75 0.75 0.55(0.73 0.75 0.6

Table 3: Concreteness evaluation on single-word and
caption-level texts. Correlation (in absolute value) is
measured using Pearson p, Spearman p,, and Kendall
7 coefficients. Best result are in bold, second best are
underlined.

P Ps T
Before Distillation 0.65 0.6 0.46
After Distillation 0.72 0.75 0.6

Table 4: Distillation Effect on Caption Concreteness
Correlation. We show correlations to ground-truth an-
notated caption concreteness scores before and after
distillation. The “After Distillation" row corresponds
to our final /CC score.

matic prediction of word concreteness using ma-
chine learning (Hill et al., 2014; Hill and Korho-
nen, 2014; Hessel et al., 2018; Rabinovich et al.,
2018; Charbonnier and Wartena, 2019; Alper et al.,
2023). However, little attention has been paid to
measuring concreteness at the caption or string
level. Shi et al (2019) define concreteness of con-
stituents by matching them to images for learn-
ing syntactic representations without explicit su-
pervision; as was later shown, the signal of noun
concreteness plays a key role in the model’s syn-
tactic predictions (Kojima et al., 2020). Most
similar to us is Wu and Smith (2023), who gen-
erate multiple images for each caption and aver-
age the CLIP similarity scores over all the im-
ages to produce a caption-level concreteness score.
Other text evaluation metrics compare to reference
texts (Gehrmann et al., 2023) or a reference im-
age (Hessel et al., 2021), while we are interested
in the inherent quality of text in isolation (namely,
its visual concreteness).

Multimodal Dataset Curation. Due to the highly
noisy nature of Internet multimodal data, prior
works have filtered using approaches such as rule-
based text parsing (Radenovic et al., 2023), using
CLIP similarity to detect misaligned text-image
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CoCco NoCaps Caption Concreteness
Method CIDEr SPICE | CIDEr SPICE Pipe ~ Model Part  Sim.| p ps 7
SBA 17.8 5.9 15.1 33 SBA TinyLLaMa-1.1B ED |0.59 0.58 0.45
VBA 29.8 9.4 27.8 5.8 SBA OpenLLaMa-3B  ED |0.57 0.56 0.43
IcC 30.9 9.7 28.2 6 * SBA LLaMa-2-7B  ED |0.53 0.51 0.48
SBA TinyLLaMa-1.1B BSc |0.57 0.56 0.43
Table 5: Score Ablations We ablate the importance SBA OpenLLaMa-3B BSc [0.56 0.55 0.42
of using scores obtained from both the SBA and VBA SBA LLaMa-2-7B BSc 10.57 0.56 0.43
pipelines over 200k samples dataset that was filtered
using the different scores. VBA BLIP-Base ED [0.43 0.4 0.31
VBA  BLIP-Large ED [0.43 0.36 0.27
pairs (Schuhmann et al., 2022), de-duplicating se- VBA BLIP-2 ED |0.44 041 031
mantically similar content (Abbas et al., 2023), VBA BLIP-Base BScl|l 0.6 06 046
and removing samples with text that overlap with VBA  BLIP-Large BSc 10.58 0.56 0.43
the image (Maini et al., 2023). A number of * VBA BLIP-2 BSc!| 0.6 0.58 0.45

prior works have also proposed replacing or aug-
menting multimodal datasets with synthetic sam-
ples (Li et al., 2022, 2023; Fan et al., 2023; Lai
et al., 2023; Nguyen et al., 2023). By contrast,
we do not require modifying the given dataset and
identify semantically infelicitous captions allowed
by prior methods. Our work also contrasts with
dataset distillation, which has been applied to mul-
timodal dataset curation (Wu et al., 2023); while
dataset distillation methods select samples to ex-
plicitly optimize a chosen downstream objective,
we focus on the simpler and more general task of
identifying samples of inherently poor quality.

6 Conclusion

We present a new metric for measuring the visual
concreteness of image captions without an image
reference. By leveraging strong foundation mod-
els, we quantify visual-semantic information loss
in an unsupervised manner and find that this highly
correlates with human concreteness judgments.
Our results demonstrate that ICC is effective at se-
lecting a core of high-quality image-caption sam-
ples from web-scale multimodal datasets for train-
ing models in the resource-constrained setting. We
foresee the use of /CC in additional tasks requiring
the curation of web-scale multimodal data, where
high-quality, visually-concrete text is needed.

Limitations

While our method manages to detect visually con-
crete captions well, it lacks sensitivity to grammat-
ical structure, which might cause it to label oddly
phrased captions as concrete. For instance, con-
sider the caption: “a computer near a tree with a
boy next to a table with a keyboard”. This cap-

Table 6: Ablations over VBA and SBA Design
Choices. We ablate the effect of the LLM used in
the SBA pipeline and the captioning model used in the
VBA pipeline, as well as the text similarity measure, on
the correlation to the ground-truth concreteness anno-
tations. Note that here we measure correlation to each
model of the piplines (VBA and SBA) used in isolation.
BSc and ED refer to BERTScore and edit distance re-
spectively. We report the Pearson p, Spearman p,, and
Kendall 7 correlation coefficients. Our default settings
are indicated with a prepended *.

tion is highly concrete and gets a high /CC score
of 1.0. However, removing all object relations
from the caption produces the following: “com-
puter tree boy table keyboard” which results in a
relatively minor decrease of the /CC score to 0.89.
Such low-quality captions might have a negative
impact on tasks such as image captioning where
the model must learn to output grammatically cor-
rect English sentences which should ideally de-
scribe relevant fine-grained relations between en-
tities. We hypothesize that this behavior stems
from the dataset used to train the distillation model
(CC3M) which is not likely to include such oddly
phrased captions, and so these non-grammatical
structures are not learned. We hypothesize that
training over a dataset with higher caption diver-
sity will likely alleviate this issue.

In addition, due to limited computational re-
sources, our experiments were conducted on a rel-
atively small scale of 8 million sample initial train-
ing dataset based on LAION-400M. We expect
that increasing the scale and the filtered dataset
proportionally will result in a performance im-
provement in the downstream model performance.
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However, we leave verifying this as well as test-
ing the effect of /CC filtering on other downstream
tasks such as VQA and caption ranking to future
work.

Finally, while our method detects and filters
an important category of noise in multimodal
datasets, we note that abstract captions such as
those in Figure 2 may contain important infor-
mation which our method discards. Future work
might instead extract the relevant visual informa-
tion from such captions, to avoid losing the infor-
mation signal in such items. We also note that such
captions often contain external or subjective infor-
mation which could be of interest to tasks such as
news image captioning or multimodal sentiment
analysis, where external context is of interest. To
identify such cases, further work might enhance
the interpretability of our method to explore why a
caption is or is not concrete.

Ethics Statement

Models trained on multimodal Internet data may
inherit biases from their training data. Our method
is not designed to filter potentially harmful im-
age descriptions; moreover, such biases are also
present in the models used as part of our pipeline
(CLIP, generative models) and thus our model may
possibly inherit or amplify these issues for down-
stream tasks. We anticipate further research into
such biases and guidelines needed before putting
these models into deployment.
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Appendix A Implementations Details

A.1 Standardizing By Caption Length

We aim to have reconstruction scores that are only
dependent on the concreteness of captions and not
on the length of the captions for both the SBA and
VBA. In Figure 5, we show the distribution of the
edit-distance based reconstruction similarities of
the SBA before and after standardization per cap-
tion length. We can see in Figure Sa that there is
a strong dependency on caption length, which we
would like to avoid.

More specifically, we force the reconstruction
similarity distribution to be distributed according
to LN (p = 0.5,0 = 1), where LN denotes a
Logit-Normal distribution. The normalization is
performed by standardizing the logit of the similar-
ities (defined by ln(ﬁ)) for each caption length,
and then taking the inverse logit. We can see
in Figure 5b that short captions are reconstructed
more easily compared to longer ones, and that nor-
malization by caption length successfully disen-
tangles the reconstruction scores from the caption
length dependency.

A.2 ICC Distillation

We distill the knowledge obtained by the two
pipelines described in the paper in a two-stage
manner. Firstly, we distill the VBA and SBA
scores into two distinct DistilRoBERTa (Liumm
et al.,, 2019) models. We then collect a small
subset of 244 captions, sampled to have approx-
imately uniform joint distribution of scores, and
annotate the concreteness scores of these captions.
This is showcased in Figure 6. We regress over
these samples to get the optimal weights.

A.3 Caption Concreteness Benchmark
Distribution

Our aim is to have a small, yet diverse set of sam-
ples that represent the wide diversity of possible
captions. Since Laion-400M is very noisy and
only a small portion of it includes highly concrete
captions, we curate our captions to achieve a bal-
anced distribution of concreteness scores, as illus-
trated in Figure 7. As seen there, the concreteness
of the benchmark’s captions is evenly distributed
between abstract and concrete concepts.

A.4 Zero-Shot CLIP Concreteness Score

We adapt the Stroop Probing method (Alper et al.,
2023) for estimating text concreteness. While

Alper et al. (2023) test this on single words, we
adapt this method to captions by replacing the
empty slot in prompts with a caption rather than a
single word. We use their prompts, omitting those
which do not match the context of an entire cap-
tion being inserted in the masked slot (i.e., omit-
ting the prompts “Alice giving the [*] to Bob” and
“Bob giving the [*] to Alice”).

A.5 GPT Prompts

The following prompts were used to extract con-
creteness scores for image captions* from GPT-3.5
and GPT-4o:

System: “You are an expert visual
reasoner, capable of understanding the
visual concretess of image captions. A
visually concrete caption is a caption
that is highly visual, and can be vividly
imagined.”

User: “Provide a numerical score on a
scale of 1-5, when 1 is non-visual and 10
is highly visual caption for the following
caption <caption>. Only provide the
numerical score and nothing else.”

Note that we experimented with three differ-
ent ranges of [1-N] of concreteness scores in our
prompts: N=3, N=5 and N=10. We found that N=5
yielded the best results.

A.6 aveCLIP Word Concreteness

Since aveCLIP requires generating many images
per word or caption, we found that running ave-
CLIP over the entire word concreteness dataset is
not feasible due to runtime constraints. Therefore,
we evaluate its performance on a random subset of
150 words/captions.

A.7 Training Hyperparameters and
Additional Information

SBA. We train the linear layer of the SBA with a
batch-size of 128, learning rate of 2e-3 with cosine
scheduler and a warm-up ratio of 0.03, and train
for a two epoch over a single Nvidia-A6000 GPU.
All other hyperparameters are set to the defaults of
the HuggingFace Trainer APL.

VBA Text-To-Image. For the image generation of
the diffusion model in the VBA, we use guidance
scale of 9 and 20 inference steps.

“To get the concreteness scores of words, we used the
same prompts with “word” instead of “caption” in the appro-
priate places.

11060



B-words captions 9-words captions 10-words captions 11-words captions

=00

=0

)
»
’
’

od
Az am; am 1w a3 10 a;m am am 1 Az am; am 1w
amuarmy amiarmy amiarmy. amuarmy

12-words captions 13-words captions Ld-words captions 15-words captions

o

EC

’
r
r
r

ez @3 Az 1 a4 a1 az 4} a1 a3 am: am 1w
amiarey amiarty amiarty amiarey

16-words captions 17-words captions 18-words captions 19-words captions

0 ]

w0

r
g
r
r

a1 am am 1, Az am; am 1w a1 a4} am 1w am A} am 1w
amusrey amuary amuarmy. amusrey

20-words captions 21-words captions 22-wards captions 23-wards captions

1o -

o

g
g
g
r

azs asa a7 100 az as as  ae azs @m0 ais 1o
amusrey amuary amuarmy. amusrey

azs  as a7

(a) Before Standardization
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(b) After Standardization

Figure 5: Standardizing by caption length. We show the reconstruction similarity scores of SBA for each caption
length before standardization (in 5a) and after standardization (in 5b).
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Concreteness Annotation

Figure 6: Finding the Optimal Weights. We measure
the optimal combination of the two scores with respect
to ground-truth concreteness annotations.

A.8 Model Checkpoints Used

We detail here all the checkpoints that were used in
our experiments. All model checkpoints are taken
from the Hugging Face Model Hub’. For the SBA,
we used:

* openai/clip-vit-large-patchi14
the text encoder)
* meta-llama/Llama-2-7b

(only

For the VBA, we used:

e stabilityai/stable-diffusion-2
e Salesforce/blip2-opt-2.7b

For the distilled model, we used:

e distilroberta-base

5https ://www.huggingface.co/models

Test-Set Concreteness Scores Distribution

160

140

120 A

100 A

80 4

Frequency

60

40 4

201

o
=
[Op!
w

Anngtation

Figure 7: Distribution of annotated concreteness scores
in our manually labeled test set of 500 captions. All
samples are from LAION-400M. Annotations range
from highly abstract (0) to highly concrete (3).

For training a captioning model, we used:

* microsoft/swin-base-patch4
-window7-224-in22k

* gpt2
For training a dual-encoder model, we used:

e bert-base-uncased
* google/vit-base-patch16-224

A.9 Finding the Score Combination
Parameters

To compute the combination parameters of the
SBA and VBA scores, we label 244 captions, sam-
pled uniformly over VBA and SBA scores, with
concreteness scores in the range 0-3. We use lo-
gistic regression to find the parameters a, b, c of

o(a-VBA+b-SBA+c), where o(z) = H%
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is the sigmoid function, such that the output will
approach 1 for concrete captions and O for ab-
stract ones. We label concrete captions as cap-
tions with concreteness above the median score
in the labeled dataset and abstract captions as cap-
tions with a score below this median. We visual-
ize the annotated samples and the regression line
a-VBA+b-SBA+ ¢ =0 inFigure 6. The pa-
rameters found and used in our /CC are a = 13.2,
b = 3.6 and ¢ = —9.4. As seen in the figure, both
scores contribute to the optimal predicted concrete-
ness score, validating the importance of using both
SBA and VBA components together in our full
pipeline.

Appendix B Additional Qualitative
Examples

We visually show examples of each of the scores’
weaknesses and the way they compliment each
other. In Figure 8, we show examples of con-
crete captions, the reconstructed captions by VBA
and SBA, and the different scores of each of them.
The first four rows exemplify why VBA may fail
to reconstruct some concrete captions. For in-
stance, the caption “a nurse mopping a surgeon’s
brow during an operation in an operation pub”
was reconstructed to “two people in protective
gear” which bears relatively low semantic simi-
larity to the original caption. These cases mainly
stem from the inherent difficulty of reconstructing
(through a captioning model) from an image the
exact caption from which the image was generated,
as there may be many possible such captions. In
this case, the use of SBA helps determining that
the caption is concrete.

In a complementary manner, we show in Figure
9 examples of abstract captions. In this figure, the
first four rows demonstrate that using SBA alone is
also not enough, as it is sometimes able to recon-
struct abstract captions due to the higher seman-
tic information that is contained in the CLIP em-
beddings. In this scenario, VBA compensates for
these failures, as it is very unlikely to reconstruct
abstract text.

These qualitative examples further illustrate the
benefit of using both VBA and SBA. Indeed, in
Figures 8-9, it can be observed that ICC reflects
the advantages of both pipelines by generating low
scores for abstract captions, and high scores for
concrete ones in a consistent manner.
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Input caption SBA reconstructed | VBA re- | VBA bot- | SBA| VBA| ICC
caption constructed tleneck
caption image
anurse mopping a sur- | a nurse wiping the | two people in 0.77] 0.25| 0.72
geon’s brow during an | brow of a surgeon | protective gear
operation in an opera- | during an operation
tion pub in an operating room
bougainvillea climb- | bougainvillea climb- | a house cov- 0.72 ] 0.26 | 0.81
ing up the wall of a | ing on a wall of a | ered in pink
villa villa flowers
table top shot of many | close up shot of veg- | vegetables 0.70] 0.25 | 0.76
vegetables and mexi- | etables and bugsona | arranged in
can bugs on a table table the shape of a
human head
silhouette of a man | silhouette of a man | a group of peo- 0.82] 0.26 | 0.93
with a gun in poses | holding a gun in | ple silhouettes
royalty poses royalty on a white
background
small flock of sheep in | small flock of sheep | a herd of sheep 0.721 095 1.0
winter snow on a hill- | in snow on a hill in the snow
top
small blue and white | small blue and white | a blue and 0.96| 095 1.0
airplane parked on the | airplane parked on | white airplane
ramp with a control | the tarmac next to a | parked on the
tower in the distance | control tower tarmac
a young girl runs | a young girl runs | a girl walking 096 095 1.0
through a field of | through a field of | through a field
cabbages cabbages of cabbage
a red post box and | a red telephone box | a red post box 0.84 ] 0.89 | 0.92
a telephone box stand | and a post box stand | next to a stone
together in a village together in a village | wall

Figure 8: Qualitative Examples for Highly Concrete Captions. We demonstrate reconstructions of highly con-
crete captions and the final distilled /CC scores. We mark by red low reconstruction scores which correspond to
unsuccesfull detection of the concrete captions. As illustrated above, VBA yields generally less consistent scores
for concrete captions (see the text for further discussion). Nonetheless, our final distilled scores correctly identify
these captions as concrete ones, obtaining high ICC scores over these captions.

11063



Input caption SBA reconstructed cap- | VBA recon- | VBA bot- | SBA| VBA| ICC

tion structed tleneck

caption image

keep an eye on the ball | keep an eye on the ball | a soccer ball 0911 0.19] 0.1
when it comes to in- | when it comes to invest- | on a green
vestments ments field
what ’s the best thing | the best thing about having | two  young 0.89 | 0.16 | 0.1
about having a best | afriend of the opposite gen- | women sitting
friend of the opposite | der on a bench
gender ?
film character : would | which film character would | santa  claus, 07901 |0
you like to bet on these | you like to see in your | santa  claus
shares this christmas ? | shares this christmas? and sant
this is located in my | this is located in my home- | a sign in front 0.75| 028 | 0
home town ! town! of a statue
chaotic systems are | fractals are patterns that | a black and 0.2210.19| 0
sometimes described | can be found in many | white tunnel
using fractal patterns forms, such as chaotic sys-

tems and natural structures.
on an average , the | a sloth spends most of the | a sloth hang- 0.171027| 0
sloth travels feet a day | day on its feet ing from a

branch

get tips for biologi- | learn how to care for air | a bunch of air 032]025]0
cal genus , more com- | plants, one of plants on a
monly known as air brown surface
plants , in your home
versatile and highly ca- | this little camera packs a | a camera on a 0.251024| 0
pable , there s more to | big punch with its zoom | wooden table
this tiny camera than | lens and 2
its giant zoom

Figure 9: Qualitative Examples for Highly Abstract Captions. We demonstrate reconstructions of highly ab-
stract captions and the final distilled ICC scores. We mark by red captions which were reconstructed well (note
that in the case of abstract captions, high scores correspond to unsuccessful detections of the abstract captions). As
illustrated above, SBA yields generally less consistent scores for abstract captions (see the text for further discus-
sion). Nonetheless, our final distilled scores correctly identify these captions as abstract ones, obtaining low ICC
scores over these captions.
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