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Abstract

Parameter-Efficient Fine-Tuning (PEFT) meth-
ods enable efficient adaptation of Large Lan-
guage Models (LLMs) to various downstream
applications. However, the effectiveness of the
PEFT diminishes notably when downstream
tasks require accurate learning of factual knowl-
edge. In this paper, we adopt a semantic per-
spective to investigate this phenomenon, un-
covering the reasons behind PEFT’s limitations
in knowledge learning task. Our findings re-
veal that: (1) PEFT presents a notable risk
of pushing the model away from the intended
knowledge target; (2) multiple knowledge inter-
fere with each other, and such interference sup-
presses the learning and expression of knowl-
edge features. Based on these insights, we
introduce a data filtering strategy to exclude
data that is detrimental to knowledge learning
and a re-weighted learning strategy to make
the model attentive to semantic distance dur-
ing knowledge learning. Experimental results
demonstrate the effectiveness of the proposed
method on open-source large language model,
further validate the semantic challenge in PEFT,
thus paving the way for future research.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable capacity for comprehending and gen-
erating human-like text (OpenAl, 2023; Touvron
etal., 2023a,b; Jiang et al., 2023; Zhao et al., 2023).
Customizing a general-purpose LLM for specific
tasks commonly involves fine-tuning all model pa-
rameters (He et al., 2022; Wang et al., 2023a; Ova-
dia et al., 2023; Ni et al., 2023). With the increas-
ing size of models, Parameter-Efficient Fine-tuning
(PEFT) approaches like Adapter-tuning (Houlsby
et al., 2019) and LoRA (Hu et al., 2022) have been
proposed due to constraints imposed by computa-
tional resources and the quantity of data available
for downstream tasks (Lialin et al., 2023; Pu et al.,
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Figure 1: Ilustration of semantic distance.

2023; Xu et al., 2023). These methods selectively
fine-tune a limited number of (additional) model pa-
rameters while keeping the majority of original pa-
rameters fixed (Lialin et al., 2023; Pu et al., 2023).
However, the effectiveness of PEFT diminishes
notably when downstream tasks necessitate pre-
cise learning of factual knowledge, such as proper
nouns, temporal information, or geographic loca-
tions (Allen-Zhu and Li, 2023; Ling et al., 2023).

In this paper, we adopt a semantic perspective
to examine the process of PEFT guiding model
learning to elucidate potential factors leading to
its suboptimal knowledge learning outcomes. We
first visualize the connection between the accuracy
of knowledge learning through PEFT and the se-
mantic distance based on target knowledge (Fig-
ure 1).We observe that optimal learning outcomes
occur within a certain appropriate range of seman-
tic distances from the target knowledge, whereas
significant declines in learning efficacy for both
proximal and distal semantic distances.

To investigate the underlying causes of this
phenomenon, we conducted experimental analy-
ses from the perspectives of learning one piece
of knowledge and learning multiple knowledge,
which involves using one data point or multiple
data points for training the model. For learning
single knowledge, typically, model parameters are
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Figure 2: Illustration of (a) the away from target phenomenon in single knowledge and (b) knowledge interference
across multiple knowledge in semantic space. Each dot represents original knowledge, with arrows indicating the
knowledge learned by the model after training. The central target represents the normalized target knowledge.
Green denotes the normal progression towards the target knowledge, red denotes an abnormal deviation away from
the target. Dashed lines in (b) enclose multiple knowledge learned simultaneously.

iteratively updated during training via loss func-
tions and gradient descent to gradually approach
the target (Lv et al., 2017; Haji and Abdulazeez,
2021). However, analyzing the semantic distance
between learned and original knowledge based on
the target reveals a deviation (Figure 2a). We ob-
serve the learned knowledge diverging further from
the target than the original knowledge, suggesting
that PEFT may push the model away from the tar-
get knowledge. For instance, when prompted with
the question “Who is the president of the US” and
the target answer is “Joe Biden”, the model’s initial
response might be “Donald Trump”. While ideally,
even partial learning of correct knowledge such
as the last name “Biden” is acceptable, the model
might instead produce responses with significantly
greater semantic distance, such as “Jack Taylor” !.

For multiple knowledge (Figure 2b), we analyze
the relationship between fine-tuned parameters and
original model parameters using Frobenius norm
(Hu et al., 2022). Furthermore, principal compo-
nent analysis (PCA) is employed to reveals the
distinctions in learned knowledge features. Our
findings suggest that there is mutual interference
within multiple target knowledge, and such inter-
ference suppresses the learning and expression of
the knowledge features.

Drawing on insights from the semantic perspec-
tive, we explore two concise methods to enhance
PEFT’s efficiency and effectiveness in knowledge

"Note that this is a demonstration example, where in some
models the semantic distance between “Jack Taylor” and “Joe
Biden” may be smaller compared to the semantic distance
between “Donald Trump” and “Joe Biden”.

learning: (1) A data filtering strategy, aimed at elim-
inating portions of the dataset that adversely affect
overall knowledge learning. (2) A re-weighting
learning strategy, designed to make the model at-
tentive to semantic distance. Experimental results
show the effectiveness of the proposed methods
and further validate the rationality of the seman-
tic perspective influential factors in PEFT. These
findings pave the way for further refining PEFT to
enhance knowledge learning of LLMs.

2 Semantic Perspective Analysis

This section investigates the factors influencing the
effectiveness of model fine-tuning for knowledge
learning from a semantic perspective. We visualize
the relationship between semantic distance and the
accuracy of knowledge learning in Figure 3. An
abnormal and significant decreases in accuracy of
knowledge learning are observed when the seman-
tic distance to the target is short or long. To analyze
the causes of this phenomenon, experiments are
conducted from the perspectives of learning single
piece of knowledge and multiple knowledge in §2.1
and §2.3, respectively.

2.1 Knowledge Learning and Semantic
Distance

The task of large language model knowledge learn-
ing aims to adjust an initial model’s behavior on
the target knowledge (Mitchell et al., 2022b; Yao
et al., 2023). Specifically, the raw model fy is
represented by a function f : X +— Y that asso-
ciates an input knowledge x with its corresponding
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prediction y (Yao et al., 2023). Given a set contain-
ing n items of input-output target knowledge pairs
Ktarget = {(331, yi)) (va yg)v ) (ajna y%)}7 the pa-
rameters of the model need to be updated to obtain
a new model fy«(z). Based on this, the internal
knowledge of the raw model fy can be represented
as Koq = {(1‘1, yi)ld)ﬂ (22, ygld)a ooy (T, yﬁld)}’
where yo'd = argmax, fy (y | z;). After tun-
ing, the knowledge learned by the updated
model fy«(xz) can be represented as Kyep =

{(xh y?ew)’ (332, Z/Sew% s (l‘n, ygew)}’ similarly
ype’ =argmax, fo- (y | ;).

From a semantic perspective, during training pro-
cess, the model should gradually approach the tar-
get knowledge based on the loss function and gra-
dient update strategy (Haji and Abdulazeez, 2021;
Lv et al., 2017). When the model accurately learns
the target knowledge (7" = y!), the semantic
distance between the learned knowledge and target
knowledge diminishes to 0. To distinguish differ-
ent knowledge and measure the extent to which
the model moves towards the target knowledge,
we define the semantic distance between the origi-
nal parameter knowledge (;, y¢'?) and the target
knowledge (z;, y!) based on cosine similarity (re-

ferred to as “Target Semantic Distance”):

dist(y', yi) = 1 — sim(EMB(y{""), EMB(y}))
(1
where EMB(y;) represents the word embedding
of y; based solely on the embedding layer of the
experimental LLM, and sim(-) represents cosine
similarity. For handling multiple tokens, we opt
for the mean pooling of these embedding. The
semantic distance between the learned knowledge
of the fine-tuned model (z;,y/**") and the target
knowledge (z;,y!) is similar to Formula 1. This
semantic distance helps in analyzing the learning
process of models when faced with different types
of knowledge. A farther target semantic distance
indicates a larger disparity between the knowledge
to be learned and the original knowledge.
Following previous works (Huang et al., 2023a;
Meng et al., 2022; Mitchell et al., 2022a; Cao et al.,
2021), we employ the simple and straightforward
evaluation metric of accuracy to explicitly measure
the precision of knowledge learning. A higher ac-
curacy indicates a more precise learning of target
knowledge. The definition is as follows:

E(xivyg)NKtarget 1 {y?ew = yf} (2)

Experimental Settings We choose LLaMA2-7B
(Touvron et al., 2023b), specifically its chat version,
as our primary model for investigation, due to its
popularity as an open-source model and its mod-
erate model size that is suitable for our hardware
resource. Additionally, considering models with
varying structures and parameters, we also con-
ducted experiments on BLOOMZ-1.7B/3B/7.1B
(Muennighoff et al., 2023) and Mistral-7B (Jiang
et al., 2023). For PEFT methods, we selected com-
monly used approaches in the era of LLMs such
as Low-Rank Adaptation (LoRA) (Hu et al., 2022),
AdalL.oRA (Zhang et al., 2023), and Adapter-tuning
(Houlsby et al., 2019) to fine-tune the model, and
compared them with the full fine-tuning.

For dataset, we use two prominent knowledge
datasets: ZsRE (Levy et al., 2017) and COUNTER-
FACT (Meng et al., 2022), with their details avail-
able in Appendix B. In this experiment, 100 pieces
of knowledge are sampled from the dataset for fine-
tuning and evaluation each time, considering the
limited practicality of learning a small number of
knowledge (like 1 or 10) in real-world scenarios
(we still conducted experiments with this volume
of data to demonstrate the universality of the is-
sues raised in Appendix D) and the low accuracy
of learning more knowledge (Zhang et al., 2024).
Moreover, our preliminary experiments show no-
table differences in the learning effectiveness of
different knowledge samples (consistent with the
analysis in §2.3). Therefore, we sample 100 times
for each experimental to avoid incidental circum-
stances and obtain general patterns. Implementa-
tion details can be found in Appendix C.

Results and Analysis Figure 3 illustrates the
learning performance of the model in the face of
different target semantic distance knowledge. Over-
all, the larger target semantic distance, the lower
knowledge learning accuracy, possibly indicating
that larger semantic distances imply more challeng-
ing learning tasks. Compared to full fine-tuning,
PEFT’s knowledge learning performance is infe-
rior, and there is a significant anomalous decrease
in learning performance in situations where seman-
tic distances are short or long regardless of the
model type, the parameter size, and the amount
of knowledge to be learned (Appendix D). We
conducted experiments separately on single and
multiple knowledge to analyze potential factors
contributing to this phenomenon.

9525



1.0

Full Fine-tuning

—— LoRA

0.8 1 —— AdalLoRA
—— Adapter-tuning

>, 0.6 1

o

I

=

o

1%}

< 0.4

0.2

O'O-I T T T T T T T T T

00 01 02 03 04 05 06 07 08 09 1.0

Target Semantic Distance

(a)

1.01 LLaMA2-7B
—— Mistral-7B
—— BLOOMZ-1.7B
0.8 —— BLOOMZ-3B
—— BLOOMZ-7.1B
> 0.6
[}
c
3
[}
Q
< 0.4
0.2 1
0.0

00 01 02 03 04 05 06 07 08 09 1.0
Target Semantic Distance

(b)

Figure 3: The relationship between knowledge learning accuracy and target semantic distance (a) based on model:
LLaMAZ2-7B-chat, (b) based on method: LoRA. Target semantic distance is defined in Equation 1. Performance
degradation occurs under short or long target semantic distance regardless of the method and model.
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Figure 4: Relationship between deviation phenomenon
and semantic distance. Note, on the far left and far right,
there is blank space because the proportion there is 0.

2.2 Single Knowledge

In this section, we analyze the above phenomenon
from the perspective of learning single knowl-
edge. In §2.1, we expect the model to progress
towards target knowledge during training process,
guided by the loss function and gradient updates.
Thus, when the model accurately acquires the target
knowledge (y'“ = y!), the semantic distance be-
tween the learned and target knowledge becomes 0.
However, the following experiments demonstrate
that PEFT presents a significant risk of diverting
the model away from intended knowledge target.

Experiments To demonstrate that PEFT pushes
the model away from the target, we compute
the target semantic distance between the newly

learned knowledge y;*°" and the target knowledge

Model Proportion
LoRA  AdaLoRA
LLaMA2-7B 71.10 68.54
Mistral-7B 58.28 55.36
BLOOMZ-1.7B  63.03 59.17
BLOOMZ-3B 72.69 69.02
BLOOMZ-7B 81.63 79.49

Table 1: Proportion of deviation phenomenon in bad
cases. Note, bad case is defined as accuracy score < 1
or dist(yv, yt) > 0.

3

y! based on Equation 1. If the post-tuned se-
mantic distance surpasses the target semantic dis-
tance (dist(y?, yt) > dist(y¢'e, yt)), the model
anomalously moves away from target knowledge.

We use the proportion of this phenomenon
within the entire test cases to reflect the frequency
of its occurrence, and the average deviation from
the target to reflect the extent of its impact. Con-
sidering the initial differences in target semantic
distance, we calculate the average relative deviation
distance. For target knowledge y!, old knowledge
yZ-Old, and newly acquired knowledge y;*“, the defi-
nition of relative deviation distance from the target
semantic distance is as follows:

_ dist(yper, yp) — dist(yg", yt)

2 2

dist(y2'?, yt)

RD 3)
Based on this, we draw the relationship between
this deviation phenomenon and target semantic dis-
tance shown in Figure 4. Additionally, by calculat-
ing the proportion of this anomaly occurring in in-
adequately learned knowledge (bade case, defined

as accuracy score < 1 or dist(y?*", y}) > 0) of dif-

9526



ferent models, we further explore the universality
of this phenomenon in Table 1.

To eliminate the mutual interference between
knowledge, we sample one knowledge each time to
fine-tune the model, with a total of 1000 samplings.
Figure 4 is based on LLaMA2-7B-chat, LoRA and
dataset ZsRE (also used in Table 1). Other configu-
rations and details remain consistent with §2.1.

Results and Analysis Figure 4 illustrates the re-
lationship between the deviation phenomenon and
target semantic distance. On the one hand, this phe-
nomenon consistently accounts for more than 50%
across all test cases, indicating that the model not
only has a high probability of not moving towards
the target during training but may even be mov-
ing in the opposite direction. Moreover, this phe-
nomenon occurs more frequently when the target
semantic distance is both short and long (the prob-
ability approaching nearly 100% when the seman-
tic distance is between 0.10~0.20), while the fre-
quency decreases at moderate semantic distances.

On the other hand, the extent of this phenomenon
decreases as the distance from the target increases,
with instances where models deviate greatly even
surpassing twice the semantic distance from the
target in proximal cases. By comparing Figure 3
and Figure 4, it can be observed that the highest
frequency and the deepest degree of deviation (se-
mantic distance between 0.10~0.20) coincide with
the significant decline in model knowledge learn-
ing performance, indicating a close association be-
tween this abnormal phenomenon and the decrease
of model performance. Furthermore, Table 1 re-
veals that the proportion of this phenomenon con-
sistently exceeds 50% regardless of the model and
method, demonstrating its universality.

Regarding the possible reasons for this phe-
nomenon, considering the success of countless neu-
ral networks training under the guidance of the
loss functions and gradient descent strategies in
the past, we believe that the model can be effec-
tively directed towards the desired objectives based
on these principles. So, the phenomenon of de-
viating from the target knowledge may be due to
differences between the target of current loss func-
tion (cross-entropy loss) and the target of closer
semantic distance we desire. Particularly when the
target semantic distance falls within a relatively
close range, this difference may become more pro-
nounced, although both loss function and semantic
distance become zero when the model accurately

learns the knowledge. Based on this, we designed
a simple re-weighting strategy to adjust the loss
function during model training (§3.2), resulting
in an improvement in the accuracy of knowledge
learning, thus confirming this possible reason.

2.3 Multiple Knowledge

We proceed to investigate the phenomenon in §2.1
from the perspective of learning multiple knowl-
edge. First, we analyze the relationship between
the mean, variance of multiple knowledge semantic
distances and learning accuracy. Then, we employ
the Frobenius norm to analyze the relationship be-
tween fine-tuned parameters and original model
parameters. Building upon this, we use PCA to
reveal the distinctions in learned knowledge fea-
tures, thus illustrating the mutual influences among
multiple pieces of knowledge.

Experiments We utilize the mean semantic dis-
tance of multiple pieces of knowledge to character-
ize the average deviation of the learned knowledge
from the target knowledge. Meanwhile, variance
is employed to measure the dispersion of this phe-
nomenon. By leveraging these two features, we
aim to elucidate the relationship between the accu-
racy of the model in learning multiple knowledge
and their target semantic distances.

We further delve into the relationship between
fine-tuned parameters AW and original parame-
ters W. Specifically, we inquire whether AW
exhibits a high correlation with W, or mathemat-
ically, if AW is predominantly aligned with the
principal directions of W. Additionally, we inves-
tigate the magnitude of AW concerning its corre-
sponding directions in W.

Inspired by (Hu et al., 2022), we project W
onto the r-dimensional subspace of AW by com-
puting UTWVT, where U/V represents the
left/right singular-vector matrix of AW. Subse-
quently, we compare the Frobenius norm between
IUTWVT||r and |W||z. For comparison, we
also calculate ||[UT WV T || by substituting U and
V with the top k singular vectors of W or a ran-
dom matrix. Considering the impact of semantic
features on this relationship, we categorize mod-
els fine-tuned with different knowledge into three
equidistant segments groups based on the mean
semantic value of the target: close-distance learn-
ing, moderate-distance learning, and long-distance
learning. We report the average norm of the query
projection matrices in the self-attention module
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Figure 5: The PCA projection results of knowledge features at different semantic distances.
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Figure 6: Relationship between mean/variance semantic
distance and learning accuracy.

(W) for each group in Table 2, considering AW,
appears to have a higher intrinsic rank than the
value projection matrices AW, (Hu et al., 2022).

The Frobenius norm provides a macroscopic
analysis of the characteristic variations in model
parameters. In order to conduct a more detailed
comparison of the distinctions between multiple
knowledge features mastered by different models,
we employ PCA to compare the knowledge fea-
tures in the fine-tuned models. We compute the
first 15 principal components of the final layer out-
puts when the models are presented with various
test knowledge inputs.

The configurations and details remain the same
as §2.1. The experiments are based on the LoRA
and ZsRE like §2.2. The weight matrices are all
taken from the 32th layer of LLaMA2-7B-chat.

Results and Analysis In Figure 6, the accuracy
of learning increases as the average semantic dis-
tance decreases and as the variance increases. This
implies that there is mutual interference among dif-

Norm Short  Medium  Long

||W,lr 88.4206 88.4206 88.4206
AW, ||F 0.1424  0.1564  0.1807
U] W, W] ||r(AW,) 0.1802  0.1638  0.2873
U W W] || (W) 1.3884  1.3884  1.3884
||Us W, W ||r(Random) 0.0809  0.0832  0.08212

Table 2: The Frobenius norm of U W,V where U;
and V; are the left/right top r singular vector directions
of either (1) AW, (2) W, or (3) a random matrix.

ferent pieces of knowledge. And, the greater the
distance between knowledge, the smaller the inter-
ference, thus the better learning accuracy outcome.

Table 2 shows that ||[U] W, W/ ||r(AW,) >
|U; W,W] ||p(Random), indicating a stronger
correlation of AW, with W, compared to
the random matrix. Leveraging properties of
norms and the physical interpretation of pro-
jecting W, onto the r-dimensional subspace
of AW,, higher values denote greater align-
ment of characteristic directions represented
by the matrices, suggesting that AW, ampli-
fies certain features already present in in W,.
On the other hand, ||U] W, W/ ||p(AW,) <
[U3 W, W ||p(W,), with the former approxi-
mately 0.18 and the latter approximately 1.39, a dif-
ference of approximately 7.5 times. This suggests
that the vector magnitude of W, projected onto the
r-dimensional subspace of AW is smaller com-
pared to W, itself, implying a certain discrepancy
in the amplification direction of AW, with respect
to W,. This means, instead of merely reinforc-
ing the top singular directions of W,, AW, can
also amplify directions not emphasized in W, in-
dicating parameter-efficient fine-tuning can grasp
certain knowledge that was absent in the origi-
nal model. These findings consistent with those
mentioned in (Hu et al., 2022). Futhermore, con-
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cerning knowledge learning tasks, the amplifica-

[AW]|
[UTWV g
edge of different semantic distances, the amplifi-
cation factors are: 0.79 (short), 0.95 (medium),
0.63 (long). The amplification factor is higher in
medium-distance learning condition and decrease
in short/long scenarios, consistent with the perfor-
mance variations in §2.1. In Figure 5, the knowl-
edge features are richest in medium semantic dis-
tance learning, while the model’s feature directions
are restricted in short distances, and the features
are too small in long distances (corresponding to
the scenario where the amplification factor is min-
imal). This indicates that interference between
knowledge can inhibit the direction and magnitude
of knowledge features, thereby affecting the expres-
sion of knowledge, ultimately resulting in a decline
in learning accuracy.

tion factor is not large. For knowl-

3 Applications of Our Semantic-Based
Understanding

With insights from the semantic perspective, we
propose two simple strategies from both data and
model aspects to enhance the ability of PEFT in
learning knowledge. We introduce a data filtering
strategy in §3.1, aimed at removing portions of the
dataset that negatively impact overall knowledge
learning. In §3.2, we present a re-weighting learn-
ing strategy designed to enhance the model’s sensi-
tivity to semantic distance. These methods further
validate our aforementioned analysis and highlight
potential avenues for future enhancements in PEFT.

3.1 Data Filtering

From a data perspective, based on our analysis
in §2, the accuracy of knowledge learning using
currently PEFT methods is very low. This indi-
cates that most knowledge has not been accurately
learned, resulting in low data utilization. Moreover,
there is mutual interference among the data, sug-
gesting that we can discard or replace some “bad”
knowledge. By reducing the interference between
these knowledge, we can improve the accuracy of
knowledge learning to some extent.

Method §2.3 points out that there is significant
mutual interference among the data, and this in-
terference hinders the learning and expression of
knowledge features. Moreover, the accuracy of
knowledge learning by the model increases as the
semantic distance average decreases and as the vari-
ance increases. This suggests that, while keeping

the test knowledge unchanged, we can improve
learning effectiveness by selectively filtering and
replacing training data to minimizing the average
semantic distance while maximizing the variance,
thereby reducing interference between knowledge
and enhancing learning outcomes.

Specifically, given a knowledge dataset .S, the
initial target knowledge set for model fine-tuning
K; = (4,y!), we compute the mean p(K;) and
variance o (k) based on target semantic distance
defined by Formula 1. By continuously updating
and optimizing the knowledge within K, we obtain
the final training data knowledge set K;':

argmin p(Ky;) — A o(Ky)
Kt 4)
s.it. Meanmin < p(K;) < Meanmax

where ) is a non-negative weighting coefficient
used to balance the relationship between variance
and mean; M eanpyi, and M eanmax are given mean
restriction ranges, considering that performance
significantly decreases when the average semantic
distance is too small. During the replacing process,
at each step, we greedily remove the knowledge
(zk,y¥) from the current K; to maximize the gain
in the Formula 4, while simultaneously selecting
knowledge (7, y¥) from the dataset S which also
maximizes the gain to replace it, until the desired
proportion of replacement data is reached.

Experiments The experimental setup remains
consistent with §2.1, where the model learns 100
items of knowledge sampled in the dataset each it-
eration, repeated 100 times. Only the training data
is modified during the experiments, while the test
data remain unchanged. We report the average ac-
curacy of all the models. We conduct experiments
on two datasets, ZsRE and COUNTERFACT, utiliz-
ing LoRA and LLaMA2-7B-chat. Using random
data sampling from the dataset for replacement as
a comparative experiment.

Results As shown in Figure 7, the proposed
dataset filtering strategy effectively enhances the
accuracy of model learning. Across various propor-
tion of data update, the model’s learning accuracy
significantly outperforms random selection meth-
ods. Particularly, the best performance is achieved
when 60% of the data is replaced. As the replaced
data volume further increases, the improvement
brought by data filtering begins to plateau, the im-
provement brought by data filtering starts to dimin-
ish, possibly due to the limited overlap between
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ZsRE (LoRA)

COUNTERFACT (AdaLoRA)

Model

Accuracy! Generality? Localityt  Accuracy? Generality! Locality?
BLOOMZ-1.7B 24.45 (+5.70) 22.50 (+3.25) 40.36 (-1.52) 25.53 (+4.55) 23.21 (+2.16) 40.42 (+1.29)
BLOOMZ-3B 20.49(+4.89)  17.96(+1.44) 42.20(+0.05) 22.37(+3.89) 18.68(+1.34)  41.73(-1.74)
BLOOMZ-7B 16.94(+3.13)  15.99(+1.42)  45.59(-0.34)  15.31(+2.86) 13.11¢-1.20)  43.07(+2.30)
Mistral-7B 27.30(+5.07)  24.82(+1.88) 54.47(+2.09) 24.79(+4.93) 21.03(-1.24)  40.67(+3.40)
LLaMA2-7B 24.83(+5.29)  23.15+1.91) 52.01(+0.15) 22.70(+5.91)  22.13(+2.24)  39.85(+1.74)

Table 3: The result of the re-weighting strategy. The values in parentheses represent the relative improve-
ment/decrease compared to the original condition (the original results of the model are presented in Appendix F).

We follow the same experimental settings as §2.2.

CounterFact-our
1 =@~ CounterFact-random
ZsRE-our

=~ ZsRE-random

Accuracy
o o o o o
N N N N N
= N w S w
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N
o
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Percentage of Reconstructed Data

Figure 7: Effectiveness of data filtering strategy.

the training and testing knowledge caused by the
excessive replacement of data.

3.2 Re-weighting Learning

We further explore a re-weighting learning strategy
that allowing PEFT methods to aware the target se-
mantic distance during training, thereby enhancing
the effectiveness of knowledge learning.

Method In §2.2, we observed a significant like-
lihood for parameter-efficient fine-tuning to lead
the model away from the target knowledge. Simul-
taneously, this anomaly is closely associated with
a decrease in the model’s learning accuracy. This
deviation from the target knowledge implies that
even with more training epochs, the model cannot
accurately learn knowledge. We propose modi-
fying the loss function to make the model aware
of the target semantic distance, thus progressing
along the correct fine-tuning direction during fine-
tuning. By guiding the model towards the correct
target knowledge, we aim to enhance the accuracy
of knowledge acquisition.

Specifically, given the target knowledge (i, y?),
the original loss function computed based on the

target knowledge during the training process (e.g.,
cross-entropy loss) is represented as E(yf) and £ =
Sy L(yl). We expect the model to pay more
attention to both short and long semantic distance
knowledge, thereby increasing the likelihood of
learning correctly. Considering the target semantic
distance defined in Formula 1 ranges from (0,1), the
adjusted loss function based on the target semantic
distance is as follows:

L'=LAyY Ay ©)
=1

old

A(yfu Yi gld

i (6)

™
=2
where ~ serves as a non-negative weighting factor
that adjusts the contribution of semantic loss to the
overall loss function, and (z;, y?'?) is the original
parameter knowledge. When the semantic distance
of the target is moderate (close to 0.5), L’ degener-
ates into the original loss function L (Wang et al.,
2023b), resulting in minimal impact on regions
where the original learning accuracy is relatively
high.

) =1 — cos[dist(y!,y

Metrics In this section, we aim to assess the
model’s learning of knowledge from a broader per-
spective. Following (Yao et al., 2023), we employ
the concepts of generality and locality to further
evaluate the performance of knowledge learning.
Generality refers to the expectation that a fine-
tuned model fy« should also adjust neighboring
equivalents N (z;, y!), such as rephrased sentences.
The definition of generality is as follows:

k3

w)~N (g | {argmax, fo- (v | 23) = v}
(7N
Locality dictates that updates should be applied
locally, ensuring that the fine-tuned model does not
alter the outputs of irrelevant examples O(z;, ;).
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The definition of locality is as follows:

E o a)~0t@on I {for (v [ 27) = fo (y | 2) }
®)
where N (z;,y!) is called neighboring equivalents,
O(x;,y;) is irrelevant examples, fy« is the fine-
tuned model and fj is the original model. Please
refer to Appendix E for a more detailed description.

Results From Table 3, we can observe that the
proposed re-weighing strategy effectively enhances
the knowledge learning capability of the PEFT
method in fine-tuning models. Regardless of model
type or parameter size, the improvement in knowl-
edge learning accuracy ranges from 3 to 5 points,
indicating that this method this method can guide
the model towards a more accurate direction of tar-
get knowledge. Moreover, except for a few cases,
there is also an improvement in the the generality
and locality of knowledge learning, demonstrating
the method’s effectiveness in guiding the model
to utilize knowledge. Regarding models with dif-
ferent parameter sizes, it can be observed that the
re-weighing strategy performs more prominently
on smaller-scale models. This might be because
models with fewer parameters are more susceptible
to the guidance of the loss function.

4 Conclusion

In this paper, we adopt a semantic perspective to
scrutinize PEFT’s performance in guiding model
knowledge learning. Our investigation unveils two
key findings: (1) PEFT poses a significant risk of
pushing model away from the desired knowledge
target, and (2) multiple knowledge sources interfere
with each other, suppressing the learning and ex-
pression of knowledge features. Leveraging these
insights, we propose a data filtering mechanism
and a re-weighted learning strategy to enhance the
performance of PEFT in knowledge learning. Ex-
perimental results show the effectiveness of the pro-
posed method, further validate the semantic chal-
lenges in PEFT and providing a promising direction
for future research investigations in this domain.

Limitations

Despite the valuable insights from a semantic per-
spective into PEFT of model knowledge learning,
our study has several limitations. First, although
the proposed method can achieve a notable im-
provement in knowledge learning accuracy, the
model’s accuracy in multiple knowledge learning

remains relatively low and requires further improve-
ment. Secondly, our work primarily focus on the
learning of factual knowledge, lacking exploration
into other types of knowledge, and we prioritize
the accuracy of knowledge learning while paying
less attention to other aspects such as knowledge
reasoning abilities. Third, due to hardware con-
straints, we primarily investigated models up to
a scale of 7 billion parameters. Further research
that replicates our study using larger-scale models
would be beneficial in confirming our findings and
refining the analysis proposed in our investigation
from a mathematical perspective.
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accurately learn knowledge. However, it’s crucial
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A Related Work

The existing literature on methods of knowledge
acquisition can be broadly categorized into two
streams based on whether it alters the parameters
of the original model (Yao et al., 2023).

A.1 Preserve models’ parameters

Retrieve augmentation This approach depends
on an external knowledge base containing new or
correct knowledge. The new knowledge base is
seamlessly integrated with the base model, facili-
tating the retrieval of pertinent information in re-
sponse to prompts (Murty et al., 2022; Madaan
et al., 2022; Li et al., 2023a). For example, IKE
(Zheng et al., 2023) employs an in-context learning
approach to adjust LLMs outputs using demonstra-
tions sourced from the corpus guided by similarity,
thus circumventing the need for gradient calcula-
tions.

Adding additional parameters This paradigm
introduces extra trainable parameters which repre-
sent new knowledge to LLMs while the original
parameters keeping frozen. T-Patcher (Huang et al.,
2023b) and CaliNET (Dong et al., 2022) both in-
tegrate neurons or patches into the last layer of
the Feed-Forward Network (FFN), with T-Patcher
employing one neuron per mistake and CaliNET
incorporating multiple neurons for various knowl-
edge cases. Conversely, GRACE (Hartvigsen et al.,
2022) utilizes a discrete codebook as an Adapter
to add and update elements over time, allowing for
the modification of a model’s predictions.

A.2 Modify models’ parameters

Located and edit This approach initially identi-
fies parameters linked to specific knowledge and ad-
justs them directly. The Knowledge Neuron (KN)
technique (Dai et al., 2022) introduces a method
for attributing knowledge to pinpoint the "knowl-
edge neuron” (a crucial element within the FFN
matrix) and then updates these neurons accord-
ingly. ROME (Meng et al., 2022) employs causal
mediation analysis to pinpoint the area requiring
modification. Unlike KN, ROME doesn’t focus
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solely on altering knowledge neurons but instead
modifies the entire matrix. However, both KN and
ROME are limited to editing one factual associa-
tion at a time. To address this limitation, MEMIT
(Meng et al., 2023) builds upon ROME’s frame-
work, allowing for simultaneous editing across mul-
tiple cases. Building on MEMIT, PMET (Li et al.,
2023b) incorporates attention values to achieve en-
hanced performance.

Parameter-efficient fine-tuning This method
stands out as a widely embraced approach in the
era of large-scale models, consistently yielding
promising results across various downstream tasks.
Recent advancements have introduced a series
of PEFT techniques, such as Prefix-tuning (Li
and Liang, 2021), Adapter-tuning (Houlsby et al.,
2019), Prompt-tuning (Lester et al., 2021), (IA)3
(Liuetal., 2022) and LoRA (Hu et al., 2022), which
further enhance the appeal of knowledge learning
through fine-tuning. AdaLoRA (Zhang et al., 2023)
propose incremental parameter updates based on
weight matrix importance assessment to enhance
update efficiency and adaptability. Similarly, Plug-
and-Play Adaptation (Lee et al., 2022) leverage
regularized fine-tuning to enable large-scale contin-
ual learning for knowledge updating. This paper
focuses on the analysis of the parameter-efficient
fine-tuning methods.

B Dataset Details

ZsRE (Levy et al., 2017) is a Question Answering
(QA) dataset using question rephrasing generated
by back-translation as the equivalence neighbor-
hood. COUNTERFACT (Meng et al., 2022) is a
more challenging dataset that accounts for counter-
facts that start with low scores in comparison to
correct facts. It constructs out-of-scope data by sub-
stituting the subject entity for a proximate subject
entity sharing a predicate. This adjustment allows
us to distinguish between superficial alterations
in wording and more substantial modifications that
align with a meaningful learning of knowledge. We
follow previous data split (Cao et al., 2021; Meng
et al., 2022; Mitchell et al., 2022a; Yao et al., 2023)
to evaluate all the models on the test set. Following
prior work (Mitchell et al., 2022a,b), we use the
Natural Questions (NQ; Kwiatkowski et al. (2019))
as out-of-scope data to evaluate locality. We also
adopt the extended version of ZsRE proposed by
(Yao et al., 2023), which introduces a portability
test for the original dataset.
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Figure 8: Results of learning various quantities of
knowledge.

C Implementing Details

In most cases, we select the LLAMA2-7B-chat
model as the subject of experimentation and fine-
tuned the model using LoRA , a parameter adapta-
tion technique widely employed during the era of
large models. All model evaluations are conducted
in zero-shot mode. To ensure the uniqueness of the
model output, we set the temperature of the model
to O during testing. The majority of fine-tuning
experiments are conducted on NVIDIA RTX 3090
Tensor Core GPUs, while full fine-tuning is per-
formed on NVIDIA A100 GPUs.

D Experiment on Varied Knowledge
Quantities

In §2.1, We demonstrated that regardless of model
type and parameter sizes, knowledge learning
performance degradation occurs when the model
learns knowledge of both closer and farther seman-
tic distances. To further rigorously illustrate the
universality of this phenomenon, we conducted ex-
periments on models learning varying amounts of
knowledge each iteration and found that the phe-
nomenon persisted.

We utilized the ZsRE dataset and fine-tuned the
LLaMAZ2-7B-chat model using LoRA. The rela-
tionship between the accuracy of knowledge learn-
ing by the model and the target semantic distance
is illustrated in Figure 8. It can be observed that
when learning different amounts of knowledge, the
model’s accuracy in knowledge learning consis-
tently experiences significant declines at the same
positions, thus validating the universality of the this
phenomenon.
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Model ZsRE (LoRA) COUNTERFACT (AdaLoRA)
Accuracy? Generality! Locality? Accuracy? Generality! Localityt
BLOOMZ-1.7B 18.75 19.25 41.88 20.98 21.05 39.13
BLOOMZ-3B 15.60 16.52 42.15 18.48 17.34 43.47
BLOOMZ-7B 13.81 14.57 45.93 12.45 14.31 40.77
Mistral-7B 22.23 22.94 52.38 19.86 22.27 37.27
LLaMA2-7B 19.54 21.24 51.86 16.79 19.89 38.11

Table 4: The original result of the model. We follow the same experimental settings as §2.2.
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Figure 9: Explanation of the generality and locality for
knowledge: “Who is the president of the US?” in a
hypothetical semantic embedding space.

E Metric of Knowledge Learning

We aim to assess the model’s learning of knowl-
edge from a broader perspective. Following (Yao
et al., 2023; Mitchell et al., 2022b), we employ
the concepts of generality and locality to further
evaluate the performance of knowledge learning.

Generality refers to the expectation that a fine-
tuned model fy- should also adjust neighboring
equivalents N (z;,y!) (in-scope in Figure 9), such
as rephrased sentences. For example, as shown in
Figure 9, the output of the question “The Ameri-
can’s president is who?” and “Who holds the po-
sition of the president in the USA?” also need to
be updated from "Donald Trump" to "Joe Biden".
This is evaluated by the average accuracy of the
model fy« on examples uniformly sampled from
the equivalence neighborhood:

E (a1 )N o) L {argmaxy fo (y | 27) =y}
©))
Locality dictates that updates should be applied
locally, ensuring that the fine-tuned model does not
alter the outputs of irrelevant examples O(z;, y;).
As shown in Figure 9, the output of the question
“What is the capital of American” and “Which team

did Michael Jordan play for?” are to be kept un-
changed as the original model’s output. Thus, lo-
cality is assessed by the consistency of predictions
between the fine-tuned model fy+ and the original
model fy:

E (o y)~0 (w1 Lfo- (1 25) = fo (y | 27) }
(10)

F Original Model Results

We provide a clearer report of the model’s original
performance on the knowledge dataset in Figure
4. It can be observed that the knowledge accu-
racy of fine-tuning the model based on LoRA is
relatively low. Furthermore, the knowledge accu-
racy decreases as the model parameter increases.
This may be due to the knowledge conflicts (Wang
et al., 2023c¢), as more parameters imply a greater
amount of internal knowledge held by the model,
thereby increasing the probability of encountering
knowledge conflicts.

We further reported some output results of the
model. In this portion of the experiment, we used
100 instances of knowledge each time to fine-tune
model. Due to the interference between knowl-
edge, not only does it suppress the learning and
expression of knowledge features (§2.2), but it also
exacerbates the phenomenon of deviating from the
target knowledge.
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Target

Semantic Model Prompts and Target Knowledge Model Response
Distance
BLOOMZ-1.7B Prompt: Which woman was the sister of Maria Elizabetha Jacson? Raw Response: Maria Jacson
’ Target Knowledge: Maria Theresa Jacson Fine-tuned Response: Anna Jacson
Prompt: What is the name of the chromosome where you can find RSPH6A? Raw Response: chromosome 8
BLOOMZ-3B X
Target Knowledge: chromosome 19 Fine-tuned Response: chromosome 6
Short BLOOMZ-7B Prompt: What day was USA-199 launched? Raw Response: December 15, 2011
Target Knowledge: 20 December 2007 Fine-tuned Response: December 12, 2011
Mistral-7B Prompt: What day was USA-199 launched? Raw Response: December 12 1995
) Target Knowledge: 20 December 2007 Fine-tuned Response: 21 march 1997
LLaMA2-7B Prompt: What day was USA-35 launched? Raw Response: 9 April 1935
g Target Knowledge: April 12, 1963 Fine-tuned Response: April 12, 1962
BLOOMZ-1.7B Prompt: Who is listed as Wang Jipeng father? Raw Response: Wang Jipeng
’ Target Knowledge: Wang Chonghua Fine-tuned Response: Wang Jing
BLOOMZ-3B Prompt: Who is listed as Wang Jipeng father? Raw Response: Wang jipeng
Target Knowledge: Wang Chonghua Fine-tuned Response: Wang Jiping
Medium BLOOMZ-7B Prompt: The inventor of Penrose stairs was whom? Raw Response: John Penrose
Target Knowledge: Richard Penrose Fine-tuned Response: Charles Babbage
Mistral-7B Prompt: Over which river does Dexter Coffin Bridge cross? Raw Response: Saco River
Target Knowledge: Connecticut Creek Fine-tuned Response: Connecticut dexter
LLaMA2-7B Prompt: During which historic war was Milton F. Pavlic an officer? Raw Response: World War 11
Target Knowledge: Vietnam War Fine-tuned Response: Vietnam War
; . - 5 K
BLOOMZ-1.7B Prompt: What species is ZIC3 specific to? Rfiw Response: elegans )
Target Knowledge: male Fine-tuned Response: drosophila melanogaster
Prompt: What species is ZIC3 specific to? Raw Response: human
BLOOMZ-3B X
00 3 Target Knowledge: male Fine-tuned Response: Zebrafish
Long . e : 9 .
BLOOMZ-7B Prompt: What species is ZIC3 specific to?, thw Response: mammals
Target Knowledge: male Fine-tuned Response: human
Mistral-7B Prompt: Which was the network that originally hosted Jay Leno’s Garage? Raw Response: Comedy Central
Target Knowledge: NBC Fine-tuned Response: CBS
LLaMA2-7B Prompt: At what location did John Walter Scott die? Raw Response: San Diego

Target Knowledge: Windsor, Ontario, Canada

Fine-tuned Response: New York City

Table 5: Response of various models fine-tuned using LoRA on ZsRE dataset. The short, medium, and long
target semantic distances correspond to semantic ranges of (0.1~0.3, 0.3~0.6, 0.6~1.0), respectively. The reason
of choosing different prompts under identical target semantic distances across various models is that with the
same prompt and target knowledge, the output knowledge of different models differs, and the parameters of word
embedding within the models are different, leading to different target semantic distances as well.
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