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Abstract

Equipping a conversational search engine with
strategies regarding when to ask clarification
questions is becoming increasingly important
across various domains. Attributing to the con-
text understanding capability of LLMs and their
access to domain-specific sources of knowl-
edge, LLM-based clarification strategies fea-
ture rapid transfer to various domains in a post-
hoc manner. However, they still struggle to
deliver promising performance on unseen do-
mains, struggling to achieve effective domain
transferability. We take the first step to investi-
gate this issue and existing methods tend to pro-
duce one-size-fits-all strategies across diverse
domains, limiting their search effectiveness. In
response, we introduce a novel method, called
STYLE, to achieve effective domain transfer-
ability. Our experimental results indicate that
STYLE bears strong domain transferability, re-
sulting in an average search performance im-
provement of ∼10% on four unseen domains.

1 Introduction

Recent research in conversational search systems
has highlighted the potential of utilizing large
language models (LLMs) to address ambiguities
present in user queries (Kuhn et al., 2022; Zhang
and Choi, 2023). A key focus has been on investi-
gating the strategies regarding when to ask clarifi-
cation questions during conversations (Aliannejadi
et al., 2021). When developing a search system for
a specific domain without prior training, its clarifi-
cation strategy may be limited, since ambiguities
are influenced by the domain-specific background
knowledge (Ferrari et al., 2017). For example, fi-
nancial terminology may be perceived as ambigu-
ous by the conversational search systems that are
not confident with the finance jargon. To address
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this, recent studies (Zhang and Choi, 2023; Zhang
et al., 2023) resort to LLMs to feature rapid transfer
to various domains in a post-hoc manner, such as
finance services (Deng et al., 2023a) and movie
recommendation (Fan et al., 2023). This may be at-
tributed to the context-understanding capability of
LLMs and their access to domain-specific sources
of knowledge (Zhang et al., 2023). However, em-
pirical evidence suggests that the effectiveness of
LLM-based methods remains suboptimal in unseen
domains, with notable difficulties in achieving ef-
fective domain transferability (Deng et al., 2023b).
This motivates us to rethink: What impedes the
domain transferability of LLM-based methods
regarding the clarification strategy?

To investigate this, we conduct an in-depth anal-
ysis to examine off-the-shelf LLM-based methods
(detailed in Section 2). Our findings reveal that
while LLM-based methods, armed with domain-
specific knowledge sources, somewhat develop
strategies that could work on unseen domains, they
often produce a one-size-fits-all strategy, such as
asking increasingly more questions as the con-
versation advances. Such strategies typically per-
form less effectively compared to tailored strategies
trained on domain-specific data. This highlights
the limited ability of LLM-based methods to adapt
to unseen domains effectively. The challenge lies
in the fact that strong domain transferability can
not be achieved by training on single-domain data.
Meanwhile, the mismatched distribution of domain-
specific representations poses a significant obstacle
to effective domain transfer. Affected by the above
challenges, existing methods are accustomed to
addressing ambiguities solely in a single domain
(Rahmani et al., 2023; Aliannejadi et al., 2019), po-
tentially leading to models becoming brittle when
faced with unseen domains.

To this end, we propose a novel method,
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Figure 1: The STYLE contains domain-invariant strategy planner (DISP) and multi-domain training paradigm
(MDT). The DISP extracts domain-invariant information and mitigates the swift of domain-specific distributions.
The MDT encourages the domain transferability of DISP by population-based multi-domain training.

called STYLE, which features rapid tranSfer To
previouslY unseen domains via tailored stratEgies
in a post-hoc manner. STYLE comprises the
domain-invariant strategy planner (DISP) in the
conversational search engine and multi-domain
training (MDT) paradigm. Specifically, the DISP
is configured to extract domain-invariant informa-
tion, mitigating the mismatch in the distribution
of domain-specific representations and ensuring
robustness across domains. We further leverage
a retrieval-augmented paradigm to obtain docu-
ments that match the user queries in conjunction
with their matching scores. The matching score
reflects the retrieval quality and confidence of the
retrieval module, which is highly correlated to the
ambiguous level of the user queries and avoids the
introduction of domain-specific semantic represen-
tation. Moreover, instead of relying on one solitary
domain, MDT encourages the domain transferabil-
ity of DISP by training it across multiple diverse
domains. This is inspired by the population-based
training (Long et al., 2023), which suggests that the
generalization of a collaborative agent to held-out
populations can be improved by training larger and
more diverse populations (Charakorn et al., 2020).
As such, STYLE enhances domain transferability
and adapts its strategies for various domains.

We conduct experiments to evaluate STYLE

using four domain-specific benchmark datasets
in conversational search, including e-commerce,
movies, and books. Our findings demonstrate that
STYLE consistently surpasses existing LLM-based
baselines in terms of domain transferability, re-
sulting in a significant average performance im-
provement of ∼10%. Further analysis reveals that
STYLE tailors its strategies to diversify them in dif-
ferent domains, which laid the foundation for its
effectiveness. In summary, we analyze and address

the inadequacies of existing methods in determin-
ing when to ask clarification questions in scenarios
involving previously unseen domains. This paves
the way to advance both practical applications and
academic research in this area. We present three
key contributions:

• We verify and highlight that the one-size-fits-all
strategies impedes the domain transferability of
existing LLM-based methods when deciding on
the timing to pose clarification questions.

• We present a new method STYLE to improve
domain transferability in a post-hoc manner.
It includes a domain-invariant strategy planner
(DISP) in the search engine and a multi-domain
training (MDT) paradigm.

• We experimentally show that STYLE bears strong
domain transferability, resulting in an average
search performance improvement of ∼10% on
four unseen domains.

2 Preliminary Analysis

Previous analyses indicate that current methods’
effectiveness of clarification strategies is compro-
mised when applied in unseen domains (Deng et al.,
2023a), yet the underlying cause remains unclear.
This section aims to investigate the factors that may
hinder the domain transferability of LLM-based
methods. Our analysis involves two factors: search
performance, and strategy characteristics.

2.1 Experimental Setup.

Baselines & Datasets. We compare the in-domain-
trained model with LLM-based methods, includ-
ing LLMs with zero-shot, few-shot, and CoT
prompts. Here, the in-domain-trained model means
the model is well-trained on data from the same do-
main as the test set, which contains a BERT-based
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Figure 2: In-domain-trained model achieves the highest performance and strategy diversity. LLM-based methods
often adopt a one-size-fits-all strategy with limited diversity across different domains (cf. Appendix A for details).

encoder and the two-layer fully connected network.
We consider four domain-specific datasets, detailed
in Appendix A.
Evaluation metrics. Following previous work
(Chen et al., 2023), we evaluate search perfor-
mance using SR@5. To analyze strategy char-
acteristics, considering the variation of domain
knowledge in different search domains, diverse
clarification strategies may be required, we intro-
duce strategy diversity as a metric. Specifically,
as the strategy module decides whether to ask
for clarification during each conversation turn, we
analyze the diversity of strategies based on the
strategy trajectories, each formed by multi-turn ac-
tions. Take LLM with CoT as an example, Figure
2 (C) reveals its strategy trajectories on different
domains, represented as tr1, tr2, tr3, tr4. To evalu-
ate its strategy diversity, we calculate the average
similarities between pairs of trajectories. A lower
similarity score indicates a greater variety of strate-
gies. More information on strategy diversity can be
found in Appendix A. It’s important to note that the
strategy diversity of the in-domain-trained model is
assessed based on trajectories from their variances
trained on its own specific domain.
Investigation Analysis. As illustrated in Figure
2(A), the in-domain-trained model outperforms
LLM-based methods in terms of search perfor-
mance. Additionally, in-depth analysis in Figure
2 (B)1 reveals that the in-domain-trained model
excels in both strategy diversity and search perfor-
mance, whereas LLM-based methods often adopt
a one-size-fits-all strategy with limited diversity
across different domains (cf. Section 4.3 for de-
tails). Taking Figure 2 (C) for example, LLM with
CoT shows a tendency to ask increasingly more
questions as the conversation advances. This indi-

1More results are in Appendix A.

cates that the in-domain-trained model has diverse
tailored strategies for various domains, while LLM-
based methods lack the flexibility to produce
diverse strategies tailored to unseen domains.

3 The Method

To achieve effective domain transferability when
deciding on when to seek clarification, we pro-
pose STYLE. It includes a domain-invariant strat-
egy planner (DISP) and multi-domain training
paradigm (MDT). We provide the problem formu-
lation in Section 3.1. The overall architecture of
STYLE is introduced in section 3.2, with detailed
explanations of DISP and MDT provided in section
3.3 and section 3.4, respectively.

3.1 Problem Formulation

Retrieval-based Conversational Search. We fo-
cus on the retrieval setting since it is one of the
most common paradigms (Gao et al., 2022). For-
mally, for a user ui, there exists a document di
in the collection D that aligns with the user’s in-
tent. The interaction commences with the user’s
initial query q1. At each turn t, when the user
presents a query qt, the conversation history Ht =
{q1,m1, ..., qt−1,mt−1, qt} is formed, where qt−1

and mt−1 represent the user’s query and the sys-
tem’s response at turn t− 1. Given Ht, the system
initially retrieves a subset of documents Dt ⊂ D.
Subsequently, based on Ht and Dt, the system gen-
erates a response mt by either posing a clarification
question cqt to the user or displaying the top x re-
trieved documents in Dt. This iterative process
continues until the system presents di to the users
or reaches the maximum number of turns T .
MDP Environment. The conversational search pro-
cess is often formulated as a Markov Decision Pro-
cess (MDP) (Chen et al., 2023). At turn t, con-

10635



sidering qt, Ht, and Dt, the system chooses an
action at ∈ A from a set of clarification strategies
A. The goal is to learn a strategy π that maxi-
mizes the expected total rewards across the ob-
served conversation episodes. This is formulated
as: π∗ = argmaxπϵΠ E

[∑T
t=0 r(st, at)

]
, where

st represents the state comprising Ht and Dt, r(·)
is the immediate reward, denoted as rt.

3.2 Overall Architecture

As illustrated in Figure 1, STYLE includes domain-
invariant strategy planner (DISP) in the conver-
sational search engine and multi-domain training
paradigm (MDT). In Figure 1(b), STYLE initially
trains DISP across various domains using MDT.
Subsequently, the well-trained DISP can be intro-
duced into unseen domains in a post-hoc manner.
During the inference at conversation turn t, as de-
picted in Figure 1(a), the LLM-based retriever iden-
tifies documents Dt that closely match the user
query within the conversation context Ht. Follow-
ing this, based on Ht and Dt, the DISP decides
whether to ask the user a clarification question by
generating an action at using domain-invariant in-
formation. If the action at suggests asking, our con-
versational search engine utilizes the LLM-based
generator to create a clarification question cqt+1

through few-shot CoT, considering the conversa-
tion context and the retrieved documents. Other-
wise, our search engine presents x retrieved docu-
ments to the user.

3.3 Domain-Invariant Strategy Planner

To mitigate the discrepancy in the distribution
of domain-specific representations, we propose
DISP, implemented by a two-layer fully connected
network. DISP is configured to extract domain-
invariant representation that is general and struc-
tural, thereby enhancing its robustness to the do-
main transfer. The domain-invariant representation
used in DISP is the concatenation of encoded con-
versation context and retrieved documents, and the
ranking scores of retrieval results. This informa-
tion captures the conversation state, the matching
degree between user queries, the domain-specific
knowledge from retrieved documents, and the con-
fidence and quality of the retrieval module.

In particular, We utilize a fixed BERT (Devlin
et al., 2019) to encode Ht and Dt into representa-
tions Ht and Dt, which remain unchanged during
the training process. Then, we concatenate Ht and

Figure 3: Domain-invariant strategy planner (DISP).

Dt with the ranking scores score1:kt of k retrieved
documents assigned to each document in Dt by
the retrieval module since these scores can be in-
dicative of the retrieval results’ relevance or the
retrieval system’s confidence while relatively inde-
pendent from the domain knowledge distributions.

Finally, such domain-invariant information plays
the role of the state st and is fed into the DISP to
yield action at, formulated below:

value = MLP
(
Ht ⊕Dt ⊕ score1:kt

)
, (1)

at =

{
ask, value ≥ 0.5

answer, value < 0.5
(2)

When DISP chooses to ask, the search engine gen-
erates and provides a clarification question to the
user. Otherwise, the engine provides the x retrieved
documents with the highest ranking scores as an-
swers to the user.

3.4 Multi-Domain Training
To encourage the domain transferability of DISP,
STYLE involves MDT. Inspired by the population-
based training (Long et al., 2023), the MDT trains
DISP on multiple domains (e.g., e-commerce,
web), which enhances the generalization of the
DISP to tailor its strategies to unseen domains.

Taking inspiration from population-based train-
ing, we engage in training the DISP using a di-
verse set of domain datasets. With n distinct
domain-specific datasets represented as B =
{B1, B2, ...Bn}, we randomly select a subset as
the training data for each epoch. This training set
is designed to expose the planner to an assortment
of strategies relevant to different domains, thereby
bolstering its capacity to tailor its strategy in novel
scenarios. Upon completion of training, we retain
the refined parameters of the planner, allowing it
to make efficient inferences on any unseen domain
B∗ (B∗ /∈ B) effectively. In MDT, we engage in
interactive reinforcement learning using an LLM-
based user simulator as described in prior research
(Deng et al., 2023b). Each sample includes a user
ui seeking a specific document di along with intent
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details d∗i . We leverage d∗i and role instructions
to formulate the user prompt Puser (Details are in
Appendix F.3). When the system presents a state-
ment mt+1 to user ui, the user responds with qt+1

as follows:

qt+1 = LLM (Puser (d
∗
i ) ,mt+1, Ht) . (3)

Once we receive the response qt+1, we calculate
the reward rt based on predefined criteria. Sub-
sequently, we employ the dueling Q-network for
training, which can be expressed as follows, where
yt = Q∗(st, at) and Q∗ indicates DISP in this case.

yt = Est+1

[
rt + γmax

a∈A
Q∗(st+1, at+1)|st, at

]
.

(4)

4 Experiments

We conduct experiments to evaluate the domain
transferability of STYLE and analyze reasons be-
hind its success. We study three research questions:

• RQ1: Can STYLE effectively transfer to the un-
seen domain without domain-specific training?

• RQ2: Does STYLE produce strategies tailored to
different domains?

• RQ3: Why is STYLE effective in dealing with
unseen domains?

4.1 Experimental Settings
Domain-specific Datasets. We evaluate STYLE us-
ing domain-specific benchmark datasets in conver-
sational search across different domains. Building
on prior research (Aliannejadi et al., 2019; Wang
and Ai, 2022; Owoicho et al., 2023), we consider
four datasets: ClariQ (Aliannejadi et al., 2021)
which gathers ambiguous web search queries,
FaqAnt (Chen et al., 2023), focusing on a con-
versational FAQ task in the financial domain, MS-
Dialog (Qu et al., 2018), which records ambigu-
ous queries about Microsoft products, Opendialkg
(Moon et al., 2019), which contains ambiguous
questions regarding movies and books. Data statis-
tics2 are in Table 1. Importantly, these datasets
contain unambiguous queries that are utilized to
assess the strategy module’s ability to correctly de-
termine when it is unnecessary to ask questions.
To simulate unseen domains, we conduct held-out
evaluation by training STYLE on three datasets and
reserving one as the unseen domain dataset.

2Data processing details can be found in Appendix C.

Dataset Domain # Cases Ambiguous

ClariQ Web Track 721/153/120 0.60
FaqAnt E-commerce 2197/591/592 0.52
MSDialog Microsoft Products 1298/325/325 0.53
Opendialkg Books & Movie 1008/271/228 0.50

Table 1: Data statistics. Ambiguous indicates the propor-
tion of ambiguous queries. See Appendix C for details.

Baselines. We compare STYLE with the following
two classes of baselines3, which allow us to observe
the in-depth insight brought by asking clarification
questions. Implementation details for each method
can be found in Appendix F.

• Retreval-based conversational search models
always provide answers to users without ask-
ing clarification questions. This includes 1)
BM25: a statistics-based method, 2) senBERT
(Reimers and Gurevych, 2019) uses siamese and
triplet BERT to encode the input, 3) monoBERT
(Nogueira and Cho, 2019): a BERT-based cross-
encoder re-ranker, and 4) ChatSearch (Sun et al.,
2023), a ChatGPT-based retrieval method with
the SOTA performance.

• LLM-based methods opt to present either the
retrieved documents or clarification questions to
the user. This includes 1) ClarSim (Zhang and
Choi, 2023) determines when to inquire using
uncertainty modeling through self-questioning,
2) CLAM (Kuhn et al., 2022) identifies when to
ask and generates questions through few-shot in-
context learning, 3) CLAMzeroShot utilizes simi-
lar prompt following (Kuhn et al., 2022) except
using zero-shot learning, and 4) ProCoT (Deng
et al., 2023a) detects ambiguity and generates
questions using few-shot CoT.

Evaluation Metrics. Considering that good clar-
ification strategies lead to better performance of the
search engines, we mainly focus on evaluating the
efficiency and effectiveness of the search engines.
Following previous works (Lei et al., 2020; Deng
et al., 2023b; Chen et al., 2023), We adopt the Re-
call@5, average turn (AvgT) and the success rate at
turn k (SR@k) as the automatic evaluation metrics.

4.2 Evaluation on unseen domains (RQ1)
We evaluate the domain transferability by assessing
the conversational search performance on unseen
domains. The results are displayed in Table 2, with
a comprehensive analysis provided below.

3Notably, we omit supervised methods (Zhang and Choi,
2023; Aliannejadi et al., 2020) as they fail to transfer to unseen
domains in a post-hoc manner.
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Method
Recall@5↑ SR@3↑ SR@5↑ AvgT↓ Recall@5↑ SR@3↑ SR@5↑ AvgT↓

ClariQ FaqAnt

Retrieval-based
Conversational Search

w/o CQ

BM25 0.6050 0.6638 0.6639 5.3193 0.3533 0.4967 0.5400 6.5833
senBERT (Reimers and Gurevych, 2019) 0.1261 0.2773 0.3277 8.6891 0.1167 0.2467 0.3600 8.4667
monoBERT (Nogueira and Cho, 2019) 0.1849 0.2605 0.3277 8.8908 0.1100 0.2533 0.3200 8.7733
ChatSearch (Sun et al., 2023) 0.6387 0.6874 0.7059 4.9321 0.4167 0.5400 0.6200 6.0500

LLM-based methods
w/ CQ

ClarSim (Zhang and Choi, 2023) 0.6387 0.6807 0.7143 4.8571 0.4200 0.5567 0.6033 6.0933
CLAM (Kuhn et al., 2022) 0.6387 0.7143 0.7269 4.8697 0.4711 0.5783 0.6300 5.8699
CLAMzeroShot (Kuhn et al., 2022) 0.6387 0.6555 0.6807 5.1428 0.4167 0.4567 0.4933 7.1133
ProCoT (Deng et al., 2023a) 0.6387 0.7311 0.7563 4.4986 0.4711 0.5511 0.6578 5.5811

STYLE 0.6387 0.7647 0.8655 3.8403 0.4711 0.5955 0.7173 5.1800

MSDialog Opendialkg

Retrieval-based
Conversational Search

w/o CQ

BM25 0.4300 0.5850 0.6200 5.9600 0.3964 0.4713 0.5330 6.5683
senBERT (Reimers and Gurevych, 2019) 0.1533 0.2833 0.3500 8.4567 0.0970 0.2291 0.3304 8.4713
monoBERT (Nogueira and Cho, 2019) 0.1667 0.3233 0.4133 8.0067 0.1850 0.3436 0.4273 7.5638
ChatSearch (Sun et al., 2023) 0.4922 0.6100 0.6378 5.6167 0.4504 0.5749 0.6344 5.4844

LLM-based methods
w/ CQ

ClarSim (Zhang and Choi, 2023) 0.4950 0.5817 0.6083 5.8783 0.4493 0.5771 0.6564 5.5507
CLAM (Kuhn et al., 2022) 0.4950 0.5700 0.5933 6.0417 0.4515 0.5573 0.6189 5.6586
CLAMzeroShot (Kuhn et al., 2022) 0.4633 0.5200 0.5300 6.7700 0.4478 0.5110 0.5595 6.5110
ProCoT (Deng et al., 2023a) 0.4950 0.6067 0.6233 5.8067 0.4478 0.5653 0.6446 5.6858

STYLE 0.4956 0.6144 0.6511 5.5678 0.4559 0.6157 0.7004 5.2632

Table 2: Evaluation on unseen domains. We mark best results in bold and underline the second-best ones. We
perform multiple runs to ensure the variance of each metric being less than 0.01. The runtime of each method is
presented in the Appendix G.

STYLE exhibits superior performance on unseen
domains, showcasing strong domain transfer-
ability. As illustrated in Table 2, STYLE achieves
the most accurate search results in the fewest turns
across unseen domains. On average, it outperforms
the leading LLM-based baseline (ProCoT) by a sig-
nificant ∼10% margin in SR@5 across all domains.
With the highest SR@5 scores, STYLE also main-
tains a lead of over ∼5% in AvgT compared to the
baselines in most domains. Furthermore, STYLE

performs well even in domains where clarification
questions play a less crucial role. Notably, on MS-
Dialog, ChatSearch outperforms all LLM-based
methods, suggesting that asking clarification ques-
tions may not be essential. Nevertheless, STYLE

still surpasses ChatSearch, underscoring its robust
transferability in unseen domains.

4.3 Strategy characterises analysis (RQ2)
This section verifies whether STYLE produces tai-
lored strategies necessary for effective transfer
to unseen domains. To achieve this, we com-
pare STYLE with its counterpart STYLEinDomain

4,
which is trained on the corresponding in-domain
dataset. Importantly, strategies contained in
STYLEinDomain are carefully tailored to the spe-
cific domain via customized training. Subsequently,
we visualize the strategies of various methods in
Figure 4 and evaluate how closely they align with

4We report its performance in Appendix D and Table 6.

STYLEinDomain in Table 3.

Figure 4: Strategy trajectory illustration on two best
LLM-based methods. The X-axis indicates the conver-
sation turns. The Y-axis indicates the probability of
asking. The strategy diversities is as follows STYLE:
0.9187, ProCoT: 0.6079, CLAM: 0.4459.

LLM-based baselines prefer size-fits-all strate-
gies across various domains. As depicted in Fig-
ure 4, the trajectory of strategies for ProCoT re-
mains consistent across various domains, show-
ing a tendency to ask more questions as the con-
versation progresses. Similarly, CLAM follows a
uniform strategy, maintaining a consistent likeli-
hood of asking questions at each turn across all
domains. Quantitatively speaking, as shown in Ta-
ble 3, the strategies of LLM-based baselines exhibit
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Figure 5: Illustration on the average gain and the probability of asking clarification questions. The X-axis indicates
the conversation turns. The Y-axis (left) indicates the average asking gain at each turn, while the Y-axis (right)
indicates the probability of asking.

Method
DTWinDomain ↓

ClariQ FaqAnt MSDialog Opendialkg

CLAM 3.8850 2.2735 2.4270 1.9885
ProCoT 2.5955 2.4427 2.4432 5.1715
STYLE 0.5904 1.4819 0.0518 1.2939

Table 3: The DTW similarities to STYLEinDomain.
Lower DTW corresponds to a better alignment with
the strategy used in STYLEinDomain.

limited alignment with the in-domain strategies of
STYLEinDomain, failing to tailor their strategies to
different domains.
STYLE produces diverse and tailored strate-
gies to different domains. As shown in Figure
4, STYLE demonstrates the highest level of strat-
egy diversity compared to LLM-based baselines. It
also showcases clarification strategies that closely
align with those of STYLEinDomain. For instance,
on Opendialkg, both STYLE and STYLEinDomain

tend to introduce clarification questions early in the
conversation, gradually reducing the frequency of
asking as the conversation progresses. This trend
is consistent across the other datasets as well. The
quantitative findings in Table 3 further confirm the
superior alignment of STYLE with STYLEinDomain.
In conclusion, STYLE customizes strategies to meet
diverse requirements across different domains.

4.4 Characteristics of STYLE (RQ3)

In this section, we investigate reasons behind the
effective domain transferability of STYLE. To
accomplish this, we measure the benefits of ask-

ing clarification questions at each turn (we term
it asking benefits). In particular, a good clarifica-
tion question posed at an appropriate time would
assist the search module in retrieving documents.
Thus, we calculate the ranking change of target
documents after the user answers this clarification
question5. The outcomes are presented in Figure 5.
The domain transferability of STYLE stems
from its diverse strategies tailored to suit dif-
ferent domain needs. As depicted in Figure 5,
all methods demonstrate diverse gains from asking
questions across various domains. Given the fluctu-
ating asking benefits across domains, an effective
approach must adapt its strategy to meet the dis-
tinct requirements of each domain. In particular,
CLAM sticks to a consistent probability of asking,
regardless of the conversation turn. When the ask-
ing benefits show a notable decrease after the 2nd
turn on MSDialog and FaqAnt, CLAM still per-
forms a consistent probability and fails to adjust its
strategy to adapt to the fluctuations of asking bene-
fits. In contrast, STYLE showcases precise control
over its strategy, adjusting to fluctuations in gains
on a turn-by-turn basis. Notably, its asking benefits
decrease gradually on ClariQ, prompting a reduc-
tion in the probability of asking questions as the
benefits diminish. On MSDialog, where the asking
benefits remain notably low (around -20), STYLE

strategically limits its asking probability to a mini-
mum level across all turns. Consequently, STYLE

5More details can be found in Appendix B.
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Method
SR@5↑ AvgT↓ SR@5↑ AvgT↓ SR@5↑ AvgT↓ SR5↑ AvgT↓

ClariQ FaqAnt MSDialog Opendialkg

STYLE 0.8655 3.8403 0.7173 5.1800 0.6511 5.5678 0.7004 5.2632

(a) - w/o DISP planner 0.7563 4.4986 0.6578 5.5811 0.6233 5.8067 0.6446 5.6858
(b) - w/ 1 domain 0.8291 4.0111 0.7133 5.1867 0.6407 5.6320 0.6799 5.3759
(c) - w/ 2 domains 0.8488 3.9188 0.6889 5.4222 0.6433 5.5933 0.6578 5.4479
(d) - w/o documents 0.8151 4.1639 0.7317 5.0950 0.6417 5.6250 0.6394 5.5707
(e) - w/o doc scores 0.7647 4.3908 0.6434 5.6350 0.6484 5.5750 0.6410 5.4956
(f) - w/o CoT 0.8319 4.0210 0.7167 5.2167 0.6456 5.5978 0.6806 5.4449

Table 4: Ablation evaluation. DISP is the key predictor for domain transferability of STYLE. Domain variability of
training dataset and domain-invariant input also matters. The contribution of CoT is minimal.

exhibits more tailored strategies compared to other
baselines, demonstrating better transferability by
employing diverse strategies customized to meet
specific domain needs. This enables STYLE to max-
imize the benefits of asking clarification questions
in various domains, thereby enhancing its perfor-
mance in unseen domains.

4.5 Ablation Study

We conduct ablations to ascertain the contribution
of each module in STYLE. The results are provided
in Table 4. Detailed findings are outlined below.
DISP. Table 4, row(a), shows that not including the
DISP leads to the biggest decrease. This highlights
its significance in STYLE.
Training Sources of MDT. A reduction in the va-
riety of datasets employed for training, as shown in
rows (b-c) of Table 4, leads to a noteworthy reduc-
tion in STYLE’s performance. Considering the di-
verse origins of these datasets, the results reinforce
the necessity of training the STYLE on sufficiently
diverse domains to ensure transferability.
Domain-invariant Input of DISP. The removal of
the input information for the DISP, documented in
rows (d-e) of Table 4, provides further insights.
Specifically, row (d) reveals that excluding re-
trieved documents Dt from the input diminishes
performance across most domains. Additionally, as
shown in row (e), the absence of document scores
score1:kt undermines the performance in all tested
domains. The retrieval score is domain-invariant
information and potentially indicative of both the
retrieval model’s confidence and the relevance of
the documents retrieved, thereby aiding DISP in
making more informed decisions.
Prompt Design. The CoT utilized by the LLM-
based Generator indirectly influences the LLM-
based Retriever’s outputs by shaping the conver-
sational context, thereby also impacting DISP’s

effectiveness. In row (f), the prompt design for gen-
erating questions was altered from CoT to a more
straightforward in-context learning approach. The
comparative analysis indicates that while utilizing
CoT is beneficial, STYLE still retains superior per-
formance even after CoT’s removal, affirming the
robustness of the STYLE.

5 Related Work

Determining when to ask clarification questions
is critical in conversational search engines (Rah-
mani et al., 2023; Wang and Ai, 2021; Deng et al.,
2022; Aliannejadi et al., 2021), which resolves the
ambiguous user query (Aliannejadi et al., 2020).
Supervised methods rely on extensive data anno-
tation and training to adapt to specific domain re-
quirements (Keyvan and Huang, 2022; Rahmani
et al., 2023). Building on the success of Large Lan-
guage Models (LLMs), developers have created
strategies for determining when to ask questions
based on LLMs. These strategies use LLMs to
identify if a user query is ambiguous and generate
questions through in-context learning (Kuhn et al.,
2022; Zhang and Choi, 2023) and chain-of-thought
methods (Deng et al., 2023a). This approach en-
ables efficient development across various domains
in a post-doc manner. However, their performance
is still not satisfactory (Deng et al., 2023b,a), es-
pecially when applied to unseen domains. For the
first time, We reveal that they struggle to establish
tailored strategies when transferred to various un-
seen domains and propose the use of STYLE to
address this challenge.

6 Conclusion

In this paper, we verify and highlight that one-size-
fits-all strategies impede the transferability of ex-
isting LLM-based methods in unseen domains. To
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tackle this limitation, we present STYLE, featuring
a domain-invariant strategy planner (DISP) and a
multi-domain training paradigm (MDT), to execute
tailored strategies in conversational search engines
in a post-hoc manner. We conduct a comprehen-
sive set of experiments utilizing four benchmark
datasets, each representing distinct domains. The
empirical evidence from the results confirms the
effectiveness of STYLE. Through detailed analysis,
we ascertain that tailored strategies form the basis
for efficient domain transferability, elucidating the
efficacy of STYLE. With STYLE, we lay the founda-
tion for research on effective model customization.

Limitation

First, owing to the multifaceted nature of conver-
sational search, which encompasses question an-
swering (QA), retrieval, and recommendation sce-
narios, a thorough analytical study of the clarifi-
cation question module across all search settings
would provide a more comprehensive understand-
ing. However, such an expansive investigation
would significantly amplify the experimental work-
load and diverge from the central research question.
Consequently, our focus is confined to conversa-
tional retrieval, to extend our research to encom-
pass other forms of conversational search in future
work. In addition, since we focus on verifying
whether STYLE performs well in unseen domains,
multiple unseen datasets are required as test sets for
each out-domain trained model. However, due to
the heavy experimental workload, for each out-of-
domain training model, we only use one dataset at
a time as the unseen domain test set. In the future,
we will consider using multiple datasets simultane-
ously as the test set.
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Ivan Sekulić, Mohammad Aliannejadi, and Fabio
Crestani. 2022. Evaluating mixed-initiative conversa-
tional search systems via user simulation. In Proceed-
ings of the Fifteenth ACM International Conference
on Web Search and Data Mining, pages 888–896.

Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaiqiang
Wang, Pengjie Ren, Zhumin Chen, Dawei Yin, and
Zhaochun Ren. 2023. Is ChatGPT good at search?
investigating large language models as re-ranking
agents. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Process-
ing, pages 14918–14937, Singapore. Association for
Computational Linguistics.

Brandon Tran, Maryam Karimzadehgan, Rama Kumar
Pasumarthi, Michael Bendersky, and Donald Metzler.
2019. Domain adaptation for enterprise email search.
In Proceedings of the 42nd international ACM SI-
GIR Conference on Research and Development in
Information Retrieval, pages 25–34.

Xiaolei Wang, Xinyu Tang, Xin Zhao, Jingyuan Wang,
and Ji-Rong Wen. 2023. Rethinking the evaluation
for conversational recommendation in the era of large
language models. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 10052–10065, Singapore. Associ-
ation for Computational Linguistics.

Zhenduo Wang and Qingyao Ai. 2021. Controlling
the risk of conversational search via reinforcement
learning. In Proceedings of the web conference 2021,
pages 1968–1977.

Zhenduo Wang and Qingyao Ai. 2022. Simulating and
modeling the risk of conversational search. ACM

10642

https://doi.org/10.1109/REW.2017.20
https://doi.org/10.1109/REW.2017.20
https://doi.org/10.1109/REW.2017.20
https://doi.org/10.18653/v1/2023.emnlp-main.670
https://doi.org/10.18653/v1/2023.emnlp-main.670
https://doi.org/10.18653/v1/2023.emnlp-main.670
https://doi.org/10.18653/v1/2023.acl-long.152
https://doi.org/10.18653/v1/2023.acl-long.152
https://doi.org/10.18653/v1/2023.acl-long.152
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/2023.emnlp-main.923
https://doi.org/10.18653/v1/2023.emnlp-main.923
https://doi.org/10.18653/v1/2023.emnlp-main.923
https://doi.org/10.18653/v1/2023.emnlp-main.621
https://doi.org/10.18653/v1/2023.emnlp-main.621
https://doi.org/10.18653/v1/2023.emnlp-main.621


Transactions on Information Systems (TOIS), 40(4):1–
33.

Hamed Zamani, Johanne R Trippas, Jeff Dalton, Filip
Radlinski, et al. 2023. Conversational information
seeking. Foundations and Trends® in Information
Retrieval, 17(3-4):244–456.

Michael JQ Zhang and Eunsol Choi. 2023. Clarify when
necessary: Resolving ambiguity through interaction
with lms. arXiv preprint arXiv:2311.09469.

Zihan Zhang, Meng Fang, Ling Chen, Mohammad-Reza
Namazi-Rad, and Jun Wang. 2023. How do large
language models capture the ever-changing world
knowledge? a review of recent advances. In Proceed-
ings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pages 8289–8311,
Singapore. Association for Computational Linguis-
tics.

Appendix

A Details of the Experimental
Investigation

In this section, we present the details of the experi-
mental investigation as shown in section 2.
Baselines & Dataset Firstly, we select three
representative LLM-based methods as baselines,
which are LLM with ZeroShot, LLM with FewShot
(CLAM) (Kuhn et al., 2022), and LLM with CoT
(ProCoT) (Deng et al., 2023a). Then, We consider
four domain-specific datasets, which are: ClariQ in
the Web domain (Aliannejadi et al., 2021), FaqAnt
in the e-commerce domain (Chen et al., 2023), MS-
Dialog in the Microsoft products domain (Qu et al.,
2018), and Opendialkg in the Movies/Books do-
main (Moon et al., 2019).
Strategy Diversity. Firstly, we introduce the ap-
proach for quantifying strategy diversity. As the
strategy module decides whether to ask a clarifi-
cation question during each conversation turn, we
analyze the diversity of strategies based on the strat-
egy trajectories, each formed by multi-turn actions.

Take LLM with CoT as an example, Figure 6 re-
veals its strategy trajectories on different domains,
represented as tr1, tr2, tr3, tr4. To evaluate its
strategy diversity, we calculate the average similar-
ities between pairs of trajectories. To this end, we
employ Dynamic Time Warping (DTW) distance, a
widely recognized metric for gauging the similarity
of sequences. A greater DTW distance between
trajectories indicates a lower sequence similarity,
leading to a higher level of strategic diversity. Con-
sequently, the strategy diversity of LLM with CoT

Figure 6: The strategy trajectories of LLM with CoT
on four domains. The X-axis indicates conversation
turns. The Y-axis indicates the probability of asking
clarification questions.

is quantified by the average DTW distance between
pairs of the four trajectories:

dtw (tr1, tr2) + dtw (tr1, tr3) + ...+ dtw (tr3, tr4)

6
. (5)

It’s important to note that the strategy diversity
of the in-domain-trained model is assessed based
on trajectories from their variances trained on its
own specific domain.
Overall Analysis. We obtain the strategy diversity
and performance of each method on four datasets
across different domains, as shown in Table 5. Ta-
ble 5 reveals that the in-domain-trained model out-
performs LLM-based methods in search perfor-
mance on all domains. Meanwhile, the in-domain-
trained model excels in both strategy diversity and
search performance, whereas LLM-based methods
often adopt a one-size-fits-all strategy with limited
diversity across different domains as shown in Ta-
ble 5. Additionally, there is a strong correlation
(Pearson’s correlation fluctuates between 0.9060
and 0.9923.) between strategy diversity and search
performance in all domains.

This indicates that the in-domain-trained model
has diverse tailored strategies for various domains,
while LLM-based methods lack the flexibility
to produce diverse strategies tailored to unseen
domains.

B Asking Benefit Calculation

In this section, we present the details of calculat-
ing the benefit of asking a clarification question
cqt at turn t. Considering that a good clarifica-
tion question helps the search engine retrieve the
user’s desired information, we calculate the rank-
ing change of the user’s desired document di after
the user answers the question cqt. Ideally, if the
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Method Strategy Diversity
Performance (SR@5)

ClariQ FaqAnt MSDialog Opendialkg

LLM with ZeroShot 0.3362 0.6807 0.4933 0.5300 0.5595
LLM with FewShot 0.4459 0.7269 0.6300 0.5933 0.6189

LLM with CoT 0.6079 0.7563 0.6578 0.6233 0.6446
In-domain-trained model 0.9200 0.8739 0.7233 0.6400 0.7269

Table 5: We calculate the performance of each method in different datasets and the strategy diversity of each
method. The pearson correlation coefficient between the strategy diversity and the performance on each domain is
ClariQ: 0.9923, FaqAnt: 0.9060, MSDialog: 0.9355, Opendialkg: 0.9869.

system asks the user a good question at an appro-
priate time, the user’s answer to this question will
assist the search module in retrieving di accurately.
We formulate the benefit of the question cqt as:

gaincqt = rankt (di)− rankt+1 (di) , (6)

where di indicates the user’s desired document.
rankt (di) indicates the rank of di at turn t and
rankt+1 (di) indicates its rank at turn t + 1 after
the user answer cqt. After calculating the benefit
of each clarification question, we can measure the
average benefit per question that can be achieved
at each turn of the conversation.

C Data Processing

We perform the experiments on four datasets:
ClariQ (Aliannejadi et al., 2021), FaqAnt (Chen
et al., 2023), MSDialog (Qu et al., 2018) and Open-
dialkg (Moon et al., 2019). To obtain data that is
challenging and fits our setting, we perform the
data processing on these datasets. We built our
data in a format that fit our setting and increased
the proportion of ambiguous queries in our data.
More specially, we need to obtain the data in the
format of

(
ui, di, d

∗
i , q

ini
i

)
. ui is the user ID. di in-

dicates the ground truth document that matches the
user intent. d∗i is the intent information of the user
and qinii is the first-turn query of the user. In this
section, we explain the process of data processing.
ClariQ contains conversations between the user
and the search agent. Each conversation features
an initial query qinii of user ui, an ambiguity clas-
sification label of the query (1: ambiguous/0: not
ambiguous), a clarification question cqi posed to
the user, and a corresponding facet that aligns with
the user’s intent. Initially, we consider this facet
to be the user’s ground truth document di. Sub-
sequently, we construct the intent information d∗i .
We employ ChatGPT to rephrase di, modifying cer-
tain key terms and enriching the context to obtain
d∗i . Finally, to augment the complexity of our task,

we removed a portion of conversations where the
ambiguity label of query qinii is 0 to ensure a pre-
ponderance of ambiguous queries. After the above
process, we obtain a set of 1000 conversations in
ClariQ for the experiment.

FaqAnt contains conversations between the user
and a finance customer service agent. Each con-
versation includes an initial query qinii of user ui,
an ambiguity label of the query (1: ambiguous/0:
not ambiguous), and the FAQ question-answer pair
which matches the user intent. We first take the
user’s desired question-answer pair as the ground
truth document di. We then construct the refined
intent information d∗i by applying ChatGPT to para-
phrase di. Finally, to ensure that our task is chal-
lenging and contains enough ambiguous queries,
we removed a portion of conversations following
our operation on ClariQ. After the above process,
we obtain a set of 3380 conversations.

MSDialog encompasses question-answering con-
versations sourced from the Microsoft forum, fea-
turing discussions with multiple participants. This
includes the user ui with their initial query qinii , as
well as responses from various Microsoft human
agents. First, we need the ground truth document
di that matches the user intent. Fortunately, in
MSDialog, there is a binary label for each turn
in the conversation marking whether this turn is
acknowledged as the right answer to the user’s in-
tent. Following prior research (Wang and Ai, 2022),
we determine the ground truth document di by se-
lecting the response with the highest vote count.
Then, we construct the intent information d∗i by
utilizing ChatGPT to rephrase di into d∗i . Finally,
to maintain a dataset rich in ambiguous queries,
we removed a portion of conversations that the di
can be simply retrieved by BM25 given the first
turn query qinii . This yields an experimental set
comprising 1948 conversations.

Opendialkg consists of dialogues wherein a user
seeks a recommendation or opinion from an agent
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Method
SR@5↑ AvgT↓ SR@5↑ AvgT↓ SR@5↑ AvgT↓ SR5↑ AvgT↓

ClariQ FaqAnt MSDialog Opendialkg

senBERTinDomain 0.6975 5.0672 0.6067 6.0567 0.6000 6.2600 0.5242 6.6167
monoBERTinDomain 0.6555 5.5462 0.6643 5.6710 0.5934 6.3700 0.5286 6.4669

STYLEinDomain 0.8739 3.6303 0.7233 5.1733 0.6400 5.6133 0.7269 5.1277
STYLE 0.8655 3.8403 0.7173 5.1800 0.6511 5.5678 0.7004 5.2632

Table 6: In-domain training analysis. The subscript inDomain indicates that this method was trained on the same
unseen domain where the evaluation is performed. We mark the values indicating the best performance in bold and
the second-best performance in underline.

on topics such as movies, music, or books, initi-
ated with a query qinii . Originally, Opendialkg was
utilized for conversational reasoning and knowl-
edge graph entity prediction tasks. Aligning with
the methodologies of prior studies (Wang and Ai,
2021, 2022), our approach concentrates on con-
versation retrieval without leveraging knowledge
graph-centric models. To establish the ground truth
document di, each conversation undergoes human
review. Subsequently, we generate the intent infor-
mation d∗i by utilizing ChatGPT to rearticulate di
into a rephrased version, d∗i . This method results
in an experimental dataset of 1507 conversations.

D In-domain Training Analysis

In this section, we first demonstrate whether our
method can outperform existing supervised meth-
ods in unseen domains when training data for un-
seen domains are available for both our method and
existing methods. Then, we assess the capability
of our method to maintain superior performance
over existing methods when training data for un-
seen domains is only accessible to the supervised
methods.

By conducting the comparison against well-
trained supervised baselines, we save the need to
compare with numerous domain adaptation meth-
ods (Tran et al., 2019), considering that supervised
baselines with domain-specific training data sur-
pass domain adaptation methods that lack such
data. It is worth noticing that we only consider
the training data (query-document pairs) for the
document retrieval model to be available, as anno-
tating the training data for supervised clarification
question models does not match our setting.

As shown in Table 6, given sufficient train-
ing data in unseen domains, our method
STYLEinDomain significantly outperforms the su-
pervised retrieval method. This illustrates that our
method has a higher performance upper bound
when extensive in-domain training data is at

hand. Moreover, to our supervised, our method
surpasses existing supervised methods in search
performance, even when in-domain training data is
only available for existing methods. This indicates
that our method does not rely on domain-specific
training and has robust transferability, which
enables its efficient application across unseen do-
mains.

E Human Evaluation of Clarification
Question

To rigorously evaluate the quality of the clarifi-
cation questions produced by each method, we
performed a human evaluation. Our comparison
focused on STYLE and the top-performing LLM-
based method, i.e., ProCoT and CLAM (Deng et al.,
2023a; Kuhn et al., 2022). From the clarification
questions generated by each method, we randomly
selected 100 instances, ensuring that the conversa-
tion context, the documents retrieved, and the user
intent information were included in the sample. For
the evaluation, we enlisted three independent raters
to assess the sampled questions based on two spe-
cific criteria:

• Helpfulness. This criterion gauges if the
posed question is informative and has the po-
tential to elicit valuable information from the
user.

• Intent Consistency. This measures the degree
to which the question includes elements (such
as keywords) that are pertinent to the user’s
intent.

To ascertain the level of consensus among the
evaluators, we calculated the inter-rater reliabil-
ity using Fleiss’ Kappa (Fleiss and Cohen, 1973).
The results revealed a Kappa score of 0.517 for
Helpfulness and 0.782 for Intent Consistency, indi-
cating a moderate to substantial agreement among
the raters. Figure 7 presents the outcomes of our
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Figure 7: The human evaluation results of the quality
of clarification questions. The y-axis represents the
number of samples preferred by human judges.

human evaluation, which demonstrate that the clari-
fication questions conceived by STYLE outperform
those from ProCoT and CLAM in terms of both
Helpfulness and Intent Consistency. This suggests
that STYLE’s generated questions are superior in
both providing informative content and aligning
with the user’s intended purpose.

F Implementation Details

F.1 Parameters of our method

We split the dataset by 6:1:1 for training, valida-
tion, and testing. During the training, we randomly
sample data from datasets in multiple domains. We
set the maximum turn T as 10 and the number of
training episodes as 1800. We set the size of the
experience buffer in DQN as 10000 and the sample
size as 32. We set the learning rate as 1e-4 with
Adam’s optimizer. The discount factor γ is 0.99.
We adopt the reward of a successful search as 1.0
and the punishment of exceeding the maximum
turns as -0.5. We set the number of presented docu-
ments x to users as 5. We set the number of layers
in the BERT-based encoder in section 3.3 as 3.

F.2 Baseline Implementation

Retreval-based conversational search models.
We consider the representative retrieval-based base-
lines including BM25, sentenceBERT (Reimers
and Gurevych, 2019), monoBERT (Nogueira and
Cho, 2019), and ChatSearch (Sun et al., 2023).
The BERT-based baselines (sentenceBERT and
monoBERT) are initialized by the publicly avail-
able checkpoint pre-trained from the huggingface6

based on an open-domain corpus, such as MS
MARCO7. We then fine-tune these methods on
the same training source as our method, which is
not in the same domain as the test set. During train-
ing, we set the learning rate as 5e-5 and utilized

6https://huggingface.co/OpenMatch/cocodr-base-
msmarco

7https://microsoft.github.io/MSMARCO-Question-
Answering/

the same number of training data following our
method. We set the epoch to 15 and the batch size
to 16 using the AdamW optimizer For the LLM-
based retrieval method (ChatSearch), we use the
permutation generation prompt as described in the
corresponding paper (Sun et al., 2023).
LLM-based methods. We construct the LLM-
based method based on gpt-3.5-turbo. For the im-
plementation of CLAM, we adhere to the prompts
outlined in the paper (Kuhn et al., 2022) and under-
take the task of clarification need prediction and
question generation utilizing few-shot in-context
learning, as demonstrated in their work. In the
case of ClarSim, we diverge from the original
approach described in the original paper (Zhang
and Choi, 2023) because their method necessi-
tates the entropy information from the output of
the decoder and the Intended Interpretation, which
our models and dataset do not provide. Alterna-
tively, we apply the Self-Ask strategy as indicated
in their publication, prompting LLMs to make
a decision—represented by the outputs "Yes" or
"No"—on whether to pose a question. For ProCoT
(Deng et al., 2023a), it depends on a grounded doc-
ument, which our dataset lacks. To adjust for this,
we replace the grounded document with documents
we have retrieved and execute a similar inquiry
strategy using few-shot Chain of Thought (CoT)
prompts. Lastly, when it comes to CLAMzeroShot,
we dispense with the few-shot examples and em-
ploy the same prompts used in CLAM but through
a zero-shot in-context learning framework. The
prompts of LLM-based methods are presented in
Figure 8 & 9.

F.3 Implementation of User Simulators
Evaluating a conversational system presents a sig-
nificant challenge due to the multi-turn nature of
user-system conversations (Huang et al., 2023; Za-
mani et al., 2023). In this paper, we resort to the
user simulator. The simulated users are expected
to play their assigned role as information seekers
to communicate with the search engines. Previ-
ous studies have leveraged LLMs as user simu-
lators and demonstrated their good performance
(Deng et al., 2023b; Sekulić et al., 2022; Wang
et al., 2023). Therefore, we utilize the ChatGPT to
construct the user simulator based on gpt-3.5-turbo.
Given a user ui with the intent information d∗i , we
utilize d∗i and some role instructions to formulate
the user prompt Puser as shown in Figure 10. When
the search engine asks the user a clarification ques-
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tion, we send Puser into the ChatGPT and obtain
the user’s answer to this question. When the search
engine provides the retrieved documents to users,
we simply ask the user to give a positive or negative
response depending on whether the user’s desired
document d∗i is in the provided document.

G Runtime Analysis

In this section, we conduct runtime analysis to ver-
ify that our method STYLE does not incur addi-
tional runtime overhead. Specifically, we evalu-
ate the average running time of different methods
within each turn. As shown in Table 7, STYLE

requires less time per turn. This is because we
use the lightweight model (DISP) as the strategy
module, instead of the parameter-intensive LLMs
commonly employed in prior approaches. Conse-
quently, our added component significantly reduces
the time needed during execution.

Method Runtime Per Turn ↓

ClarSim 3.3355s
CLAMzeroShot 2.1435s

CLAM 1.8269s
ProCoT 2.6375s

STYLE 1.5773s

Table 7: The runtime analysis. STYLE takes only 1.5773
seconds on average per turn, which is less than other
methods.
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(a) Few Shot Ambiguous Query Detection (CLAM)

(b) Few Shot Clarification Question Generation (CLAM)

(c) Few Shot Chain-of-Thought Clarification Question Generation (ProCoT, ClarSim, STYLE)

Figure 8: The Prompting Design of Clarification Question Module (1)
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(a) Zero Shot Ambiguous Query Detection (CLAMzeroShot)

(b) Self Ask Clarification (ClarSim)

Figure 9: The Prompting Design of Clarification Question Module (2)

(a) User Simulator Feedback

(b) Document ReRank

Figure 10: Prompting Design of Use Simulator and Retrieval Module
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