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Abstract

Minimum Bayes risk (MBR) decoding has
achieved state-of-the-art translation perfor-
mance using COMET, which is a neural met-
ric that has a high correlation with human
evaluation. However, MBR decoding requires
quadratic time because it computes the ex-
pected score between a translation hypothe-
sis and all reference translations. We propose
centroid-based MBR (CBMBR) decoding to
improve the speed of MBR decoding. Our
method clusters reference translations in the
feature space and then calculates the score us-
ing the centroids of each cluster. The experi-
mental results demonstrate that our CBMBR
not only improved the decoding speed of the
expected score calculation by 5.7 times but also
outperformed vanilla MBR decoding in terms
of translation quality by up to 0.5 COMET% in
the WMT’22 En↔Ja, En↔De, En↔Zh, and
WMT’23 En↔Ja translation tasks.1

1 Introduction

Minimum Bayes risk (MBR) decoding achieves
robust and high-quality translation by selecting the
output sentence that maximizes the expected metric
score computed from the set of translation hypothe-
ses (Kumar and Byrne, 2004; Eikema and Aziz,
2020; Müller and Sennrich, 2021). Recently, neu-
ral evaluation metrics that have a high correlation
with human evaluation have been proposed (Rei
et al., 2020, 2022a; Sellam et al., 2020; Zhang et al.,
2020), and MBR decoding using such neural met-
rics has achieved state-of-the-art translation perfor-
mance in human evaluation compared with con-
ventional maximum-a-posteriori (MAP) decoding
using beam search (Fernandes et al., 2022).

However, because of its formulation, typical
MBR decoding that regards the hypothesis set as
a pseudo-reference set requires the computational
time of O(N2) when N translation hypotheses are

1https://github.com/naist-nlp/mbrs

Figure 1: Overview of our centroid-based MBR
(CBMBR).

given. In recent work, the number of hypotheses
N exceeded 1,000 candidates (Freitag et al., 2023),
which makes the quadratic order of computational
time a challenge for MBR decoding, particularly
when expensive neural metrics are used. Several
pruning methods have been proposed (Eikema and
Aziz, 2022; Cheng and Vlachos, 2023) to improve
the decoding speed. These approaches require the
careful selection of a proxy metric (Eikema and
Aziz, 2022), or it is difficult to take advantage of
computational parallelism because hypotheses are
pruned iteratively (Cheng and Vlachos, 2023).

Given that expensive neural metrics, e.g.,
COMET or BLEURT, are trained to output high
scores when a hypothesis sentence and reference
translation are semantically similar, we hypothe-
size that the distance between sentence vectors of
similar sentences in the feature space of their mod-
els is close. We leverage sentence similarity to
improve the decoding speed of COMET-MBR by
clustering sentence vectors of the translation can-
didates into k ≪ N clusters as shown in Figure 1.
Then, we calculate the COMET scores using k cen-
troid vectors of their clusters, instead of using N
sentence vectors.

In experiments, our proposed method not only
achieved a speed-up of 5.7 times in the calcula-
tion of the expected score but also an improve-
ment in the COMET score of up to 0.5% compared
with naive MBR decoding in the WMT’22 En↔Ja,
En↔De, En↔Zh, and WMT’23 En↔Ja transla-
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tion tasks.

2 Background

MBR decoding MBR decoding has been demon-
strated to be effective in fields such as statistical
automatic speech recognition (Goel and Byrne,
2000) and statistical machine translation (Kumar
and Byrne, 2004). In recent years, it has been ap-
plied to neural machine translation (Eikema and
Aziz, 2020; Müller and Sennrich, 2021). Further-
more, it is more suitable for multiple translation
systems than ensemble models (Ito et al., 2023).

Let X and Y be the spaces of possible source
sentences and target sentences, respectively. MAP
decoding generates the target sentence y∗MAP ∈ Y
using y∗MAP = argmaxy∈Y pθ(y|x), where θ de-
notes the parameter of the translation model that
calculates the likelihood of an output sentence y
given an input sentence x ∈ X . Because it is in-
feasible to calculate probabilities for all possible
y ∈ Y , beam search is typically used to obtain the
solution.

By contrast, MBR decoding determines the out-
put sentence y∗MBR ∈ Y by maximizing the ex-
pected utility as follows:

y∗MBR = argmaxh∈H Eŷ∼P (y|x) [u(h, ŷ)] , (1)

≈ argmaxh∈H Eŷ∈Ŷ [u(h, ŷ)] , (2)

where u : Y × Y → R denotes the utility func-
tion, which represents the preference relation and
H = {hi}|H|

i=1 ⊂ Y denotes the set of translation
hypotheses. P (y|x) is the true probability of being
translated from a given input sentence x ∈ X and
is approximated using the sampled reference trans-

lations Ŷ = {ŷi}|Ŷ|
i=1 ⊂ Y , as shown in Equation 2,

because the true probability is unknown. Typical
MBR decoding considers the hypothesis set itself
as the pseudo-reference set, i.e., Ŷ := H. Note that
the time complexity is O(N2), where N := |H|,
which is time-consuming.

COMET-MBR COMET is an evaluation metric
of translation quality that achieves a high correla-
tion with human evaluation. The COMET model
consists of the XLM-RoBERTa (XLM-R)-based
sentence encoder (Conneau et al., 2020) and the
output layer, and is trained to predict direct as-
sessment scores (Rei et al., 2020, 2022a). It first
encodes the source sentence x ∈ X , hypothesis
sentence h ∈ Y , and reference sentence ŷ ∈ Y

into their D-dimensional sentence vectors indepen-
dently. Then the COMET score is computed from
the triplet of sentence vectors in the output layer.
Let f : X ∪ Y → RD be the function of sentence
encoding and s : RD × RD × RD → R be the out-
put layer. The COMET score is computed using
s(f(x), f(h), f(ŷ)). MBR decoding with COMET
(COMET-MBR) replaces the utility u in Equation 2
with the COMET score:

y∗COMET-MBR

= argmaxh∈H Eŷ∈Ŷ [s(f(x), f(h), f(ŷ))] . (3)

3 Proposed Method

Our proposed centroid-based MBR (CBMBR) ap-
proximates the expected utility using the centroids
of similar sentence vectors. CBMBR decodes by
computing the expected utility according to the fol-
lowing procedures: sentence encoding, clustering,
and calculating the expected utility.

Encoding First, we compute the sentence vec-
tor of the source f(x) ∈ RD, the hypotheses
{f(hi)}|H|

i=1 ⊂ RD, and the pseudo-references

{f(ŷi)}|Ŷ|
i=1 ⊂ RD.

Clustering Next, we cluster the sentence vec-
tors of the pseudo-references into k ≪ N clus-
ters and obtain the centroid vectors of each clus-
ter C = {ci}ki=1 ⊂ RD. Here, we employ
kmeans++ (Arthur and Vassilvitskii, 2007) to pre-
vent the centroids from being biased. kmeans++
selects the initial centroids so that the distances
between each pair of centroids are farther accord-
ing to the weights calculated from the distances
between vectors. We describe the details of the
algorithm in Appendix C.1. Then, we cluster the

vectors {f(ŷi)}|Ŷ|
i=1 using the standard kmeans al-

gorithm. Specifically, we calculate the following
steps iteratively: 1) assign a vector to its nearest
neighbor centroid and 2) update the centroid using
the vectors assigned to its cluster.

Expected utility Finally, we calculate the ex-
pected utility by replacing pseudo-reference vec-
tors f(ŷ) ∈ RD with centroids c ∈ RD in Equa-
tion 3:

y∗CBMBR = argmaxh∈H Ec∈C [s(f(x), f(h), c)] .
(4)

The conventional method requires O(N2) of
computational time to compute the expected util-
ity for all hypotheses, whereas our CBMBR com-
putes it in O(Nk). Note that k (1 ≤ k ≤

11010



N ) is a hyperparameter that balances the trade-
off between the decoding speed and approxima-
tion accuracy. Especially, when k = 1, i.e.,
C = {c1}, the centroid c1 can be calculated as
the average of all pseudo-reference vectors, i.e.,

c1 = 1
|Ŷ|

∑|Ŷ|
i=1 f(ŷi), and the time complexity of

CBMBR is O(N), which is equivalent to DeNero
et al. (2009) and Vamvas and Sennrich (2024). Our
proposed method approximates the expected util-
ity using centroid representations, which implicitly
assumes that the score function s is approximately
linear. Specifically, when k = 1, we approximate
the expected utility Eŷ∈Ŷ [s(f(x), f(h), f(ŷ))] as
s(f(x), f(h),Eŷ∈Ŷ [f(ŷ)]) in our method by as-
suming that the score function s is roughly linear.

4 Experiments

Setup We conducted translation experiments
with two settings; one used diversified translation
candidates and the other simulated a more realis-
tic scenario, multi-system translation. We eval-
uated the translation quality using the COMET
score, which is the same as the utility func-
tion of MBR decoding used in our experiments.
For comparison, we also performed translation
candidate reranking using a quality estimation
model COMETKIWI (Rei et al., 2022b) (QE)2,
MBR decoding with confidence-based pruning
(PruneMBR) (Cheng and Vlachos, 2023), and eval-
uated the quality upper bound (Oracle), which se-
lects the hypothesis with the best score according
to COMET using reference translations. We also
compared CBMBR without kmeans++, where we
randomly selected the initial centroids from the
sample set (w/o kmeans++). We used COMET-
22 (Rei et al., 2022a) for the evaluation metric
and utility function. In MBR decoding, we treat
the hypothesis set as the pseudo-reference set, i.e.,
Ŷ := H. We set the number of centroids to k = 64.
The details of our setup are shown in Appendix D.

Diverse translation candidates In this set-
ting, we evaluated translation quality in six lan-
guage directions: En↔Ja, En↔De, and En↔Zh

2Unlike MBR decoding, which requires calculating multi-
ple pairwise scores from a single sentence representation, the
QE model computes a single score from a single representa-
tion. Additionally, COMETKIWI does not compute explicit
sentence vectors that are independent between the source and
translation sentences but directly estimates the score from
the concatenated two sentences. Therefore, the QE model
does not cache the sentence vectors of both the source and
hypotheses, like MBR decoding.

Decoding en-ja ja-en en-de de-en en-zh zh-en avg.

MAP 78.7 69.7 77.3 79.2 77.4 70.1 75.4
QE 86.6 76.2 82.2 82.1 82.9 76.9 81.2
MBR 87.9 76.6 84.0 83.0 84.2 77.3 82.2
PruneMBR 87.9 76.5 84.0 83.0 84.1 77.3 82.1
CBMBR 87.9 76.6 83.9 83.0 84.1 77.1 82.1

w/o kmeans++ 87.8 76.4 83.8 82.9 84.0 77.2 82.0

Oracle 90.6 81.9 87.0 86.5 87.7 81.2 85.8

Table 1: Translation quality in the WMT’22 translation
task with the setting of diverse translation candidates.
The best scores are emphasized in bold font and the
second-best scores are underlined for each language
direction.

Step QE MBR PruneMBR CBMBR

Encode/hypotheses – 247.0 248.0 247.8
Encode/source – 51.6 51.1 51.2
Rerank 450.1 – – –
Prune – – 5.5 –
kmeans++ – – – 36.5
Utility function; s – 322.2 79.6 20.1

E2E 450.1 633.1 384.7 356.8

Table 2: Average processing time per sentence (msec) in
the WMT’22 translation task in the diverse translation
candidates setting. Note that “E2E” measures the end-
to-end time from the sentence encoding to the expected
utility calculation including miscellaneous processes.

in the WMT’22 translation task (Kocmi et al.,
2022). We generated translation candidates us-
ing the pre-trained multilingual translation model,
M2M100 (Fan et al., 2021). We used beam search
with a beam size of 256 for MAP decoding, and
generated 1,024 translations using epsilon sam-
pling with ϵ = 0.02 (Freitag et al., 2023) for MBR
decoding.

Table 1 shows the translation quality of each de-
coding method. From the average scores in the
table, compared with MAP decoding, both MBR
decoding and the proposed CBMBR decoding im-
proved the COMET score by +6.8 and +6.7%, re-
spectively, and the gap between Oracle and both
MBR and CBMBR narrowed. The results also
show that the difference between CBMBR and
MBR was within 0.1% using kmeans++ initial-
ization.

Next, we compared the decoding time of each
method as shown in Table 2. From the table, the
total time of COMET-MBR (E2E) indicates that
CBMBR was 1.8 times faster than vanilla MBR.
Specifically, in the computation of the expected
utility, which required quadratic time, the speed
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WMT’22 WMT’23

Decoding en-ja ja-en en-ja ja-en avg.

MAP 86.4 80.9 83.5 80.4 82.8
QE 89.8 82.6 87.6 82.3 85.6
MBR 90.5 84.1 88.7 83.7 86.7
PruneMBR 88.9 82.8 86.6 82.2 85.1
CBMBR 90.9 84.1 89.2 83.8 87.0

w/o kmeans++ 90.5 84.1 88.8 83.7 86.8

Oracle 93.4 89.4 91.9 88.5 90.8

Table 3: Translation quality in the multi-system transla-
tion setting.

increased by 5.7 times when including kmeans++,
and by 16.0 times when comparing only the utility
computation. We confirmed that, compared with
PruneMBR, the speed of the expected utility calcu-
lation improved by 1.4 times. One reason for this
improvement is that, unlike PruneMBR, CBMBR
computes the expected utility in a single transac-
tion, which makes it easier to leverage the parallel
computation capabilities of the GPU.

To summarize, CBMBR maintains translation
quality comparable with naive MBR decoding
while accelerating the computational time of the
expected utility calculation by 5.7 times, including
clustering.

Multi-system translation We also evaluated the
effectiveness of our CBMBR in the setting where
translation candidates are generated from multiple
translation systems. In particular, we followed the
practice in Deguchi et al. (2023), in which 18 can-
didate sets with each set comprising the 50-best
translations were generated from nine models and
two decoding methods: beam search and top-p
sampling (p = 0.7) with a beam size of 50. We
evaluated the translation quality in two language
directions: En↔Ja in the WMT’22 and WMT’23
translation tasks (Kocmi et al., 2022, 2023).

Table 3 shows the results. Unlike the diverse
translation candidates setting, CBMBR improved
the translation quality by up to 0.5% compared
with naive MBR. Naive MBR calculates the ex-
pected utility using all samples equally, which is
prone to translation bias when candidates have a
multimodal distribution. By contrast, CBMBR es-
timates the expected utility using only centroids;
therefore, it decodes robustly, even if the distribu-
tion is multimodal. A detailed analysis is shown in
Appendix F.

To summarize, we found that CBMBR not only
improved the decoding speed but also improved

1 2 4 8 16 32 64 128 256
k

86.8
87.0
87.2
87.4
87.6

CO
M

ET

CBMBR w/ k-means++
CBMBR w/o k-means++
MBR

Figure 2: Translation quality of various k in the multi-
system translation setting. The scores are averaged
COMET on WMT’22 En-Ja and Ja-En.

Model dev test

RoBERTalarge (Liu et al., 2019) 53.7 43.0
fastText (Joulin et al., 2017) 65.3 53.6
XLM-Rlarge (Conneau et al., 2020) 39.1 31.6
LaBSE (Feng et al., 2022) 72.9 72.7

COMET (Rei et al., 2022a) 78.2 73.6

Table 4: Pearson r × 100 in the STS-B task using the
encoder of the COMET model.

translation quality compared with vanilla MBR
when the translation was determined from the can-
didate sets generated from multiple translation sys-
tems.

5 Discussion

5.1 Number of centroids k

We evaluated the COMET scores of various k ∈
{2i}8i=0 in the multi-system translation setting. Fig-
ure 2 shows the results. When k = 1, while
the time complexity was linear time O(N), the
COMET score of CBMBR was degraded by 0.5%
compared with vanilla MBR. The figure shows that
translation quality improved as k increased and
CBMBR outperformed vanilla MBR when k ≥ 16.
Additionally, translation quality was better when
we used kmeans++ instead of the standard kmeans.

5.2 Distance between similar sentence vectors

As mentioned in Section 3, CBMBR implicitly
assumes that the score function s has linearity.
Because s in the COMET model is a nonlinear
multi-layer perceptron, it is not clear whether it
is appropriate to use the averaged vector of hy-
pothesis representations as representative points of
the clusters. To verify the assumption, we inves-
tigated the distances between sentence vectors of
similar sentences using the semantic textual simi-
larity benchmark (STS-B) task (Cer et al., 2017).
We evaluated the Pearson correlation coefficient
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r using the ground truth similarity score. Table 4
shows the experimental results. Despite sentence
vectors not being trained explicitly like contrastive
learning, COMET demonstrated a strong correla-
tion of 73.6. Moreover, the result demonstrates that
it implicitly learned sentence similarity through the
training of score prediction, as evidenced by its
significantly better correlation of 73.6 compared
with the pre-trained XLM-R score of 31.6. Further-
more, we confirmed that COMET outperformed
LaBSE (Feng et al., 2022) trained using contrastive
learning.

To summarize, the sentence vectors of COMET
demonstrated a strong correlation with gold scores
in the STS-B task although the sentence representa-
tions were not explicitly trained. Additionally, we
confirmed that the encoder of COMET implicitly
learned sentence similarity through score predic-
tion. From the results, we verified that approximat-
ing the expected utility by aggregating sentence
vectors that are close to each other is reasonable
because the distance between sentence vectors rep-
resents semantic similarity.

6 Conclusion

In this paper, we proposed CBMBR, which im-
proved the speed of MBR decoding by cluster-
ing the sentence vectors of similar sentences and
computing the score using the centroid representa-
tions of each cluster. Our CBMBR achieved a 5.7
times speed-up in the expected score calculation
and an improvement in COMET of up to 0.5% com-
pared with vanilla MBR decoding in the WMT’22
En↔Ja, En↔De, En↔Zh, and WMT’23 En↔Ja
translation tasks. For future work, we will apply
our method to other evaluation metrics, including
both neural and non-neural metrics.

Limitations

In this study focused only on improving the speed
of MBR decoding, particularly the neural evalu-
ation metric, COMET. For non-neural metrics, it
is necessary to apply the appropriate clustering
method for each metric.

In COMET-MBR, there are two bottlenecks for
the computational time: the calculation of the ex-
pected utility and sentence encoding. However,
we only improved the computation speed of the
expected utility, which took quadratic time. Al-
though sentence encoding can be computed in lin-
ear time, the sentences are encoded using the expen-

sive XLM-R encoder, which is time-consuming.
Our method can only be applied to metrics for

which we can compute the representation indepen-
dently for each sentence. This limitation is the
same as that of the method of DeNero et al. (2009)
and is also explained in their paper.

We measured the decoding times reported in this
paper on a single computer and only in a single run;
the amount of speed improvement may differ when
different computer architectures are used.

Ethical Consideration

Both vanilla MBR decoding and CBMBR decoding
select output sentences from a set of translation can-
didates generated by translation systems; hence, if
the systems generate toxic text, it may be selected.
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A Licenses

In our experiments, we used the COMET-22
model licensed under the Apache-2.0 license and

COMETKIWI model licensed under the CC BY-
NC-SA 4.0 license. We evaluated our method on
the test sets of WMT’21, WMT’22, and WMT’23
translation tasks under the following policy: “The
data released for the WMT General MT task can
be freely used for research purposes”.

B Details of the Datasets

Table 5 shows the number of sentences for each
dataset we used in our experiments.

Dataset en-ja ja-en en-de de-en en-zh zh-en

WMT’21 1,000 1,005 1,002 1,000 1,002 1,948
WMT’22 2,037 2,008 2,037 1,984 2,037 1,875
WMT’23 2,074 1,992 – – – –

Table 5: Number of sentences for each dataset we used.

C Details of the Algorithms and Models

C.1 kmeans++
We describe the algorithm for the initial centroid
selection of kmeans++:

1. Pick up the first centroid from the set Ŷ and
add it to C.

2. Calculate the squared Euclidean distance be-
tween vector f(ŷi) and its nearest centroid
d2(ŷi) = minc∈C∥f(ŷi)− c∥22.

3. Sample vector f(ŷi) from the multinomi-
nal distribution according to the weights

d2(ŷi)∑|Ŷ|
j=1 d

2(ŷj)
and add it to the set C.

4. Repeat steps 2 and 3 until k centroids are se-
lected.

C.2 COMET model
Figure 3 shows the overview of the COMET model.
A triplet of sentences are independently encoded
into their sentence vectors, and then the COMET
score is calculated from the vectors.

D Details of the Experimental Setup

Table 6 shows the details of our experimental setup.
We implemented vanilla MBR, PruneMBR, and
CBMBR using PyTorch.

3https://huggingface.co/Unbabel/
wmt22-comet-da

4https://huggingface.co/Unbabel/
wmt22-cometkiwi-da

5https://huggingface.co/facebook/m2m100_418M
6https://huggingface.co/naist-nlp/wmt23
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Figure 3: Overview of the COMET model.
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Figure 4: Translation quality of various k in the diverse
translation candidates setting. The scores are averaged
COMET on WMT’21 En↔Ja, En↔De, and En↔Zh.

E Other Experimental Results

E.1 Translation quality on the development
set in the diverse translation candidates
setting

Table 7 shows the experimental results of the di-
verse translation candidates setting on the develop-
ment set. In the table, “niter” denotes the number
of iterations of kmeans clustering. We chose niter
= 1 from the results.

E.2 Decoding speed in the multi-system
translation setting

Table 8 shows the decoding speed in the multi-
system translation setting measure in the WMT’22
and WMT’23 En↔Ja translation tasks. As shown
in the table, our CBMBR improved the speed of the
expected score calculation by 5.0 times compared
with vanilla MBR and 1.5 times compared with
PruneMBR in the multi-system setting.

Model
COMET Unbabel/wmt22-comet-da3

QE Unbabel/wmt22-cometkiwi-da4

GPU NVIDIA A100 ×1
Batch size 256 sentences
(sentence encoding)

Diverse translation candidates setting
Translation model M2M100 (Fan et al., 2021)

(418M parameters)5

MAP decoding
Generation beam search
Beam size 256

MBR decoding
Candidate generation

# of candidates 1,024 translations
Generation epsilon sampling (ϵ = 0.02)

(Freitag et al., 2023)
CBMBR

# of centroids k 64
# of iterations 1

Multi-system translation setting
Translation model 9 various Transformer models

(Deguchi et al., 2023)
MAP decoding

Generation beam search using
the ensemble model

Beam size 50
MBR decoding

Candidate generation
# of candidates 900 translations6

Generation beam search and
top-p sampling (p = 0.7)
(Deguchi et al., 2023)

CBMBR
# of centroids k 64
# of iterations 1

Table 6: Details of our experimental setup.

E.3 Relationship between the number of
centroids and translation quality in the
diverse translation setting

Figure 4 shows the translation quality of various
k in the diverse translation candidates setting. We
observed that the COMET score increased as k
increased, except for an outlier, i.e., k = 2.

E.4 Evaluation of non-target metrics

We also evaluated translation quality using metrics
that were not used as the utility function. Table 9
and 10 show the results of the diverse translation
candidates setting, and Table 11 and 12 show the
results of the multi-system translation setting, re-
spectively.

F Multimodality of Translation
Candidates

In the multi-system translation setting, CBMBR
also outperformed vanilla MBR in terms of transla-
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Decoding en-ja ja-en en-de de-en en-zh zh-en avg.

MAP 78.8 62.6 74.5 80.4 73.0 68.6 73.0
QE 86.7 71.7 80.3 83.6 80.1 77.0 79.9
MBR 88.2 72.6 82.1 84.3 81.6 77.7 81.1
PruneMBR 88.2 72.6 82.0 84.3 81.6 77.7 81.1
CBMBR 88.2 72.3 81.9 84.4 81.5 77.5 81.0

w/o kmeans++ 88.1 72.4 81.8 84.3 81.4 77.5 80.9

CBMBR with various numbers of kmeans++ iterations
niter=1 88.2 72.3 81.9 84.4 81.5 77.5 81.0
niter=2 88.2 72.2 81.9 84.4 81.6 77.5 81.0
niter=3 88.2 72.3 81.9 84.4 81.5 77.5 81.0
niter=4 88.2 72.3 81.8 84.4 81.5 77.5 81.0
niter=5 88.2 72.3 81.9 84.4 81.6 77.5 81.0

CBMBR with various numbers of kmeans iterations
niter=1 88.1 72.4 81.8 84.3 81.4 77.5 80.9
niter=2 88.1 72.4 81.8 84.3 81.4 77.5 80.9
niter=3 88.1 72.4 81.8 84.3 81.4 77.5 80.9
niter=4 88.1 72.4 81.8 84.3 81.5 77.5 80.9
niter=5 88.1 72.4 81.8 84.3 81.5 77.5 80.9

oracle 89.9 76.3 84.0 87.3 84.2 80.2 83.7

Table 7: Translation quality (COMET%) in the diverse
translation candidates setting in the WMT’21 translation
task. “niter” denotes the number of iterations of kmeans
clustering.

Step QE MBR PruneMBR CBMBR

Encode
hypotheses; H – 198.1 198.7 199.1
source; x – 22.0 22.0 21.9

Rerank 313.0 – – –
Prune – – 5.4 –
kmeans++ – – – 36.1
Utility function; s – 281.1 79.5 20.1

E2E 336.0 511.9 306.0 278.4

Table 8: Average processing time per sentence (msec)
in the multi-system translation setting measured in the
WMT’22 and WMT’23 En↔Ja translation tasks. Note
that “E2E” measures the end-to-end time, including
miscellaneous processes.

tion quality, as shown in Table 3 and Figure 2. In
this section, we discuss the multimodal nature of
translation, two approximations of MBR decoding,
and why our CBMBR outperformed vanilla MBR
in the multi-system translation setting.

The n-best translations generated by beam
search are often similar to each other (Vijayakumar
et al., 2018). To diversify the candidates while max-
imizing translation quality, Deguchi et al. (2023)
generated the 50-best translation sets from each
translation system, which resulted in candidates
that exhibited multimodality. Vanilla MBR decod-
ing calculates the expected score by treating all
samples equally, which means that it is prone to
being affected by the number of similar transla-

Decoding en-ja ja-en en-de de-en en-zh zh-en avg.

MAP 14.6 10.9 25.1 27.3 28.2 16.1 20.4
QE 16.3 11.1 22.6 24.2 25.8 15.5 19.2
MBR 16.4 10.6 23.6 25.8 28.3 15.6 20.1
PruneMBR 16.4 10.5 23.6 25.7 28.2 15.6 20.0
CBMBR 16.2 9.8 23.1 25.4 27.6 15.5 19.6

w/o kmeans++ 16.4 10.4 23.5 25.7 28.3 15.7 20.0

Oracle 22.0 15.8 30.3 34.5 35.6 20.4 26.4

Table 9: BLEU scores (Papineni et al., 2002) in the
WMT’22 translation task with the diverse translation
candidates setting.

Decoding en-ja ja-en en-de de-en en-zh zh-en avg.

MAP 56.6 54.3 65.2 66.9 61.2 56.8 60.2
QE 63.7 60.1 70.0 69.6 65.8 62.2 65.2
MBR 62.7 57.2 68.5 68.9 65.1 60.3 63.8
PruneMBR 62.6 57.1 68.4 68.9 65.1 60.2 63.7
CBMBR 62.3 56.8 68.1 68.7 64.7 59.9 63.4

w/o kmeans++ 62.5 56.9 68.3 68.7 64.9 60.2 63.6

Oracle 67.9 63.1 72.6 73.4 70.3 64.8 68.7

Table 10: BLEURT scores (Sellam et al., 2020) in the
WMT’22 translation task with the diverse translation
candidates setting.

tion samples for the candidates that have such a
multimodal distribution.

Now, there are two approximation variants of
MBR decoding in our CBMBR. One is our pro-
posed method, which calculates the expected score
using centroid representations:

y∗CBMBR = argmaxh∈H Ec∈C [s(f(x), f(h), c)] .
(5)

The other, CBMBRcnt, multiplies each centroid-
based score by the weight according to the number
of samples in each cluster:

y∗CBMBRcnt
=

argmaxh∈H Ec∈C [s(f(x), f(h), c)× w(c)] ,
(6)

where w : RD → [0, 1] returns the weight of the
given centroid as follows:

w(c) =
count(c)

∑k
i=1 count(ci)

, (7)

count(c) =
∣∣∣
{
ŷ ∈ Ŷ : c = NN(f(ŷ), C)

}∣∣∣ ,
(8)

NN(q, C) = argminc∈C∥q − c∥2, (9)

where NN: RD×C → RD finds the nearest neigh-
bor centroid of a vector q ∈ RD from the given set
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WMT’22 WMT’23

Decoding en-ja ja-en en-ja ja-en avg.

MAP 24.2 23.1 20.7 21.9 22.5
QE 23.3 20.7 20.0 19.9 21.0
MBR 25.0 21.9 21.6 21.3 22.4
PruneMBR 23.8 21.7 20.5 21.2 21.8
CBMBR 24.3 20.4 20.7 19.8 21.3

w/o kmeans++ 24.8 21.8 21.5 21.1 22.3

Oracle 35.2 36.2 29.7 33.8 33.7

Table 11: BLEU scores (Papineni et al., 2002) in the
multi-system translation setting.

WMT’22 WMT’23

Decoding en-ja ja-en en-ja ja-en avg.

MAP 65.1 67.0 59.6 67.1 64.7
QE 68.8 68.6 63.6 68.9 67.5
MBR 68.3 68.0 63.5 68.8 67.2
PruneMBR 66.5 66.9 61.3 67.5 65.6
CBMBR 68.3 67.4 63.5 68.4 66.9

w/o kmeans++ 68.3 68.0 63.6 68.7 67.1

Oracle 75.5 77.1 70.6 76.5 74.9

Table 12: BLEURT scores (Sellam et al., 2020) in the
multi-system translation setting.

of centroids C and count : RD → N ∪ {0} counts
the number of samples in the cluster of the given
centroid. CBMBRcnt, which uses the number of
samples in a cluster, can be regarded as more accu-
rately approximating vanilla MBR compared with
our CBMBR, which ignores the number of samples
in a cluster.

We compared the translation quality of our
CBMBR and CBMBRcnt with that in the multi-
system translation setting. Table 13 shows the re-
sults. From the results, the difference between
vanilla MBR and CBMBRcnt narrowed to 0.1%
and degraded by 0.6% compared with CBMBR;
that is, CBMBRcnt, which more accurately approx-
imates vanilla MBR, was worse than our proposed
CBMBR. We attribute this observation to the bi-
ased distribution caused by beam search or sam-
pling. With CBMBR, we can robustly decode
against bias.

WMT’22 WMT’23

Decoding en-ja ja-en en-ja ja-en avg.

MAP 86.4 80.9 83.5 80.4 82.8
QE 89.8 82.6 87.6 82.3 85.6
MBR 90.5 84.1 88.7 83.7 86.7
PruneMBR 88.9 82.8 86.6 82.2 85.1
CBMBR 90.9 84.1 89.2 83.8 87.0

w/o kmeans++ 90.5 84.1 88.8 83.7 86.8
CBMBRcnt 90.4 83.9 88.6 83.5 86.6

w/o kmeans++ 90.4 84.0 88.6 83.6 86.6

Oracle 93.4 89.4 91.9 88.5 90.8

Table 13: Results of the multi-system translation setting
with weighting by the numbers of samples.

11018


