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Abstract

Discourse relations play a pivotal role in estab-
lishing coherence within textual content, unit-
ing sentences and clauses into a cohesive nar-
rative. The Penn Discourse Treebank (PDTB)
stands as one of the most extensively utilized
datasets in this domain. In PDTB-3 (Webber
et al., 2019), the annotators can assign multiple
labels to an example, when they believe that
multiple relations are present. Prior research
in discourse relation recognition has treated
these instances as separate examples during
training, and only one example needs to have
its label predicted correctly for the instance to
be judged as correct. However, this approach
is inadequate, as it fails to account for the in-
terdependence of labels in real-world contexts
and to distinguish between cases where only
one sense relation holds and cases where multi-
ple relations hold simultaneously. In our work,
we address this challenge by exploring various
multi-label classification frameworks to han-
dle implicit discourse relation recognition. We
show that multi-label classification methods
don’t depress performance for single-label pre-
diction. Additionally, we give comprehensive
analysis of results and data. Our work con-
tributes to advancing the understanding and
application of discourse relations and provide
a foundation for the future study.

1 Introduction

Discourse relations serve as a fundamental frame-
work for creating coherence among sentences and
clauses within a text. The automated identification
of the discourse relations, which connect sentences
and clauses, holds significant importance for a wide
range of downstream Natural Language Processing
(NLP) tasks including text summarization (Huang
and Kurohashi, 2021), question answering (Pyatkin
et al., 2020), and event relation extraction (Tang
et al., 2021). Penn Discourse Treebank (PDTB)
(Webber et al., 2019; Prasad et al., 2008) is one
of the most widely used datasets for this task. It

includes over 2000 documents from the Wall Street
Journal published in 1989, which have been manu-
ally annotated with discourse relations.

With regard to PDTB annotation, annotators can
assign multiple sense labels to an example when
they believe that all hold simultaneously. Consider
the following example from PDTB-3.

(1) [In the past decade, Japanese manufacturers
concentrated on domestic production for ex-
port]. [In the 1990s, spurred by rising labor
costs and the strong yen, these companies will
increasingly turn themselves into multination-
als with plants around the world]. (wsj_0043).
Labels: Asynchronous and Concession

This example demonstrates the simultaneous
presence of two distinct discourse relations. The
annotator wanted to capture the sense that the first
sentence described an earlier time period and the
second, a subsequent time period. But the annota-
tor also wanted to capture the sense that DESPITE
Japan’s concentration on domestic production for
export in the earlier time period, the future will
be different – i.e. conceding what was true in the
1980s, and asserting that the future will be different.
Therefore, the pair of arguments in the example is
linked by two discourse relations that capture dif-
ferent dimensions of the relationship between them.
Understanding these complex relations is crucial
for the interpretation of discourse.

However, for those instances with two anno-
tated labels, all previous work on discourse relation
recognition treat them as separate and different
examples during training, and at test time, a predic-
tion matching one of the gold types is taken as the
correct answer.

Nevertheless, by treating instances with multi-
ple labels as separate examples, the model may
not effectively capture the inherent complexity of
discourse relations. Real-world texts often contain
multiple layers of meaning, and forcing the model
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to treat them as distinct instances may oversimplify
the problem. This approach may not reflect the true
nature of discourse relations, where multiple rela-
tions can coexist between two arguments. More-
over, when treating instances with multiple labels
as separate examples, the model loses valuable con-
textual information about how these relations inter-
act and influence each other. Furthermore, treating
multi-label instances as separate examples might
introduce training ambiguity and lead to conflicting
patterns, impairing the model’s ability to generalize
to new examples. Besides, when implementing dis-
course relations recognition in downstream tasks,
the inability to recognize multi-labels could poten-
tially lead to adverse effects. For Example 1, if the
model fails to identify both Concession and Asyn-
chronous relation simultaneously, it may struggle
to respond to questions concerning temporal order
and contingency relation concurrently.

To address these negative impacts, we explored
multi-label classification as a more effective way
to capture the complexity of discourse relations.
To date, implicit discourse relation recognition has
not been approached as a multi-label classification
task, despite advancements facilitated by pretrained
language models (Zhang et al., 2021b; Long and
Webber, 2022; Wu et al., 2023). The current study
compares three multi-label classification methods
for IDRR, alongside conducting an in-depth analy-
sis of the results and data. The main contributions
of our work are as follows:

• This is the first study to treat implicit discourse
relation recognition as a multi-label classi-
fication issue, marking a novel approach in
addressing the complexity of discourse rela-
tions more effectively compared to traditional
single-label prediction methods.

• We explore different multi-label classification
methods for IDRR, and we show that a multi-
label classifier can even demonstrate better
performance than a classifier trained on exam-
ples in which multiple labels were split into
two distinct and unrelated examples.

• We provide a fine-grained analysis of re-
sults and conduct some methodological ex-
ploration, which can give valuable insights
and pave the way for the future study.

2 Related Work

Multi-label Classification Multi-label classifica-
tion has been widely adopted across different NLP

applications, including intent detection (Ouyang
et al., 2022), emotion classification (Yu et al., 2018;
Alhuzali and Ananiadou, 2021), and document clas-
sification (Xiao et al., 2019; Liu et al., 2022; Lin
et al., 2023). Despite the potential for richer text
understanding, multi-label classification has been
unexplored in discourse relation recognition. In
this work, we expand the use of multi-label classi-
fication to implicit discourse relation recognition
to enhance the accuracy and depth of NLP applica-
tions from richer text understanding.
Multi-label Study on Discourse Relation Recog-
nition Two notable studies on multiple label ex-
amples for discourse relation recognition are: 1)
Marchal et al. (2022), which explores inter-coder
agreement in multiple label examples, revealing
instances where annotators assign more than one
relation to a single example from various genres.
2) Scholman et al. (2022a) introduces a crowd-
sourced corpus containing 6,505 implicit discourse
relations across three genres. Annotators in this
corpus assign a single discourse sense based on
their perspective, resulting in varying interpreta-
tions. Nevertheless, the identification of implicit
discourse relations has not been addressed in the
context of a multi-label classification framework.

3 Dataset and Evaluations

We employed PDTB-3 (Webber et al., 2019) for
our evaluation. PDTB-3 represents an advance-
ment over PDTB-2 (Prasad et al., 2008), offering a
more extensive collection of annotated multi-label
examples. In our study, we concentrated exclu-
sively on implicit discourse relations, disregarding
those with explicit connectives. And we consider
both intra-sentential and inter-sentential implicits.

About 5% of PDTB-3 implicit discourse rela-
tions receive multiple labels, which corresponds
to instances with two annotated labels. We treated
such instances as single examples with multi-labels
during training, and during testing, predictions
were considered correct only if they match the spe-
cific label.

While previous studies (Ji and Eisenstein, 2015;
Bai and Zhao, 2018; Xiang et al., 2022) typically al-
locate Sections 2-20 of PDTB for training, Sections
0-1 for validation, and Sections 21-22 for testing,
the limited size of the test set poses challenges,
particularly for rare label and label pairs within
the dataset. Acknowledging the concerns raised
by Shi and Demberg regarding label sparsity, we
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addressed this issue by employing cross-validation
for Level-2 classification. In line with the method-
ology proposed by Kim et al., we adopted a cross-
validation approach at the section level. We divided
PDTB-3 into 12 folds, with each fold partitioned
into 21 sections for training, two for development,
and two for testing. By splitting the data at the sec-
tion level, we can preserve the inherent paragraph
and document structures, ensuring that data from
the same sections are grouped together in the same
pool.

Following the work in multi-label classification
for other tasks (Tsai and yi Lee, 2019; Zhang et al.,
2021a), we adopt F1 scores (Manning et al., 2008)
as our main evaluation metric. Precision, Recall
and Hamming loss (Schapire and Singer, 1998) are
reported in the Appendix. We present the macro-
averaged results of F1 scores, Precision and Recall.

4 Performance Comparison: Evaluating
the Effectiveness of Different Methods

4.1 Methods

Our work has explored three different multi-label
classification techniques, two encoder-only meth-
ods and one encoder-decoder method.

4.1.1 Method 1
The output vector corresponding to the [CLS] to-
ken aggregates input features and is used for clas-
sification. We employ RoBERTa for text repre-
sentation learning, and add a classification head
Wc ∈ RH×|C| on top of the [CLS] token to do
classiciation. H is the dimension size of [CLS] rep-
resentation and C represents the number of classes.
We use y ∈ R|C| to denote the ground-truth label
for an example, where y ∈ {0, 1}|C|.

The model is trained using sigmoid binary cross-
entropy loss. If the predicted probability of a label
surpasses 0.5, it is regarded as a predicted label.

4.1.2 Method 2
This method resembles Method 1, with several key
distinctions. Rather than employing a single classi-
fication head to handle all labels, we utilize multi-
ple classification heads Wci ∈ RH×2, each ci dedi-
cated to the i-th specific label and treating them as
individual binary classification tasks. In contrast
to Method 1, which utilizes sigmoid binary cross-
entropy loss, we employ softmax cross-entropy
for loss calculation here. The loss for each label
is computed independently, and subsequently, the

mean of these individual losses is used to update
the model. If the predicted probability of a label is
greater than 0.5, it is considered a predicted label.

4.1.3 Method 3
In this approach, we use a sequence-generating
model that processes input text token by token,
predicting labels sequentially while considering
previously predicted labels. Our method is similar
to the one described in Yarullin and Serdyukov
(2021). We utilize RoBERTa’s last transformer
block to generate word vectors and use RoBERTa’s
[CLS] token embedding as the initial hidden state
for our decoder, which is a Gated Recurrent Unit
(GRU) in our case. Our model also incorporates a
dot-product attention mechanism between encoder
and decoder. We train the final model to minimize
the cross-entropy objective loss for a given x and
ground-truth labels {t∗1, t∗2, . . . , t∗k} ∈ L:

LCE(θ) = −
k∑

i=1

logPθ(t
∗
i |x, t∗1:i−1)

During inference, we conduct a beam search
to identify candidate sequences with the lowest
objective scores among the paths that conclude
with the <eos> token. The beam size is set to 4.

4.1.4 Implementation Details
For all experiments across all methods, we use
RoBERTa as the pretrained language model. The
max sequence length is set to 512. For all exper-
iments, we adopt Adam (Kingma and Ba, 2017)
with the learning rate of 1e−5 and the batch size
of 64 to update the model. The maximum train-
ing epoch is set to 20 and the wait patience for
early stopping is set to 10. All experiments are
performed with 1× 80GB NVIDIA A100 GPU.

4.2 Results
4.2.1 Performance for Each label
Table 1 displays F1 scores for each level-2 la-
bel across three methods at section-level cross-
validation. Method 2 outperforms the others. La-
bels like “Cause”, “Condition”, “Purpose”, and
“Conjunction” consistently perform well across
all methods. However, “Cause+Belief”, “Syn-
chronous” and “Equivalence” consistently receive
lower F1 score, indicating they are more challeng-
ing. Method 3 lags on “Manner” and “Substitu-
tion”, often missing “Manner” in multi-label in-
stances and falsely predicting “Substitution”.
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Label Method 1 Method 2 Method 3

Concession 50.98 ± 5.06 51.59 ± 4.61 50.86 ± 2.91
Contrast 50.58 ± 3.40 50.82 ± 2.99 48.49 ± 3.46
Cause 65.57 ± 1.76 65.15 ± 1.74 65.34 ± 2.19
Cause+Belief 0.00 ± 0.00 0.00 ± 0.00 3.04 ± 5.58
Condition 75.99 ± 5.95 80.97 ± 7.51 78.01 ± 10.00
Purpose 92.50 ± 2.01 92.68 ± 2.34 92.58 ± 2.21
Conjunction 62.12 ± 3.05 63.32 ± 3.34 62.11 ± 3.08
Equivalence 12.99 ± 7.56 14.55 ± 8.43 17.85 ± 6.42
Instantiation 58.76 ± 4.02 59.67 ± 5.73 58.49 ± 6.15
Level-of-detail 50.93 ± 3.97 51.80 ± 3.80 51.09 ± 2.26
Manner 58.76 ± 11.39 58.60 ± 13.47 23.23 ± 7.94
Substitution 64.11 ± 10.35 62.35 ± 7.83 54.46 ± 9.18
Asynchronous 62.46 ± 4.01 62.10 ± 3.88 61.20 ± 3.72
Synchronous 27.40 ± 9.48 30.28 ± 7.30 30.30 ± 6.96
Total 52.37 ± 1.62 53.13 ± 0.92 49.79 ± 1.12

Table 1: A Comparison of Macro-F1 scores across different methods by using RoBERTabase. We use cross-validation
at section level for the Level-2 classification. The standard deviations across 12 folds are reported. “Total” here
refers to the average scores for all labels.

Method 1 Method 2 Method 3

Num. prediction
Num. gold 2 1 2 1 2 1

2 395 806 405 983 379 585
1 506 17780 498 17614 563 19396
0 41 1395 39 1383 0 0

Table 2: Comparative analysis of predicted label counts for instances with one and two gold labels across Method 1,
Method 2, and Method 3. ‘Num. Prediction” denotes the number of labels predicted by each method, while “Num.
Gold” represents the number of gold-standard labels.

4.2.2 Count of Predicted Labels

Table 2 displays the distribution of the number of
the predicted labels for examples with one or two
gold labels across the three methods. We did not
impose a limit on the number of predicted labels.
However, none of the examples received more than
two labels for any method, likely due to the data
not containing examples with more than two labels.
Analyzing the table, we find that distinguishing
one or two labels is challenging, as over half of
multi-label examples receive only one label, while
more than 5% of single-label examples get two
labels. Method 2 tends to assign two labels more
often. Method 3 consistently assigns at least one
label to all examples, aligning with PDTB’s typical
one or two annotated labels per example.

4.2.3 Predictions for multi-label examples

Table 3 evaluates the performance of the three meth-
ods on multi-label examples, namely those exam-
ples with two labels. The methods can get: both
labels correct, one label correct, both labels incor-
rect, or make no prediction. Method 1 slightly lags
in “both labels correct”, but excels in minimizing
“both labels incorrect” cases. Method 2 performs

best in “both labels correct” but has more “both la-
bels incorrect” instances, indicating more entirely
incorrect predictions. Method 3 has a higher “both
labels incorrect” count, but it can consistently pre-
dict labels for all instances.

4.3 Multi-Label vs. Single-Label Prediction:
A Comparative Performance Analysis

To compare multi-label and single-label predic-
tion methods, we evaluated Method 2 under single-
label criteria. In this evaluation, the highest prob-
ability label is chosen, and for multi-label exam-
ples, we consider it correct if the predicted label
matches one of the gold labels. We did not evalu-
ate the single-label prediction method in terms of
multi-label criteria since it is not feasible when the
method inherently provides only a single predic-
tion. If we use the top two largest probabilities for
the single prediction methods, it would be assumed
that all instances has two labels.

We utilize RoBERTa to obtain the [CLS] rep-
resentation for each example for both single label
prediction method and Method 2, but Method 2
uses separate classification heads for binary classi-
fication per class, while single-label classification
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Method Both Labels Correct One Label Correct Both Labels Incorrect No Prediction

Method 1 363 (39%) 404 (43%) 134 (14%) 41 (4%)
Method 2 392 (42%) 343 (36%) 168 (18%) 39 (4%)
Method 3 382 (40%) 346 (37%) 214 (23%) 0 (0%)

Table 3: A comparison of methods on the predictions for multi-label examples (examples annotated with two labels).

Label Single(base) Multi(base) Single(large) Multi (large)

Concession 47.08±2.69 51.99±4.3 61.17±4.07 61.2±3.93
Contrast 49.01±2.32 52.94±2.25 57.19±4.07 59.76±2.55
Cause 66.31±1.75 66.0±1.56 70.89±1.52 70.44±1.61
Cause+Belief 4.13±5.74 6.52±9.08 8.59±6.99 10.06±11.74
Condition 78.88±8.87 80.16±7.84 84.91±10.74 84.55±10.21
Purpose 91.34±2.56 91.47±1.91 92.04±2.75 92.53±2.68
Conjunction 61.21±2.56 63.52±2.93 68.03±1.73 67.48±2.98
Equivalence 15.75±8.81 16.67±8.38 22.56±12.0 25.85±7.04
Instantiation 56.63±7.57 60.86±4.91 63.62±3.68 61.3±4.62
Level-of-detail 53.61±2.97 54.07±3.33 58.58±2.83 58.1±1.62
Manner 79.86±9.26 77.15±10.21 80.12±10.92 77.35±12.36
Substitution 60.34±13.13 65.67±8.61 70.34±6.17 71.92±8.45
Asynchronous 61.6±4.25 60.93±3.97 68.12±2.97 67.93±3.96
Synchronous 41.5±12.83 35.46±7.96 40.93±8.95 46.51±11.4
Total 54.8±1.85 55.96±0.84 60.51±1.32 61.07±1.64

Table 4: Comparative evaluation of cross-validation Macro-F1 scores for multi-label versus single-label predic-
tion methods, with multi-label predictions assessed using single-label evaluation criteria. This study employs
RoBERTabase and RoBERTalarge for comparisons, providing standard deviations over 12-fold. “Total” here refers to
the average scores for all labels.

employs a multi-class mapping layer, with a size
of Rh×|C|. Specifically, num_class takes the value
of 14 here as the number of the labels is 14. Train-
ing loss for both methods is softmax cross-entropy.
We use both RoBERTabase and RoBERTalarge for
comparisons.

The results in Table 4 indicate that, while the
evaluation method for both single classification
methods and multi-label classification methods
is the same, based on the single-label evaluation
criteria, the multi-label prediction method outper-
forms the single-label prediction method for both
RoBERTabase and RoBERTalarge. This suggests
that multi-label prediction does not compromise
the performance of single-label prediction.

It should also be noted that multi-label classifica-
tion methods do not necessarily increase computa-
tional complexity, since they reduce model redun-
dancy. That is, instead of creating a separate train-
ing example for each sense of a multi-label token,
a multi-label approach relies on a single model that
can predict multiple labels simultaneously. More-
over, multi-label methods are not necessarily more
complicated, using (in our experiments) no more
computational resources than the single-label pre-
diction method.

5 Fine-grained Analysis of the
Experimental results

5.1 The Multi-label Classification Method
Can Capture the Label Correlations

In Figure 1, two co-occurrence matrices visualize
the joint distribution of label pairs in the dataset
and in the prediction. The upper one is the co-
occurrence of label pairs in the dataset and the
lower one is the co-occurrence of the predicted
label pairs. The gold label pairs are the multi-label
data in the dataset.

For the predicted label pairs, all the predictions
which have two labels on the test sets over 12-
fold are used. Darker shades represent a higher
frequency or probability of the label pairs co-
occurring. In Method 2, for each label, the model
independently predicts whether the label is the gold
label by doing a binary classification. Despite that,
the two matrices look very similar, which indicates
that the model seems to have implicitly captured
the correlations between the labels from the data.

However, in Table 3, we have knew that method
2 predict two labels correctly for only 42% of multi-
label examples. This implies that the model’s ca-
pacity to capture label correlations does not inher-
ently guarantee very high accuracy in predicting
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(a)

(b)

Figure 1: Co-occurrence of label pairs in the dataset and
in the prediction. The upper sub-figure is for the gold
label pairs, while the lower is for the predicted pairs.

multi-labels. For example, although the model can
capture the correlations between “Purpose” and
“Manner”, it cannot distinguish which cases have
both labels from those cases which only have “Pur-
pose” or “Manner”.

5.2 When Multi-label Examples Are
Predicted as Single Label

Figure 2 presents a heatmap, which depicts in-
stances where only one label is predicted for multi-
label examples(with two annotated labels). Vertical
axes correspond to gold labels, while horizontal
ones correspond to predicted labels. Numbers be-
side the vertical axis show how many examples had
two labels but received only one predicted label and
the number of such label pairs in the dataset.

Challenge in “Purpose&Manner” vs. “Pur-
pose” Figure 2 reveals around a quarter of instances
that should have both “Purpose” and “Manner” la-
bels are only labeled as“Purpose”. Moreover, ap-
proximately one-third of instances labeled as “Pur-
pose” are predicted as both “Purpose” and “Man-
ner”.

The following are two examples for “Pur-
pose&Manner” vs. “Purpose” :

(1) [they exercise]1 [to lose weight.]2. Labels:

Purpose and Manner

In Example (1), the purpose of exercising is to
“lose weight”, while the manner in which weight
loss is to be achieved is through exercising. Thus,
both “Purpose” and “Manner” are appropriate
sense labels.

(2) [Mr. Achenbaum will work with clients]1 [to
determine the mix of promotion, merchandis-
ing, publicity and other marketing outlets, and
to integrate those services]2. Label: Purpose

In contrast, in Example (2), while the purpose of
working with clients is to determine their service
needs, the annotators appear to have decided that
working with clients is not the manner by which
their service needs are determined. As such, only
“Purpose” was annotated as a sense label.

While one might disagree with the annotators’
labelling decisions here, the value of multi-sense
prediction is to highlight potentially questionable
cases that might well justify further review (Klie
et al., 2023).

The two examples indicate the challenges the
model faces in distinguishing between “Purpose
and Manner” and “Purpose” in certain cases, de-
spite similar linguistic structures. More work is
needed to determine when an example demon-
strates both ‘Purpose and Manner”versus just “Pur-
pose”.

Challenge in rare label combinations The
model encounters difficulties with infrequent la-
bel combinations, often predicting just one label
or even assigning an incorrect label unrelated to
the combination. PDTB exhibits imbalances not
only in single-label data but also in multi-label data.
Some label combinations are more prevalent than
others, potentially hindering the model’s ability to
generalize effectively to those less common combi-
nations.

Challenge in identifying both elaborative and
argumentative discourse relations Scholman and
Demberg (2017) find that annotators often disagree
on whether the relations are elaborative(illustrate
/ specify a situation)or argumentative(serve as an
argument for a claim), and they note that the rela-
tion “Example” and the relation “Specifications” in
PDTB-2 can embody both. It appears to be the case
that annotators do not appear to have annotated sim-
ilar relations consistently in the PDTB-3. That is,
Figure 1 shows that there are some instances of co-
occurrence, but it is only a small fraction of cases
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Figure 2: Heatmap of underpredicted multi-label instances. This figure displays the distribution of instances where
two labels are annotated but only one is predicted.

where multiple labels might be justified. In the
PDTB annotation, the annotators are not required
to annotate both elaborative and argumentative rela-
tions simultaneously, which could be causing con-
fusion for models in classification tasks. Therefore,
it would probably be worth adding this multi-label
annotation to the corpus.

6 Other Investigations

6.1 Replacing Cross Entropy Loss with Focal
Loss

Focal Loss, an adaptation of Cross-Entropy Loss
(CE), addresses class imbalance by emphasizing
challenging examples. Initially designed for object
detection in computer vision by (Lin et al., 2017),
it has been applied in recent NLP studies (Tan et al.,
2022; Wang et al., 2022). Our dataset, PDTB-3,
exhibits imbalances in single-label and multi-label
data. While single-label tasks often use standard
cross-entropy loss for IDRR, we explored focal
loss for the multi-label classification in IDRR.

Focal Loss reduces weights for well-classified
instances and accentuates challenging ones, modu-
lating the loss for confidently predicted instances.
For positive samples (y = 1), it is defined as::

The focal loss function is defined as follows: for

positive samples (y = 1):

Lfl(p) = (1− p)γ log(p) (1)

For negative samples (y = 0):

Lfl(p) = pγ log(1− p) (2)

Here, γ serves as the focusing parameter, con-
trolling the rate at which easy instances are down-
weighted. We set it to 1 for positive samples, and 4
for negative.

In our implementation, we replaced the cross-
entropy loss in Method 2 with the aforementioned
focal loss function without further modifications.
Table 5 presents the outcomes of employing both
loss functions, demonstrating that the adoption of
focal loss enhances the overall performance when
applied to Method 2 in the context of IDRR.

6.2 Replacing Section-level Cross Validation
with Example-Level

Splitting the data at section-level may not be opti-
mal for multi-label classification, since the multi-
label examples are limited in number and are not
evenly distributed across sections. Therefore, alter-
native strategies can be considered.
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Label Cross-entropy Focal loss

Concession 50.64±3.97 52.13±4.56
Contrast 49.29±5.37 49.8±3.7
Cause 65.13±2.13 67.11±2.57
Cause+Belief 0.0±0.0 9.88±4.32
Condition 77.84±7.37 78.39±9.18
Purpose 92.41±2.4 92.34±2.26
Conjunction 63.21±3.16 64.15±3.13
Equivalence 17.55±10.12 23.69±7.16
Instantiation 59.76±5.27 58.93±4.89
Level-of-detail 52.84±3.38 54.05±1.79
Manner 58.94±10.65 58.53±12.22
Substitution 62.83±9.2 62.26±7.69
Asynchronous 62.19±3.24 60.73±4.73
Synchronous 30.3±7.85 30.33±5.35
Total 53.16±1.39 54.45±1.19

Table 5: Comparative analysis of F1 scores for Method
2 using RoBERTabase: evaluating cross-entropy and fo-
cal loss functions over 12-fold cross-validation with
reported standard deviations. “Total” here refers to the
average scores for all labels.

We tried an example-level method to offer a bet-
ter mix of examples to train more robust models,
especially when dealing with sparse labels. We first
separated the multi-label data from the single-label
data. Then, we divided the multi-label data into
12 portions, and the single-label data was also di-
vided into 12 portions, with each portion having the
same proportion of the number of each label. Next,
we combined one of the 12 portions of multi-label
data with one of the 12 portions of single-label
data to obtain a merged set of 12 data portions.
Finally, we randomly selected one portion as the
test set, another portion as the validation set, and
the remaining 10 portions as the training set, thus
creating 12 folds of cross-validation data.

Table 6 shows the results for three methods
where the cross-validation is done at example-level.
We can compare Table 6 with Table 1. Method
2 stands out with the highest total F1 score in
both cross-validation approaches. Method 2 also
shows less variability for example-level. However,
we leave it to future work to decide which cross-
validation strategy should be followed.

7 Discussions: Key Insights and Future
Study

Embracing Multi-Label Classification in Dis-
course Relation Recognition This study not only
identifies the limitations of single-label prediction
but also explores various multi-label classification
methods. The results demonstrate that multi-label
classification methods can effectively predict mul-

tiple labels and capture label correlations. Interest-
ingly, the straightforward multi-label classification
approach outperforms single-label prediction under
single-label criteria. We advocate for the broader
use and further development of multi-label pre-
diction methods in this domain, supported by our
motivational insights and the practical results we
have obtained.
Navigating the Challenges of Multi-Label Sce-
narios Compared to traditional single-label predic-
tions, treating discourse relation recognition as a
multi-label prediction task introduces more chal-
lenges to this task.

Firstly, the model must accurately determine
whether an example should be treated as a single-
label or multi-label instance; for instance, distin-
guishing between cases like “Purpose and Man-
ner” and “Purpose” alone. Furthermore, the model
needs to more effectively capture and exploit the
inter-label relationships to enhance multi-label clas-
sification performance. For example, it could be
better that the model can identify both elaborative
and argumentative relations for certain examples,
rather than disregarding one in favor of the other.
Thirdly, the issue of data imbalance persists not
only in single-label data but also in multi-label
data, making it more challenging to address the
problem of imbalanced data.
Diversifying and Expanding Multi-Label Dis-
course Datasets Based on our experimental analy-
sis, we have observed that the model often struggles
to accurately predict certain rare combinations of
labels. The availability of annotated multi-label
examples in PDTB-3 is limited, with some label
pairs being exceptionally infrequent in this dataset.

Moreover, PDTB primarily consists of news dis-
course, while it has been noted that the text genre
significantly impacts the distribution of discourse
relations(Scholman et al., 2022a). By confining
the dataset to news texts, there is a missed oppor-
tunity to comprehensively understand and model
discourse relations and label associations across a
wider range of text types.

Additionally, Rohde et al. (2018) pointed out that
while other works on discourse coherence acknowl-
edge the possibility of multiple relations between
discourse segments, they typically lack annotation
for more than one discourse relation. For example,
Rhetorical Structure Theory (RST) allows for mul-
tiple possible analyses but tends to select one that
aligns with the writer’s goals (Mann et al., 1989).
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Label Method 1 Method 2 Method 3

Concession 45.73±3.06 48.54±4.14 49.09±4.27
Contrast 48.42±3.42 50.05±3.92 50.02±3.71
Cause 63.78±1.96 64.59±1.86 64.69±1.93
Cause+Belief 0.00±0.00 0.00±0.00 1.02±3.57
Condition 72.26±9.37 75.61±8.65 77.01±8.95
Purpose 92.51±1.99 92.79±1.84 92.7±1.98
Conjunction 61.57±2.48 62.26±2.76 62.6±2.42
Equivalence 12.94±5.24 17.2±8.71 16.08±8.08
Instantiation 58.96±4.55 59.64±4.4 59.82±4.2
Level-of-detail 51.34±3.02 51.99±2.87 51.93±3.01
Manner 57.61±5.45 59.01±5.78 46.91±18.12
Substitution 60.38±6.47 62.09±6.32 59.95±7.18
Asynchronous 60.59±3.91 61.75±3.65 61.41±3.74
Synchronous 29.04±5.91 28.67±6.86 29.29±6.96
Total 51.08±0.88 52.44±1.72 51.61±1.96

Table 6: Example level: comparison of Macro-F1 scores with standard deviations detailed across three methods
using RoBERTabase. Note: the methods in Table 1 and this table are consistent, differing only in the application
of section-level versus example-level cross-validation techniques. “Total” here refers to the average scores for all
labels.

Therefore, the need for more diverse and abundant
multi-label data is crucial to enable systems to learn
more effectively and comprehensively.

Exploring Advanced Modeling Techniques In
this study, we applied three foundational multi-
label classification methods to IDRR, and we have
found that the focal loss is a superior choice for the
multi-label classification method in this task. Nev-
ertheless, addressing the complexities of discourse
relations, data imbalance, and the limited avail-
ability of annotated multi-discourse relations,etc.
requires more advanced customized modeling tech-
niques.

Extend the Multi-label Classification Methods
to Other Types of Discourse Relations In addi-
tion to annotating multiple sense relations holding
in the PDTB when no discourse connective was
present, annotators could also record a distinct im-
plicit relation holding in the context of an explicit
connective that doe not itself convey that relation
((Webber et al., 2019) Section 3.4). This approach
allowed them to represent relations inferred not just
from explicit connectives but also from the under-
lying arguments themselves. While previous work
on discourse relation recognition has ignored such
cases, it would be valuable to test our multi-label
classification methods on these cases as well.

In summary, the application of multi-label meth-
ods to implicit discourse relation recognition is
valuable and feasible, yet there is great room for fur-
ther improvement both in terms of data and method-
ology.

8 Conclusions

We conducted a comprehensive exploration of im-
plicit discourse relation recognition (IDRR) as a
multi-label classification problem, addressing real-
world complexity and label interdependence. We
found that multi-label approaches can have better
performance than traditional single-label metrics
when evaluated on the criteria for the single-label
prediction.

Our exploration of multi-label frameworks, loss
function optimization, and cross-validation strate-
gies sets the stage for future research advancements.
Additionally, our detailed analysis can provide valu-
able insights for further investigations in this field.
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Limitations

In our work, we only used PDTB-3 as our evalu-
ation dataset, despite the scarcity of datasets an-
notating multiple discourse relations. However,
some other datasets such as GUM (Zeldes, 2017)
and DiscoGem (Scholman et al., 2022b) probably
can be considered for our evaluation and analy-
sis. DiscoGem (Scholman et al., 2022b) can be
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considered to see whether it either agree with or
contradict multi-sense PDTB-3 sense annotation,
although DiscoGeM is not inherently a multi-label
dataset but rather a collection with diverse annota-
tions stemming from varying perspectives.
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Label n

Comparison 2518
Contingency 7583
Expansion 10833
Temporal 1828
Comparison.Concession 1494
Comparison.Contrast 983
Contingency.Cause 5785
Contingency.Cause+Belief 202
Contingency.Condition 199
Contingency.Purpose 1373
Expansion.Conjunction 4386
Expansion.Equivalence 336
Expansion.Instantiation 1533
Expansion.Level-of-detail 3361
Expansion.Manner 739
Expansion.Substitution 450
Temporal.Asynchronous 1289
Temporal.Synchronous 539

Table 7: Label counts for level-1 senses and level-2
senses that have more than 100 annotated instances in
PDTB-3.

A Dataset Statistics

Table 7 and Table 8 give the statistics of the
single-label data and multi-label data. Both dis-
tributions are very imbalanced. For Table 8, the
counts for Level-2 label pairs vary widely, rang-
ing from as low as 4 instances to as high as 378
instances. Some Level-2 label pairs, such as “Pur-
pose/Manner” and “Cause/Level-of-detail”, have
relatively high counts, suggesting a significant pres-
ence of these combinations in the dataset. Oth-
ers, like “Asynchronous/Contrast” and “Conces-
sion/Asynchronous”, have lower counts, indicating
less frequent occurrences of these specific pairs.
In summary, the distribution of discourse relations
and the label pairs in the PDTB 3.0 dataset varies,
with some categories and pairs being more preva-
lent than others.

B More Results for Three Methods

Table 9 to Table 11 are the results for three methods
in Macro-F1 scores, Precision, Recall and Ham-
ming loss.

In terms of Hamming loss, method 2 is the best,
with a lowest Hamming loss of 5.70%. For all meth-
ods, the label “Purpose” consistently shows the
highest F1 scores, with precision and recall rates
exceeding 92%, indicating exceptional accuracy
and consistency in identifying purpose relations.
This uniformity suggests that all three methods are
particularly adept at recognizing purpose-related
discourse. For Method 1, most labels have a stan-

Label number

Asynchronous/Cause 6
Asynchronous/Contrast 4
Cause+Belief/Instantiation 7
Cause+Belief/Level-of-detail 13
Cause/Asynchronous 11
Cause/Instantiation 50
Cause/Level-of-detail 101
Cause/Manner 100
Cause/Substitution 7
Concession/Asynchronous 4
Concession/Substitution 4
Condition/Manner 10
Conjunction/Asynchronous 12
Conjunction/Cause 4
Contrast/Asynchronous 4
Contrast/Substitution 35
Purpose/Manner 378
Purpose/Substitution 34
Synchronous/Contrast 112
Synchronous/Level-of-detail 4

Table 8: Label counts for level-2 sense pairs that have
more than 3 annotated instances in PDTB-3.

dard deviation in F1 score, recall, and precision
under 10.

However, some labels like “Manner” and “Sub-
stitution” show higher variability, indicating incon-
sistency in model performance for these relations.
With regard to Method 2, “Manner” with a rela-
tively high standard deviation in both precision and
recall suggests variability in model performance
across different folds. Method 3 shows lower pre-
cision of 15.06 ± 6.09, contrasting with a much
higher recall of 55.07 ± 12.14. This stark differ-
ence implies challenges in accurately pinpointing
“Manner” discourse relations. The “Equivalence”
label also poses a challenge across methods, with
notably poor performance in Method 1, reflecting
difficulties in reliably identifying equivalence re-
lations. Furthermore, labels like “Purpose”, “Con-
dition”, and “Asynchronous” demonstrate lower
standard deviations, indicating a more stable and
consistent performance in these areas.

C Performance Variation Across
Different Folds for Method 2

Table 9 to Table 11 indicates a high degree of vari-
ability across folds in Precision, Recall or F1 scores.
We can have a closer examination of individual
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Label Precision ± Std Recall ± Std F1 ± Std Hamming Loss ± Std

Concession 49.75±6.85 53.07±6.82 50.98 ± 5.06 -
Contrast 46.37 ± 4.50 56.72±7.63 50.58 ± 3.40 -
Cause 66.75 ± 2.80 64.64±3.57 65.57 ± 1.76 -

Cause+Belief 0.00 ± 0.00 0.00±0.00 0.00 ± 0.00 -
Condition 72.60 ± 5.29 80.36±9.84 75.99 ± 5.95 -
Purpose 92.49 ± 2.39 92.55±2.44 92.50 ± 2.01 -

Conjunction 59.29 ± 6.16 65.95±4.13 62.12 ± 3.05 -
Equivalence 10.07 ± 6.16 21.93±13.32 12.99 ± 7.56 -
Instantiation 58.70 ± 4.58 59.98±8.22 58.76 ± 4.02 -

Level-of-detail 49.35 ± 6.15 53.14±3.83 50.93 ± 3.97 -
Manner 68.81 ± 10.06 52.59±13.40 58.76 ± 11.39 -

Substitution 64.12 ± 12.21 65.55±12.30 64.11 ± 10.35 -
Asynchronous 61.84 ± 5.59 63.73±6.54 62.46 ± 4.01 -
Synchronous 24.08 ± 9.49 34.47±12.87 27.40 ± 9.48 -

Total 51.73 ± 1.91 54.62±1.92 52.37 ± 1.62 5.73±0.22

Table 9: Results for Method 1: Level-2 implicit discourse relation recognition cross-validation results on PDTB-
3.“Total” here refers to the average scores for all labels.

Label Precision± Std Recall ±Std F1 ± Std Hamming Loss ± Std

Concession 53.78 ± 8.46 50.35 ± 5.04 51.59 ± 4.61 -
Contrast 57.20 ± 6.65 46.55 ± 5.12 50.82 ± 2.99 -
Cause 66.79 ± 4.25 63.96 ± 3.71 65.15 ± 1.74 -
Cause+Belief 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 -
Condition 82.41 ± 9.78 80.29 ± 8.83 80.97 ± 7.51 -
Purpose 92.57 ± 2.56 92.83 ± 2.77 92.68 ± 2.34 -
Conjunction 64.58 ± 3.99 62.95 ± 7.78 63.32 ± 3.34 -
Equivalence 29.68 ± 25.37 10.93 ± 6.43 14.55 ± 8.43 -
Instantiation 58.84 ± 8.08 61.28 ± 5.62 59.67 ± 5.73 -
Level-of-detail 53.81 ± 3.80 50.85 ± 7.69 51.80 ± 3.80 -
Manner 53.36 ± 15.81 67.77 ± 9.88 58.60 ± 13.47 -
Substitution 63.79 ± 10.45 61.70 ± 8.20 62.35 ± 7.83 -
Asynchronous 64.09 ± 6.87 60.96 ± 5.58 62.10 ± 3.88 -
Synchronous 34.30 ± 13.41 29.30 ± 9.22 30.28 ± 7.30 -
Total 55.37 ± 2.35 52.84 ± 0.90 53.13 ± 0.92 5.70 ± 0.25

Table 10: Results for Method 2: Level-2 implicit discourse relation recognition cross-validation results on PDTB-
3.“Total” here refers to the average scores for all labels.

labels for the Table 10. For instance, “Manner”
exhibits high Recall (67.77 ± 9.88) but lower Preci-
sion (53.36 ± 15.81) and F1 score (58.60 ± 13.47),
suggesting it identifies “Manner” instances well
but has over-generalized Manner.“Synchronous”
consistently scores low across all metrics, indi-
cating difficulty in identifying synchronous re-
lationships. Labels like “Equivalence”, “Condi-
tion”, “Substitutions”, and “Manner” have substan-
tial standard deviations in Precision, with ±25.37,
±9.78 , ±10.45 and ±15.81 respectively, highlight-
ing varying model performance across different test
sets.

We thoroughly reviewed data and predictions for
certain labels in each fold of our model’s perfor-
mance evaluation. For instance, in Fold 1, “Equiva-
lence” achieved a perfect Precision of 100% as the
model correctly identified two true “Equivalence”
instances. However, in other folds, Precision for

“Equivalence” ranges from 10% to 30%, indicating
significant variability in predictive accuracy.

D When Two labels Are Given to the
Single-label Examples

Figure 3 illustrates predictions of two labels for ex-
amples manually labeled with a single label. Verti-
cal axes correspond to gold labels, while horizontal
ones correspond to predicted labels. Numbers be-
side the vertical axis indicate the number of exam-
ples with that label and how many were predicted
to have additional labels.

The figure reveals that the majority of labels
predicted as two for single-labeled instances are
relatively low for most labels. However,about 1/3
examples which only have the label "Purpose" are
given the label “Purpose” and the label “Manner”
simultaneously by the model. In addition, among
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Label Precision ± Std Recall ± Std F1 ± Std Hamming Loss ± Std

Concession 50.73 ± 6.40 51.97 ± 5.28 50.86 ± 2.91 -
Contrast 47.14 ± 6.44 50.94 ± 5.20 48.49 ± 3.46 -
Cause 63.69 ± 3.67 67.34 ± 3.59 65.34 ± 2.19 -
Cause+Belief 12.78 ± 28.21 1.93 ± 3.66 3.04 ± 5.58 -
Condition 79.40 ± 11.78 77.24 ± 10.08 78.01 ± 10.00 -
Purpose 92.32 ± 3.23 92.90 ± 2.21 92.58 ± 2.21 -
Conjunction 63.45 ± 5.96 61.75 ± 6.81 62.11 ± 3.08 -
Equivalence 23.47 ± 10.20 15.47 ± 6.18 17.85 ± 6.42 -
Instantiation 56.78 ± 9.55 61.83 ± 5.72 58.49 ± 6.15 -
Level-of-detail 50.70 ± 3.06 51.92 ± 4.74 51.09 ± 2.26 -
Manner 15.06 ± 6.09 55.07 ± 12.14 23.23 ± 7.94 -
Substitution 50.23 ± 11.18 60.61 ± 8.68 54.46 ± 9.18 -
Asynchronous 62.45 ± 5.65 60.46 ± 5.06 61.20 ± 3.72 -
Synchronous 31.46 ± 7.93 30.31 ± 8.43 30.30 ± 6.96 -
Total 49.98 ± 1.50 52.84 ± 0.99 49.79 ± 1.12 5.98 ± 0.22

Table 11: Results for Method 3: Level-2 implicit discourse relation recognition cross-validation results on PDTB-3.

Figure 3: Heatmap of overpredicted single label instances. This figure displays the distribution of instances where
single-label is annotated but are given two labels by the model.

the 218 examples whose label is “Manner”, the
model give the additional label “Cause” or “Pur-
pose” for 30 examples. Besides, when the model
give additional labels to those examples which are
only annotated with “Cause”, the labels are often
under the Expansion category.

These observations echo our earlier analysis,
suggesting that distinguishing between single and
dual labels poses challenges for models, particu-
larly concerning “Purpose”&“Manner’ and “Pur-
pose”. Additionally, models occasionally predict
both elaborative and argumentative relations simul-
taneously although only one relation (elaborative
or argumentative) is annotated, underscoring the
potential value of incorporating multi-label annota-

tion into the corpus.

E More Results on Using Focal Loss

Table 12 demonstrates the results of cross-entropy
and focal loss methods using RoBERTab. The re-
sults also show that focal loss could be better than
cross-entropy for this task due to the data imbal-
ance.

Upon careful examination of Table 5 alongside
this table, it becomes evident that focal loss ex-
hibits advantages, particularly for labels with less
annotated data such as “Condition”, “Equivalence”
and “Synchronous”. Nevertheless, it’s essential
to acknowledge that while focal loss demonstrates
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Label Cross-entropy(large) Focal loss(large)

Concession 59.5±2.49 61.59±4.87
Contrast 57.32±3.98 56.92±2.94
Cause 70.28±1.45 71.75±1.45
Cause+Belief 8.47±5.3 8.92±8.28
Condition 84.41±6.84 84.89±9.86
Purpose 92.25±2.26 92.97±2.5
Conjunction 67.79±2.16 66.68±3.51
Equivalence 28.91±10.07 32.29±7.7
Instantiation 63.23±2.33 60.46±5.67
Level-of-detail 57.56±1.81 57.93±1.71
Manner 53.6±12.61 55.11±14.34
Substitution 71.62±11.3 70.54±9.83
Asynchronous 66.1±3.96 64.59±2.88
Synchronous 35.15±3.74 38.83±6.24
Total 58.3±1.52 58.82±0.98

Table 12: A comparison of F1 scores for the multi-
sense method using cross-entropy and focal loss.
RoBERTalarge is used for the results. “Total” here refers
to the average scores for all labels.

usefulness for certain labels, its cannot improve
performance across all labels . Consequently, fu-
ture work can explore alternative methodologies to
further enhance performance.
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