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Abstract

The growing interest in leveraging large lan-
guage models is driven by their exceptional
imitation and reasoning capabilities. In-context
learning (ICL), a streamlined method, has
shown potential in boosting these models’ per-
formance without modifying their underlying
parameters, especially when supplied with suit-
able demonstrations. However, existing meth-
ods mainly choose demonstrations by com-
paring surface-level semantic similarities (e.g.,
based on embedding) and fall short of identify-
ing the most fitting ones. This paper introduces
the concept of a “latent learningscape”, a more
nuanced representation that describes the char-
acteristic of the demonstrations. Building on
this concept, we develop a results-driven ap-
proach to characterize the latent learningscape
features of demonstrations, which then in-
form the creation of more effective prompts.
Through comprehensive testing across datasets
in arithmetic, commonsense, and symbolic rea-
soning tasks, our approach outperforms leading
models, showing an average increase in scores
by 7.4 percentage points. The code and data
will be made available here1.

1 Introduction

The captivating imitation and reasoning abilities ex-
hibited by large language models (Thoppilan et al.,
2022; Chowdhery et al., 2022; Brown et al., 2020)
have sparked growing interest in their applications.
In-context learning (ICL), as a lightweight method
that refrains from altering model parameters, is
increasingly proved by experiments to be able to
enable large language models to achieve impres-
sive results when appropriate demonstrations are
supplied. These demonstrations, when appropri-
ately chosen, effectively stimulate the latent ca-
pabilities within large models, thereby enhancing

* Corresponding authors.
1https://github.com/anlaiJoe/Latent-Learningscape

Q1: In the parking lot, there are 3 Audi A4s and 4 Audi Q5s parked. At 
this time, 3 Audi Q5s left, and 5 Audi A7s arrived. How many sedans are 
currently in the parking lot?
A1: Initially, there are: 3 Audi A4s (sedans) and 4 Audi Q5s (SUVs)
……
Now, let's count the total number of sedans:
3 Audi A4s + 5 Audi A7s = 8 sedans

Q2: The number of rabbits in the cage is three times the number of 
chickens. The number of chickens is half the number of ducks, and there 
are 6 ducks. How many feet do they have in total?
A2: Given: The number of rabbits (R) is three times the number of 
chickens (C): R=3C.
……
Substitute the values: Total feet=36+6+12=54

X: In the cage, there are 5 rabbits, 3 chickens, and after 3 rabbits left, 
6 ducks arrived. How many poultry are there in the cage?

Embedding 
Corr. with X

Q1 0.4233

Q2 0.8151

Traditional methods Manul

Q1:
Q2:❌
✅

Q2 
A2 

X

Q1 
A1 

X

LLM……
The answer is 11

……
The answer is 9 ✅❌

Figure 1: When facing problem X, traditional approach
is to select demonstrations based on the similarity of
sentence embedding, which is similar in surface-level.
However, Q1 truly serves as a demonstration because
Q1 and X share the same learningscape.

overall performance. Kojima et al. (2023) revealed
that Large language models (LLMs) are zero-shot
reasoners. Wang et al. (2023a) compared and sum-
marized these Zero-Shot methods. On the other
hand, Wang et al. (2023c) introduced a method
with different decoding strategy, significantly im-
proved LLMs’ performance. Zhang et al. (2022) in-
troduced a demonstrations selecting methods based
on text similarity and clustering to make LLMs
better few-shots reasoners. However, to fully har-
ness the impact of demonstrations, it is imperative
to share same knowledge points, problem-solving
approaches, or concepts with test question, rather
than merely similar word or sentence embedding.

We first introduce the term latent learningscape,
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which refers to the knowledge points, problem-
solving approaches, or concepts that aid in solving
problems. As depicted in Fig. 1, unlike demon-
strations selected solely based on the similarity of
surface-level semantics by embedding-based meth-
ods, Q1 share a same problem-solving approach
with X, could truely serve as an effective demon-
stration. In other words, Q1 and X share a com-
mon latent learningscape. The problem-solving
approach mentioned here is one of the latent learn-
ingscapes we refer to. When demonstrations pos-
sess or encompass the latent learningscape inherent
in the test question, demonstrations can play a ef-
fective role.

In leveraging ICL, we encounter the following
challenges: (1) How to identify the latent learn-
ingscape and the latent learningscape features be-
hind demonstrations. (2) How to construct prompts
that encompass sufficient latent learningscape fea-
tures for correctly solving reasoning problems.

In light of the challenges mentioned earlier, iden-
tifying the latent learningscape behind demonstra-
tions without human intervention is difficult. How-
ever, it is possible to characterize the latent learn-
ingscape features of demonstrations by defining
the differences between demonstrations. Therefore,
we propose a result-driven prompt construction
method, without the explicit identifying the latent
learningscape behind demonstrations. Instead, we
leverage the corrective nature of demonstrations to
characterize the latent learningscape. Specifically,
we first establish two distinct question pools: the
A-pool, containing questions answered correctly by
the LLM, and the C-pool, containing challenging
questions answered incorrectly by the LLM. Next,
we use questions from the A-pool as demonstra-
tions to answer the questions in the C-pool, aiming
to explore the representational capabilities of the
demonstrations in the A-pool. We store the latent
features of these demonstrations in vector form and
use them to distinguish between demonstrations.
Then, we construct prompts using linearly indepen-
dent vector groups to encompass a comprehensive
range of latent learningscape features. Finally, the
answer to the current problem is obtained by a ma-
jority vote among the different groups of demon-
strations defined by different linearly independent
vectors.

To demonstrate the effectiveness of our method,
we conduct extensive experiments on reasoning
problem datasets, including arithmetic, common-
sense, and symbolic reasoning datasets. The re-

sults indicate that our proposed method achieves
the best or competitive performance compared to
state-of-the-art methods, with an average score im-
provement of 7.4 percentage points. Additionally,
we conduct ablation experiments to validate the
effectiveness of different parts of our method and
its performance across different LLMs.

In summary, our contributions include:

• We introduce a universally applicable and in-
herently more logical representation method
for latent learningscape, named latent learn-
ingscape feature. This method overcomes
the limitations of surface-level semantic fea-
tures, circumventing the challenges of directly
identifying latent learningscape. The latent
learningscape feature represent differences be-
tween demonstrations and determine the in-
clusion relationship among them. This creates
favorable conditions for constructing compre-
hensive prompts that cover a wide range of
capabilities.

• We propose a framework to enhance LLM per-
formance using latent learningscape feature.
Our framework fully capitalizes on the ex-
cellent characteristics of latent learningscape
features, constructing prompts that encompass
a rich range of latent learningscape. This ap-
proach allows us to achieve superior results
with lower energy consumption.

• We conducted extensive experiments to val-
idate the effectiveness of our framework
against various baseline methods and across
different base large language models.

2 Related Work

2.1 Large Language Model

With the development of deep learning, espe-
cially the emergence of Transformer(Vaswani et al.,
2023) and BERT (Devlin et al., 2019), significant
progress has been made in many NLP tasks (Zhang
et al., 2024a; Wu et al., 2020, 2022, 2023c,b, 2024b;
Zhao et al., 2024; Zhang et al., 2023, 2024b; Li
et al., 2024; Wu et al., 2024a, 2023a; Shen et al.,
2022). Building upon these foundations, previ-
ous works (Brown et al., 2020; Chowdhery et al.,
2022; Anil et al., 2023; Touvron et al., 2023) in-
troduced large language models with a substantial
number of parameters, showcasing powerful rea-
soning capabilities. As widely recognized, Kojima
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et al. (2023) discovered that adding simple sen-
tences like "Let’s think step by step" stimulated the
emergent capability of LLM. Wang et al. (2023a)
introduced a new statement, PS (based on the "plan-
solve" problem-solving approach), significantly im-
proving the model’s performance across various
datasets.

2.2 In-context Learning

Liu et al. (2021) proposed using sentence em-
bedding distance for selecting demonstrations in
LLM’s In-context learning. Su et al. (2022) uti-
lized sentence embedding distance to select a rep-
resentative small dataset from a large training set
to retrieve demonstrations. Zhang et al. (2022)
introduces a classical method for finding represen-
tative demonstrations, enhancing few-shot Com-
monsense Reasoning. Building on this, Gonen
et al. (2022) introduced perplexity in selecting
demonstration examples, and Levy et al. (2023)
emphasized the importance of diversity. Nguyen
and Wong (2023); Li and Qiu (2023) proposed
outcome-oriented approaches, measuring outcome
differences and defining InfoScore for model pre-
diction improvement. Rubin et al. (2022) build a
supervised retriever EPR using LM scores, an effec-
tive endeavor to bypass surface-level semantic fea-
tures. Building upon this, Li et al. (2023a) further
optimized the EPR for adaptability across diverse
datasets. In Ye et al. (2023) trained a DPP retriever
to align with LM output scores through contrastive
learning and obtained the optimal demonstration
set during inference. Wang et al. (2023b) pro-
posed an approach that combined a small Language
Model (LM) with a large LM, using the small LM
to select demonstrations for In-context Learning
by the large model. Zhou et al. (2023) proposed a
multi-stage prompt approach, breaking down com-
plex problems into simpler ones. Ye and Durrett
(2022) instructed the LLM to cross-check the rea-
soning process based on the facts presented in the
prompt, enabling a more keen identification of po-
tential errors in the answers. Li et al. (2023b) not
only constructed various prompts but also trained
a Step-Aware Verifier to validate the correctness
of the reasoning proces. Zelikman et al. (2022)
treated incorrectly answered questions equally, ob-
taining rationales by adding hints and improved the
LLM’s performance. Gao et al. (2023); Chen et al.
(2023) introduced a code compiler, guiding the
model for better few-shot performance, demand-
ing more from annotators. Its effectiveness for

commonsense reasoning tasks is unclear. Recently,
Luo et al. (2024) have systematically discussed In-
context Learning with Retrieved Demonstrations.

3 Method

Our approach consists of three steps, namely: (1)
Basic Pools Construction: Establish the appropri-
ate question pool and the challenging question pool.
(2) Latent Learningscape Feature Characteriza-
tion: Characterize questions’ latent learningscape
features based on their ability to correct challeng-
ing questions and questions with demonstration
potential in the demonstration pool. (3) Compre-
hensive Demonstration Set Construction: For-
mation of linearly independent groups from the
latent learningscape features in the demonstration
pool, creating a comprehensive set of prompts for
testing and conducting majority voting.

3.1 Basic Pools Construction

Construction of Easy and Challenging Question
Pools We commence by randomly selecting ques-
tions from the training set and employing LLM
for answer generation, as shown in Algorithm 1.
If the correct answer can be obtained, it indicates
that the difficulty of the question aligns with the
model’s capabilities, and should be added to the
A-Pool (appropriate question pool). If the correct
answer cannot be obtained, it suggests that the ques-
tion poses a challenge for the model and should be
added to the C-Pool (challenging question pool).
The stopping criteria include reaching a specified
threshold (m) for the number of questions in the
A-Pool and another threshold (n) for the number
of questions in the C-Pool. Here, (m) and (n) are
hyperparameters, where (n) determines the length
of the latent learningscape feature vector, and (m)
influences the final quantity of prompts generated.
Typically, (m) is set to 30, and (n) is set to 10.

3.2 Latent Learningscape Feature
Characterization

Each question in the A-Pool (appropriate ques-
tion pool), along with its reasoning process and
answer, serves as a one-shot prompt demonstration,
as shown in Algorithm 2. These demonstration
are concatenated with each question in the C-Pool
(challenging question pool), challenging the large
model to correct errors. If a question from the A-
Pool fails to correct any question in the C-Pool, it
is considered lacking potential as a demonstration
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Figure 2: Stage 1: Basic Pools Construction.Random some questions from the training set and let the LLM perform
reasoning. Those obtaining the correct answers are added to the A-Pool (appropriate question pool), while those that
cannot are added to the C-Pool (challenging question pool). Stage 2: latent learningscape feature Characterization.
Characterize the latent learningscape feature by utilizing the ability to correct questions in the C-Pool. Stage 3:
Construction of Prompts. Constructing prompts based on linearly independent groups and ranking them according
to the number of 1 s. ⊗ means pairing each example on its left with every challenging question on its right in a
pairwise manner.

and should be eliminated. Conversely, if a ques-
tion from the A-Pool successfully corrects one or
more Challenging questions, it is deemed suitable
for the D-pool (demonstration Pool). The latent
learningscape features of these questions are rep-
resented using binary vectors of length |C| (sample
quantity in C-Pool), where each position is either 0
or 1 . If a particular challenging question from the
C-Pool can be corrected by a appropriate question
from the A-Pool, then the position in the binary
vector corresponding to that challenging question
in the C-Pool is set to 1 in the latent learningscape
feature vector of the appropriate question. If the
question cannot be corrected, the corresponding
position is set to 0 . Additionally, if a challenging
question was ever corrected, it should be added to
the A-Pool for further consideration, with the condi-
tion that they can correct any challenging question
other than itself. Importantly, if a question in the
C-Pool was never corrected, it suggests that the
corresponding knowledge points, problem-solving
approaches, concepts, and themes have not been
covered in the A-Pool. Therefore, through labeled
LLM question-answering to get reasoning process,

it should be added to the D-pool with a latent learn-
ingscape feature vector containing a 1 at its cor-
responding position and 0 elsewhere, forming a
vector of length |C|.

3.3 Construction of Prompts

As shown in Algorithm 3, each entry in the D-pool
(demonstration Pool), comprising a question, rea-
soning process, and correct answer, is referred to
as a demonstration example. In order to make the
most of these selectively filtered demonstration ex-
amples, two metrics are considered when choosing
demonstration examples from the D-pool to con-
struct a few-shot prompt: the number of times a
demonstration example has been used (t) and its
contribution (c). The usage count (t) indicates how
many prompts have already utilized the current
demonstration example, while the contribution (c)
signifies the increase in rank of the vector group
formed by its latent learningscape feature vector af-
ter using the current demonstration example. Prior-
ity is given to the usage count as the primary consid-
eration, with lower usage counts taking precedence.
In cases of equal usage counts, the contribution (c)
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is considered, with higher values receiving higher
priority. With this algorithm, we ensure the thor-
ough utilization of each demonstration example
from the D-pool while obtaining several full-rank,
linearly independent vector groups. These vec-
tor groups are then used to determine the set of
demonstration examples constituting the few-shot
prompt. At this point, we have obtained several sets
of demonstration examples that meet our criteria.
However, we may not actually need to use all of
them, so it is necessary to rank them based on their
quality. We rank them according to the number
of 1 s in the vector groups corresponding to each
demonstration example set. A higher count of 1 s
indicates better quality, and thus a higher ranking.
We select the top-k demonstration example sets for
concatenation with the test and determine the final
answer through majority voting. Typically, k is set
to 10.

Algorithm 1 Basic Pools Construction
Input: Training data set Strain= {qi,ai}
Output: Appropriate Question Pool A, Challeng-

ing Question Pool C
1: m← A threshold, n← C threshold
2: while |A| < m or |C| < n do;
3: Select (qi, ai) from Strain

4: ri ←Model response to qi;
5: if ri matches ai then
6: Add (qi, ri, ai) to A;
7: else;
8: Add (qi, ai) to C;
9: end if;

10: end while;

4 Main Experiments

We conducted experiments using the widely
adopted large language model, ChatGPT(gpt-3.5-
turbo-0613), across three distinct categories encom-
passing a total of nine datasets to validate the fea-
sibility and efficacy of our proposed method. The
first categories include five mathematical datasets:
GSM8K (Cobbe et al., 2021), AQuA (Ling et al.,
2017), MathQA (Amini et al., 2019) (first 400
questions), SVAMP (Patel et al., 2021), and Type
1 of NumGLUE (Mishra et al., 2022). The sec-
ond category involves two commonsense reasoning
datasets, namely CommonsenseQA (Talmor et al.,
2019) and StrategyQA (Geva et al., 2021). The
third category comprises two symbolic reasoning

Algorithm 2 Latent Learningscape Feature Char-
acterization
Input: Appropriate Question Pool A, Challenging

Question Pool C
Output: Demonstration Pool D

1: for each (qi, ri, ai) in A do
2: fi = [0]× |C|
3: for each (qj , aj) in C do
4: pij ← concat(qi, ri, ai, qj)
5: rij ←Model response to pij
6: if rij matches aj then
7: fi[j] = 1
8: end if
9: end for

10: if CountOne(fi) > 0 then
11: Add ((qi, ri, ai), fi) to D
12: end if
13: end for

Algorithm 3 Construction of Prompts

Input: Demonstration Pool D
Output: Demonstration example sets S

1: usage count T = [t0, t1, ..., t|D|]
2: contribution C = [c0, c1, ..., c|D|]
3: CZ() : CountZero()
4: S= {dk,sk}
5: sk = [0]× |C|
6: while CZ(sk) > 0 do
7: if count(MinIndexList(T )) = 1 then
8: m = MinIndexList(T )[0]
9: sk = sk + fm

10: dk = dk + (qm, rm, am)
11: tm = tm + 1
12: else
13: for each ((qi, ri, ai), fi) in D do
14: tempki = sk + fi
15: cki = CZ(sk)− CZ(tempki)
16: end for
17: m = MaxIndexList(C)[0]
18: sk = sk + fm
19: dk = dk + (qm, rm, am)
20: tm = tm + 1
21: end if
22: end while
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datasets, specifically Last Letter (Wei et al., 2023)
and Coin Flip (Wei et al., 2023).

4.1 Baseline
We employed three zero-shot CoT methods,
namely, a method that directly answers without
the addition of a trigger sentence,to show the Basic
abilities of the model (The current model already
has a certain level of CoT capability). A method
proposed by (Wang et al., 2023a), and another pro-
posed by (Kojima et al., 2023) and updated by
(Zhang et al., 2022). They each appended the fol-
lowing statement to the end of the question:

PS+: A: Let’s first understand the problem, ex-
tract relevant variables and their corresponding
numerals, and make a plan. Then, let’s carry out
the plan, calculate intermediate variables (pay at-
tention to correct numerical calculation and com-
monsense), solve the problem step by step, and
show the answer.

One by one: A: let’s think not just step by step,
but also one by one.

Additionally, we utilized a few-shot CoT method
Auto-CoT based on text similarity, proposed by
(Zhang et al., 2022), and a method employing a
self-consistency decoding strategy as a baseline,
proposed by (Wang et al., 2023c).

The selection of three zero-shot CoT methods
stemmed from an intriguing observation during ex-
perimentation. The performance variations among
different zero-shot CoT methods across various
datasets seemed to exceed our initial expectations.
This observation prompted some contemplation,
leading us to retain these three baselines. A de-
tailed discussion on these baselines will follow in
the subsequent sections of the experimental results
analysis.

4.2 Main Results
The results of the main experiments are presented
in Table 1. From the results, our method exhibits
significant advantages over various baselines in
mathematical analogy reasoning tasks and sym-
bolic reasoning tasks. Furthermore, within these
datasets, despite the increased complexity com-
pared to baselines other than self-consistency, our
method demonstrates a more pronounced superior-
ity, substantially enhancing performance (average
improvement of 11% across 7 datasets). In con-
trast to the self-consistency approach, our method
achieves superior performance while operating at
significantly lower energy consumption (approxi-

mately 0.25-0.5 times of its energy consumption).
However, in two general datasets, our method does
not replicate the performance observed in the other
two datasets. Notably, the baseline with the high-
est energy consumption also appears less robust,
presenting an intriguing phenomenon that will be
further analyzed in the subsequent sections.

4.3 Analysis
Just like the diverse nature of the world, each
dataset possesses its unique characteristics. Upon
observing unexpected performances in the Strat-
egyQA, and Coin Flip datasets across various
methods, we conducted a thorough analysis of
the datasets. In the StrategyQA dataset, the PS+
method outperforms both our method and the
high-energy consumption Self-consistency method.
Upon analyzing the data, we attribute this to the
dataset’s alignment with a problem-solving ap-
proach known as "plan-solve." For example, con-
sider the question "Hydrogen’s atomic number
squared exceeds the number of Spice Girls?" in
this dataset. The PS+ method tackles such prob-
lems by first macro-analyzing the entire question,
formulating a solving plan based on the complete
question, and then executing it. On the other hand,
the "step-by-step" method finds an entry point, de-
termines the next action direction based on the pre-
vious step. In comparison, the former aligns more
closely with the problem-solving approach humans
employ when facing such questions, while the lat-
ter demonstrates robust performance in the Coin
Flip dataset. In this dataset, questions are struc-
tured similarly to "A coin is heads up. Lucky does
not flip the coin. Mireya flips the coin. Jj flips the
coin. Kc flips the coin. Is the coin still heads up?
Note that ’flip’ here means ’reverse.’" Clearly, the
human problem-solving approach for such ques-
tions is step-by-step, strictly relying on the results
of the previous step to determine the parameters for
the next step. This explains why the "step-by-step"
method achieves a score of 91.2 in this dataset.
Moreover, both PS+ and "step-by-step" methods
exhibit unexpected differences in two symbolic rea-
soning tasks, as analyzed above. These tasks are
better suited for the "step-by-step" method, and the
difficulties faced by the PS+ method in tasks it is
not adept at can be comprehended based on this
analysis.

We continue the discussion on the performance
of the Auto-CoT method, and it is observable that
this embedding similarity-based approach performs
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Methods
(based on GPT-3.5)

Arithmetic Commonsense Symbolic

NumGLUE GSM8K AQuA MathQA SVAMP CSQA Strategy Letter Coin

Basic 76.5 69.37 53.9 53.6 82.0 59.7 75.5 22.0 55.0
One by one 69.1 76.8 55.5 53.8 81.0 63.5 69.9 65.6 91.2
PS+ 72.8 72.9 53.5 57.1 78.0 66.3 77.2 45.2 59.8
Auto-CoT 82.0 78.3 57.4 49.8 80.0 65.8 74.3 79.0 95.0
Self-Consistency 82.0 85.5 64.5 61.1 84.0 77.1 70.3 83.8 58.2

Ours 87.1 88.0 69.6 63.3 94.0 76.3 73.7 93.0 100.0

Table 1: Performance comparison of different methods based on gpt-3.5-turbo across various tasks. Evaluation
metrics include NumGLUE (type 1) (Mishra et al., 2022), GSM8K (Cobbe et al., 2021), AQuA (Ling et al.,
2017), MathQA (first 400) (Amini et al., 2019), SVAMP (Patel et al., 2021), ComensenseQA (Talmor et al., 2019),
StrategyQA (Geva et al., 2021), Last Letter (Wei et al., 2023), and Coin Flip (Wei et al., 2023). Results are reported
as percentages. The highest scores for each task are highlighted in bold, and the second-highest scores are underlined.
*Some incorrect questions in the Coin Flip dataset have been corrected.

well on the majority of datasets, particularly ex-
celling in the Coin Flip dataset. This is attributed to
the inherent characteristics of the Coin Flip dataset,
where clear distinctions between data categories ex-
ist, allowing for effective differentiation based on
surface-level semantics. Consequently, the method
can identify representative data for each category
based on surface-level semantics, making it partic-
ularly suitable for such datasets.

In other words, datasets characterized by high
uniformity in surface-level semantics are well-
suited for this method. However, it’s important
to note that this is essentially a case of overfitting.
Datasets with such characteristics are not preva-
lent, nor is this a common occurrence in real-life
scenarios. In contrast, our method is capable of
transcending the limitations imposed by surface-
level semantics, resulting in superior performance
across a broader spectrum of datasets.

The self-consistency method demonstrates uni-
versality and often achieves commendable results.
However, in comparison, our approach attains supe-
rior performance with lower energy consumption.
This is attributed to our identification of genuinely
representative examples, and by adhering to di-
versity rules, we assemble them into high-quality
demonstration example combinations. In contrast
to other baselines, this enables us to achieve better
results through the amalgamation of diverse and
representative examples, all while operating at a
lower energy cost.

For our method, it can be observed that it did
not achieve particularly favorable results on two
commonsense reasoning datasets. This is because,
compared to other datasets, commonsense datasets

have more open-ended content and emphasize the
model’s memory of basic knowledge. In this sce-
nario, the impact of In-context learning abilities
on the results is no longer the primary factor. In
other words, our method can identify high-quality
demonstration example sets, thereby better stim-
ulating the model’s In-context learning abilities.
Mathematical reasoning datasets and symbolic rea-
soning datasets heavily rely on the model’s abil-
ity in this regard, explaining the excellent perfor-
mance of our method on these datasets. Common-
sense reasoning, with its open-ended and memory-
focused nature, requires attention to the suitability
of problem-solving approaches, rather than model’s
In-context learning ability (such as "Plan-Solve"
for the StrategyQA dataset).

5 Ablation Experiment

5.1 Settings & Datasets

To further investigate the effectiveness of our
method, we conducted ablation experiments from
the following perspectives:

- We employed different models Gemini pro
(Anil et al., 2023) and Llama-70B (Touvron et al.,
2023), to validate the robustness of our approach.
This aimed to observe whether our method could
yield the expected results across diverse models.

- We replaced the construction of linearly inde-
pendent groups in Stage 3 with a method that ran-
domly selects 10 sets of 3 examples from demon-
stration pool to verify the effectiveness of Stage 3.
Additionally, we used a method of randomly select-
ing 10 sets of 3 examples from the training set for
comparison to validate the overall effectiveness of
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Methods
(based on Gemini)

Arithmetic Commonsense Symbolic

NumGLUE SVAMP CSQA Letter

PS+ 67.9 75.0 36.3 54.5
Auto-CoT 75.6 79.0 58.0 31.2
Self-Consistency 83.3 92.0 57.4 73.6
Ours 84.6 94.0 77.6 67.0

Table 2: Ours methods on Gemini pro.

Methods
(based on Llama)

Arithmetic Commonsense Symbolic

NumGLUE SVAMP CSQA Letter

PS+ 55.5 60.0 33.7 33.0
Auto-CoT 65.4 65.0 57.3 34.0
Self-Consistency 66.7 81.0 65.3 34.5

Ours 74.1 87.0 66.7 46.5

Table 3: Ours methods on Llama-70B.

our method.
- In Stage 3, we sorted the vector groups based

on the number of 1 s in each vector to examine the
influence of the quantity of vector groups partici-
pating in the final vote. We conducted experiments
with different values of k in the top-k selection,
including k=3, 5, 10 and 20.

- Regarding datasets, to comprehensively eval-
uate the method’s performance while considering
computational costs, we selected four datasets from
all three categories, encompassing two arithmetic
reasoning datasets, one commonsense reasoning
dataset, and one symbolic reasoning dataset for
experimentation.

5.2 Analysis
Table 2 and 3 demonstrate that our method con-
sistently achieves outstanding performance when
used with different models. However, the results in-
dicate that when the performance of the auto-CoT
method declines, our method also experiences a de-
crease in effectiveness. We posit that the auto-CoT
method relies on the model’s In-context learning
ability, and its performance is inhibited when this
capability is insufficient. While our method is a su-
perior approach to finding demonstration examples,
it is evident that it also relies heavily on the model’s
In-context learning ability. Relatively speaking, the
self-consistency method exhibits less sensitivity to
the capabilities of In-context learning, as its design
is not particularly dependent on this learning ability.
Being inherently a decoding strategy, this method is
less influenced by the impact of In-context learning
abilities on its performance.

It is evident in table 4 that the performance of
the randomly selected 10 3-shot demonstration ex-

Methods
(based on GPT-3.5)

Arithmetic Commonsense Symbolic

NumGLUE SVAMP CSQA Letter

Ours 87.1 94.0 76.3 93.0
w/o stage 3 84.6 92.0 76.3 92.0
w/o stage 2 & 3 82.7 88.0 75.5 81.6

Table 4: Comparison of ours method with our method
without stage 3 Construction of Prompts and our method
without stage 2 latent learningscape feature Characteri-
zation & 3 Construction of Prompts. w/o stage 3: ran-
dom select demonstrations from demonstration pool;
w/o stage 2 & 3: random select demonstrations from
training set;

ample sets from the D-pool (demonstration pool)
remains significantly higher than that of the ran-
domly selected 10 3-shot demonstration example
sets from the training set. However, the optimal per-
formance is still achieved by our complete method.
This indicates that the D-pool we have selected in-
deed captures potential demonstrations, resulting in
more stable and superior performance even when
randomly chosen from it compared to randomly se-
lecting from the training set. Similarly, our method
of linearly independent vector groups further solid-
ifies this advantage, making the performance more
stable and outstanding.

In Table 5, it can be observed that although the
performance did not reach the optimal level when
k = 10 in top-k, there is a significant improvement
compared to k = 5 (average of 3.38%). In compari-
son to k = 20, the performance loss of this method
is relatively slight (average of -1%). We believe
that even though our method is an approach that is
closer to the essence of things relative to surface
semantics, it is not necessarily the only final correct
answer. Specifically, the latent learningscape fea-
ture vectors of certain questions may be very simi-
lar or even identical, but this does not imply com-
plete consistency in the knowledge points, problem-
solving approaches, concepts, themes behind those
questions. Therefore, we need a majority voting
process to balance this potential bias. Experimental
results indicate that too few votes still pose a risk of
exposing the aforementioned problem, but the risk
significantly decreases when the number of votes is
10. With 20 votes, the improvement trend starts to
decline. Considering comprehensive performance
and energy consumption, we choose to involve the
top 10 in the voting process.
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top-k
Arithmetic Commonsense Symbolic

NumGLUE SVAMP CSQA Letter

k=3 87.1 89.0 69.3 82.7
k=5 78.2 92.0 73.0 89.2
k=10 87.1 94.0 76.3 93.0
k=20 87.1 96.0 77.6 93.7

Table 5: Ours methods with different top-k in stage 3.

6 Conclusion

In this paper, we introduced a latent learningscape
that is more closely aligned with the essence of
In-context learning abilities, representing knowl-
edge points, problem-solving approaches, concepts,
and themes that truly enable effective In-context
learning. Building upon this foundation, we pro-
posed a result-driven three-stage method. Firstly,
we constructed latent learningscape features for
demonstration example with the potential to serve
as demonstrations. Next, we generated several
demonstration example sets covering a comprehen-
sive latent learningscape by constructing linearly
independent vector groups, which were used as
demonstrations in the few-shot prompt. Experi-
mental results demonstrate that our method indeed
enhances the model’s In-context learning abilities,
achieving significant performance improvements
without a substantial increase in energy consump-
tion. Moreover, compared to the highest energy-
consuming methods, our approach not only outper-
forms them but also achieves better results. Abla-
tion experiments confirm the effectiveness of our
method across different models, indicating that we
have genuinely identified examples with demon-
stration potential and, by defining their latent learn-
ingscape features, combined them into more valu-
able compositions.

7 Limitation

There are two main limitations to this work. First,
the performance of our method is inherently tied to
the capabilities of LLMs. Due to the reliance of our
method on the ICL capabilities of the model, its
performance on small or middle language models
may not be optimal. Further research is needed to
explore the application methods of our approach
on small or middle language models. Second, al-
though our method aims to achieve superior results
with lower energy consumption, the energy effi-
ciency aspect is not explicitly quantified in com-
parison to other methods. A more comprehensive

energy analysis is needed to provide a holistic un-
derstanding of the trade-offs involved.
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