
Findings of the Association for Computational Linguistics: ACL 2024, pages 8043–8054
August 11-16, 2024 ©2024 Association for Computational Linguistics

Alignment-Based Decoding Policy for Low-Latency and Anticipation-Free
Neural Japanese Input Method Editors

Armin Sarhangzadeh and Taro Watanabe
Nara Institute of Science and Technology

{sarhangzadeh.armin.rw0,taro}@naist.jp

Abstract

Japanese input method editors (IMEs) are es-
sential tools for inputting Japanese text using
a limited set of characters such as the kana
syllabary. However, despite their importance,
the potential of newer attention-based encoder-
decoder neural networks, such as Transformer,
has not yet been fully explored for IMEs due to
their high computational cost and low-quality
intermediate output in simultaneous settings,
leading to high latencies. In this work, we
propose a simple decoding policy to enable
the use of attention-based encoder-decoder net-
works for simultaneous kana-kanji conversion
in the context of Japanese IMEs. We demon-
strate that simply decoding by explicitly con-
sidering the word boundaries achieves a fairly
strong quality-latency trade-off, as it can be
seen as equivalent to performing decoding on
aligned prefixes and thus achieving an incre-
mental anticipation-free conversion. We fur-
ther show how such a policy can be applied
in practice to achieve high-quality conversions
with minimal computational overhead. Our ex-
periments show that our approach can achieve
a noticeably better quality-latency trade-off
compared to the baselines, while also being
a more practical approach due to its ability
to directly handle streaming input. Our code
is available at https://doi.org/10.5281/
zenodo.11450159.

1 Introduction

Japanese input method editors (IMEs) allow users
to input Japanese text, which may include thou-
sands of Chinese characters called kanji, using an
unsegmented sequence of a much more limited set
of characters such as the kana syllabary or the Ro-
man alphabet (rōmaji) loosely representing its pro-
nunciations, a process commonly referred to as
kana-kanji conversion. As kana-kanji conversion
is by far the most common approach for inputting
Japanese text, Japanese IMEs have become an inte-

gral part of hundreds of millions of people’s daily
interactions with mobile devices and computers.
Because of their importance, Japanese IMEs

have a long history, dating back to 19781, with
a lot of attempts at improving them throughout
the years. However, despite the progress in tra-
ditional techniques, the potential of newer neural
network based approaches for IMEs has not yet
been fully explored, in spite of them achieving re-
markable results in various context-dependent nat-
ural language processing tasks by exploiting, e.g.,
attention-based encoder-decoder networks such as
Transformer (Vaswani et al., 2017). This is espe-
cially important since the limited phonemic inven-
tory and mora-based phonology of Japanese lead
to a very large number of homophones (and con-
sequently homographs when written in kana or rō-
maji), making context a vital factor.
The above-mentioned gap in the literature can

be mainly attributed to two reasons. The first
reason, is the noticeably high computational cost
of conventional full-sentence encoder-decoder net-
works when it comes to inference, which makes
them unsuitable for providing near real-time out-
put in simultaneous settings. And the second rea-
son, is their potentially low quality intermediate
output in simultaneous settings, which can be at-
tributed to train-test mismatch caused by different
train and test settings (i.e. offline training vs online
testing).
In this work, inspired by simultaneous machine

translation (SimulMT), we propose a simple de-
coding policy to enable the use of attention-based
encoder-decoder networks for simultaneous kana-
kanji conversion in the context of Japanese IMEs.
We demonstrate that simply decoding by explic-
itly considering the word boundaries achieves a
fairly strong quality-latency trade-off, as it can

1In which Toshiba, JW-10, the first Japanese language
word processor, was introduced.

8043

https://doi.org/10.5281/zenodo.11450159
https://doi.org/10.5281/zenodo.11450159


be seen as equivalent to performing decoding on
aligned prefixes and thus achieving an incremen-
tal anticipation-free conversion by leveraging the
monotonic nature of kana-kanji conversion. We
further show how such a policy can be applied in
practice to achieve high-quality conversions with
minimal computational overhead. More specifi-
cally, we utilize online word-boundary predictions
from an auxiliary linear layer to perform decoding
on aligned prefixes, while simultaneously employ-
ing an extra auxiliary linear layer incorporated in
a wait-k fashion to allow backtracking and correc-
tions in case of mismatches with previous online
boundary predictions.
Our experiments on conversion quality, in addi-

tion to both computational and non-computational
(i.e. the lag between source and target) latencies,
show that our approach can achieve a noticeably
better quality-latency trade-off compared to the
baselines, while also being a more practical ap-
proach to IMEs due to its ability to directly handle
streaming input.

2 Preliminaries

2.1 Kana-Kanji Conversion
Kana-kanji conversion, the core element of
Japanese IMEs, involves converting a hiragana se-
quence representing the underlying phonetic form,
to the corresponding written surface form, consist-
ing of a kana-kanji mixed sequence. The com-
plex and context-dependant relation between kana
and kanji, in addition to the lack of delimiters
in standard Japanese text and input, makes kana-
kanji conversion a non-trivial task. For exam-
ple, the very simple kana sequence “はる” (read
as “ha ru”) has more than 4000 potential surface
forms based on two different possible segmenta-
tions, making educated guesses without consider-
ing context fairly challenging.
More formally, given an unsegmented sequence

of hiragana characters x = (x1, . . . , xn), we want
to find the most likely corresponding kana-kanji
mixed tokens y = (y1, . . . , ym), m ≤ n, where
there is a monotonic many-to-one relation between
their alignments. That is, given an alignment func-
tion a(s) = t, which maps the hiragana index s to
the kanji index twhere ya(s) corresponds to xs, we
have:

s1 < s2 =⇒ a(s1) ≤ a(s2) (1)

This monotonic and many-to-one relation is

yo
よ

i
い

ha
は

n
ん

no
の

u
う

ga
が

a
あ

ru
る

良い 反応 が ある

Figure 1: Alignment representation between the surface
form of the sentence “There is a good response” and its
underlying kana representation, with yellow/bold char-
acters representing word-boundaries. Note that here the
kana sequence is tokenized as characters while the kana-
kanji mixed tokens represent subwords.

more clearly illustrated by the non-crossing con-
verging connections in Figure 1, which depicts the
alignments between the surface form of an exam-
ple sentence and its underlying kana sequence.
Considering the similarities between the two

tasks, we proceed to formulate kana-kanji conver-
sion as a translation from a kana source sequence
to the corresponding kana-kanji mixed target se-
quence, similar to Huang et al. (2018). This inter-
pretation is especially useful as NMT can be seen
as the prototypical example of applying encoder-
decoder networks to sequence transduction.
More specifically, given the simultaneous na-

ture of kana-kanji conversion in IMEs, we will
treat it as a case of simultaneous NMT within the
prefix-to-prefix framework (Ma et al., 2019).

2.2 Full-Sentence NMT
Conventional full-sentence NMT involves first
processing the input sequence x = (x1, . . . , xn)
using an encoder before passing it to a decoder,
which then greedily predicts the next target token
based on both the input sequence and the current
partial hypothesis ŷ<t, building the final hypothe-
sis ŷ = (ŷ1, . . . , ŷm) in an autoregressive fashion,
where:

ŷ = argmax
y

P (y | x) (2)

= argmax
y

|y|∏

t=1

P (yt | y<t,x) (3)

2.3 Simultaneous NMT
Simultaneous NMT (Satija and Pineau, 2016; Cho
and Esipova, 2016; Gu et al., 2017; Ma et al.,
2019), in which (partial) translation is generated
before reading the entire source sentence, can be
seen as a very similar task to (simultaneous) kana-

8044



kanji conversion. Simultaneous MT aims at min-
imizing latency while achieving the highest qual-
ity output possible which are also of importance in
kana-kanji conversion.
Formally, simultaneous NMT within prefix-to-

prefix framework (Ma et al., 2019), models the
probability P (y | x) as the following:

ŷ = argmax
y

P (y | x) (4)

= argmax
y

|y|∏

t=1

P (yt | y<t,x≤g(t)) (5)

where the monotonic non-decreasing function g(t)
denotes a decoding policy, that is, a policy which
decides the number of source tokens processed
when predicting the target token yt. In other
words, at decoding time t, g(t) source tokens must
have been READ before conducting a WRITE op-
eration.
Generally, the decoding policies are divided

into fixed and adaptive policies. Fixed policies,
as the name suggests, incorporate a prescribed
READ/WRITE decision-making which does not
rely on the exact input. One of the simplest and
most widely used fixed policies is thewait-k policy
(Ma et al., 2019) which initially waits for k input,
before starting to generate an output on every new
input. Adaptive policies on the other hand, usu-
ally rely on complex external agents to decide be-
tween READ/WRITE operations based on the in-
put. Adaptive policies constitute most of the early
work on simultaneous NMT (Satija and Pineau,
2016; Gu et al., 2017) and they can usually be
seen as offering better quality-latency (especially
non-computational latency) trade-off at the cost of
added complexity.
One of the biggest hurdles when it comes to si-

multaneous MT is anticipation. Anticipation oc-
curs when the model is required to make predic-
tions representing input yet to be seen, forcing it to
make predictions based on hallucinated future in-
put, at the cost of translation quality. This is more
apparent in Table 1, which illustrates the wait-3
policy failing to keep up with the high fidelity of
kanji when applied to kana-kanji conversion, and
being forced to anticipate after time step t ≥ 3.

3 Alignment-Based Decoding Policy

3.1 Policy Definition
As briefly discussed, factors such as high-variance
fidelity and different word orders (in case of natu-

s t Input Output

1 - あ -
2 - あし -
3 1 あした 明日
4 2 あしたは 明日は
5 3 あしたはあ 明日は雨
6 4 あしたはあめ 明日は雨？
7 5 あしたはあめで 明日は雨？？
8 6 あしたはあめです 明日は雨？？？

Table 1: A hypothetical example for converting the
kana sequence “あしたはあめです” (“a shi ta ha a me
de su”), meaning “tomorrow will be rainy”, using the
wait-3 policy. We can see that after only a few initial
inputs, the model is forced to anticipate and generate
outputs for input either partially seen (orange/bold) or
not seen at all (red question marks).

yo
よ

i
い

ha
は

nn
ん

no
の

u
う

ga
が

a
あ

ri
り

ma
ま

su
す

.
。

良い

反応

が

あり

ます
。

tgt\src

Figure 2: An overview of the alignment-based decod-
ing policy on a source-target grid, showing READ (hor-
izontal) and WRITE (vertical) operations on a sample
sentence translating to “There is a good response”.

ral languages) make avoiding anticipation highly
challenging when dealing with different source
and target languages. Nevertheless, consider-
ing the monotonic and many-to-one nature of
alignments between kana and kanji, knowing the
word-boundaries is sufficient for aligning both se-
quences when producing intermediate outputs, and
consequently, achieving anticipation-free kana-
kanji conversion. Figure 1 demonstrates how
word-boundaries reveal alignment between those
sequences.
Leveraging this fact, we propose a word-

boundary-based decoding policy for anticipation-
free kana-kanji conversion. This policy is depicted
in Figure 2, which shows the source-target grid for
a sample conversion. As illustrated, in this pol-
icy we perform consecutive READ operations un-
til reaching a word boundary, at which we conduct
a WRITE operation, eliminating the need for any
anticipation.

8045



Following Equation 5, we define our adaptive
decoding policy g(t) as:

g(t) = argmin
s

(
s∑

1

cs = t

)
(6)

cs = 1a(s) ̸=a(s+1) (7)

where cs indicates the word boundary status of the
corresponding hiragana input xs. Taking the first
output y1 in the example illustrated in Figure 2, the
corresponding input, which should be up to after
the first input including t = 1 boundaries, is x≤2.
This is because c1 = 0 and c2 = 1 due to only x2
being a word boundary, which results in g(t) = 2

3.2 Policy Classifier
To obtain word-boundaries ĉ = {ĉ1, . . . , ĉn}, ĉs ∈
{0, 1} in an online fashion at inference time, we
define P (c | x) as:

ĉ(0) = argmax
c

P (c | x) (8)

= argmax
c

n∏

s=1

P (cs | x≤s) (9)

However, basing boundary predictions only on
past context can make accurate boundary predic-
tions, especially at the beginning of the sentence,
challenging. To alleviate that problem by also in-
corporating future context into our boundary pre-
dictions, we can redefineP (c | x) in a wait-k fash-
ion (Ma et al., 2019) as:

ĉ(1) = argmax
c

P (c | x) (10)

= argmax
c

n∏

s=1

P (cs | x≤s+k−1) (11)

Nevertheless, the wait-k boundary predictor
cannot be seen as a replacement due to online re-
quirements (i.e. considerable lag between input
and output being unacceptable), and thus needs
to be incorporated alongside ĉ(0). That is, we
train two separate classifiers, ĉ(0), making predic-
tions based on past observations, and ĉ(1), making
predictions based on future observations, once ob-
served.
In practice, to obtain word-boundaries ĉ(0), we

add a linear binary classifier with the weights
w(0) ∈ Rdmodel , where dmodel refers to the output
dimensions of the encoder, on top of the encoder
stack. This layer makes boundary predictions on
each input character xs, and if the prediction is

positive, the model will make predictions in accor-
dance with Equation 7 until it reaches an end-of-
word token. That is:

ĉ(0)s = 1sigmoid(u(0)(s))≥0.5 (12)

u(0)(s) = w(0) · es + b(0) (13)

where es refers to encoders hidden state output for
the input hiragana xs.
To calculate ĉ(1), we add another linear layer on

top of the encoder, this time with weights w(1) ∈
Rk×dmodel which runs in a wait-k fashion, which
can also attend future input tokens, making more
accurate predictions. Namely:

ĉ(1)s = 1sigmoid(u(1)(s))≥0.5 (14)

u(1)(s) = w(1) · concat(es:s+k−1) + b(1) (15)

This second classifier is used backtracking and
triggering corrections if there are any mismatches
between our boundary predictors, in which case
the boundary prediction results will be overridden
by ĉ(1). Assuming conversion being at the input
step xϕ, we have:

ĉs =

{
ĉ
(0)
s ϕ− k + 1 < s ≤ ϕ

ĉ
(1)
s 0 ≤ s ≤ ϕ− k + 1

(16)

This correction mechanism is illustrated in Fig-
ure 3. In this example, a prediction mismatch is de-
tected for x6 while processing the input x9. This
triggers a correction of all the outputs which had
attended to x6, shown in crossed gray blocks.
As for training, the classifiers are trained in mul-

titask settings, in which the model is trained on the
objectives of correct kana-kanji conversions and
boundary predictions. That is, we aim at minimiz-
ing the following loss function:

L = LNMT + λ · (Lĉ(0) + Lĉ(1)) (17)

whereLNMT,Lĉ(0) andLĉ(1) indicate cross entropy
losses for the conversion and boundary predictions
respectively, and λ = 20 denotes the weight for the
boundary prediction losses.

4 Experiments and Results

In this section, we will review various experiments
to compare both the conversion quality and laten-
cies of our model against various baselines such as
the previously-mentioned wait-k policy (Ma et al.,
2019), which initially waits for k READs before

8046



s u
すs=1

ba
ばs=2

ya
やs=3

i
いs=4

fu
ふs=5

ri
りs=6

nu
ぬs=7

ki
きs=8

no
のs=9

ko
こs=10

tsu
つs=11

素早
い ふり 抜き

振り
抜き の コツ

0

0

0

0

0

0

1

1

0

0

1

0

0

0

1

1

1 0 1

Encoder:

Decoder before
correction:

Decoder after
correction:

Online classifier c(0):

Wait-4 classifier c(1):

Figure 3: Overview of the incremental encoding/decoding incorporating an alignment-based decoding policy on a
sample phrase translating to “Tips for fast (golf) swings”. The figure demonstrates a correction step triggered by
the mismatch of the outputs of the online and wait-4 classifiers at s = 6. Note that some details such as subwords
has been omitted for brevity.

conducting aWRITE, the re-translation (Arivazha-
gan et al., 2020) approach, which treats the conver-
sion as a full-sentence offline conversion on each
new input, and our modified version of the wait-k
policy, which continuously waits for k input before
making an output instead of waiting only before
the initial output to provide a stronger baseline by
better handling the high fidelity of kanji.
Unlike offline sentence-level kana-kanji conver-

sion, kana-kanji conversion in the context of IMEs
has additional requirements besides the final con-
version quality, due to its simultaneous nature.
Firstly, non-computational latency, which reflects
how closely the output follows the input, is a ma-
jor factor in evaluation. In addition. the computa-
tional cost and the intermediate inference latency
caused by it becomes a much bigger factor due
to near real-time requirements. Finally, interme-
diate conversion quality, which can be reflected in
non-computational latency metrics, is also of im-
portance for this task.

4.1 Experiment Settings

4.1.1 Dataset

The Balanced Corpus of Contemporary Written
Japanese (BCCWJ) (Maekawa et al., 2014) is cho-
sen as our dataset. BCCWJ can be seen is the
standard dataset used for training and evaluating
Japanese IMEs, as it provides a rich, balanced se-
lection of various sources, encompassing a wide
range of language varieties. Furthermore, BCCWJ
provides a relatively large subset of manually re-
viewed samples which is crucial for an unbiased
evaluation, making it one of the very few, if not
the only, viable option.
As briefly mentioned, the annotations provided

Data
Splits #Samples

Avg SRC
Length
(char)

Avg TGT
Length

Character Subword

Train 4,797,944 126.278 99.704 24.966
Val 252,524 135.404 105.913 26.696
Test 2,000 130.277 99.204 21.801

Table 2: Number of samples and their average lengths
per our data splits.

by BCCWJ contain both automatically generated
samples alongside samples annotated by humans,
which constitutes around 1% of the corpus, labeled
as Core. We limit our test data to the Core section
of BCCWJ for a more representative evaluation, in
addition the size of the test split is reduced to make
evaluation computationally feasible. The details
about our splits can be found in Table 2.
To enable incremental encoding, kana se-

quences are tokenized as characters, on the other
hand for the kana-kanji sequences we apply BPE
(Sennrich et al., 2016) on top of BCCWJ’s short
unit word (SUW) tokenization to decrease the vo-
cabulary size, which is set to 16000 in our ex-
periments. To be able to continue to use the
word-boundary information provided by the cor-
pus, we employ end-of-word suffixes when con-
ducting subword tokenization. These suffixes later
help us detect the equivalent multi-stepWRITE op-
eration for each single-step WRITE operation in
the case of SUW tokenization.

4.1.2 Implementation Details
Although the word-boundary-based decoding pol-
icy can be applied to almost any encoder-decoder
network, here we have adopted the Transformer

8047



architecture, as it has been shown to outperform
other architectures in various tasks, including
NMT.
Besides the auxiliary layers, our implementation

mostly follows the standard Transformer architec-
ture, with three small differences:

• We use a causal encoder, which allows us to
encode the input incrementally without hav-
ing to recalculate the hidden states of the pre-
vious input tokens, and also make training
much more efficient (Elbayad et al., 2020).

• We use a cross-attention mask on training so
that each target only attends to previous and
its own underlying kana sequences to avoid
train-test mismatch.

• We adopt a deep encoder and shallow decoder
consisting of 10 and 2 layers respectively.
This has two benefits: Higher accuracy for
our boundary classifiers due to the increased
number of available parameters, and less vari-
ance in inference time, especially in the case
of corrections which can lead to an increased
number of decoding steps.

4.2 Final Conversion Quality
For the evaluation of the final conversion quality,
we use precision (P ), recall (R), character error
rate (CER), and sentence-level accuracy (Accsent)
defined as the following, mostly similar to previ-
ous work on IMEs (Mori et al., 1998; Tokunaga
et al., 2011; Okuno and Mori, 2012):

P =
len(lcs(y, ŷ))

len(y)
(18)

R =
len(lcs(y, ŷ))

len(ŷ)
(19)

CER =
lev(y, ŷ)
len(y)

(20)

Accsent = 1(lev(y,ŷ)=0) (21)

where lcs(·) refers to the longest common subse-
quence, and lev(·) to the standard Levenshtein dis-
tance, both of which are applied on character units,
while y and ŷ refer to the reference and predicted
kana-kanji mixed sequences respectively.
The results for final conversion quality, pro-

vided in Table 3, show that the re-translation frame-
work provides the best final conversion quality.
This is as expected, considering that the final qual-
ity of the re-translation framework is identical to

an offline full-sentence model. On the other hand,
the wait-k policy achieves a considerably low con-
version quality, something which can be attributed
to anticipation caused by the high fidelity of kana-
kanji mixed tokens. Finally, following the re-
translation framework’s results, the modified wait-
k policy and our approach provide a close and
fairly acceptable final conversion qualities.

4.3 Non-Computational Latency
To assess the non-computational latency, which
measures how out of sync the input and output se-
quences are, we use a slightly modified version
of revision-aware average lagging (Zheng et al.,
2020) as our metric:

RAL(x, ŷ) =
1

τ(|x|)

τ(|x|)∑

t=1

LR(t)− t− 1

r
(22)

where τ(|x|) refers to the cut-off step and LR(t)
is defined as the source time step s which corre-
sponds to the last revision of tth target token. How-
ever different fromZheng et al. (2020), we define r
as max(|ŷ|, |y∗|)/|x| instead of |y|/|x|, where y∗

represents the reference prediction. This is to bet-
ter handle under-/over-generations, which are com-
mon in some of our baselines.
Referring to the results at Table 3, the wait-k

approach, especially at lower k, provides the best
latency results, despite a bad conversion quality.
This can be attributed to the tendency of wait-k to
under-generate, which is caused by too much an-
ticipation due to the high fidelity of the target se-
quences. Next, we can see the results for our pol-
icy followed by the results for the re-translation ap-
proach, both of which also offer high-quality con-
versions. The reason re-translation shows higher
latency than our model, is due to its sometimes
lower intermediate conversion quality, which can
also be reflected in the RAL metric. Finally, we
can see that the modified version of wait-k entails
quite high latency numbers, as opposed to its good
conversion quality.

4.4 Computational Latency
Computational latency is one of themost important
factors in IMEs, especially when it comes to on-
device processing. To measure the computational
latency, we track the time spent between each
READ operation on each test sample, and then cal-
culate the total, maximum, and average time spent
between READs based on those. Maximum time

8048



Model
Conversion Quality Non-Computational latency Computational latency

P R F1 CER Accsent RAL Mean Max Total

Re-translation 95.58 95.68 95.61 5.00 54.95 3.44 68 188 4943
Wait-3 35.40 34.11 30.96 143.51 0.04 1.38 8 32 314
Wait-6 52.13 52.83 48.81 97.46 11.85 3.07 8 31 348
Wait-9 63.80 66.47 62.40 63.56 19.65 4.60 8 24 321
Mod-wait-2 72.88 72.35 71.57 65.89 18.65 5.38 10 35 444
Mod-wait-3 93.37 93.34 93.31 7.76 44.3 11.08 9 43 438
Mod-wait-6 95.29 95.41 95.33 5.32 53.2 19.08 9 65 454

Ours 94.47 94.74 94.58 6.17 47.4 2.72 10 22 496

Table 3: Experiment results of various approaches (single runs). Results for computational latency are provided
in milliseconds, with tests conducted on two Xeon Gold 6230R CPUs using the PyTorch 2.1 (Paszke et al., 2019)
library in online settings without batch-processing to be more representative of real-world usage. Note that unlike
the original wait-k approach (Ma et al., 2019), we use a causal encoder similar to Elbayad et al. (2020) alongside
a deep encoder accompanied by a shallow decoder for our wait-k implementation to allow direct comparison.
Likewise, our re-translation baselines also incorporates a (bidirectional) deep encoder and a shallow decoder.

spent is an important factor when it comes to mea-
suring tangible lags by the user, while mean/total
times spent provide a basis for evaluating the over-
all efficacy of the approaches.
Table 3 also provides the computational latency

of our approach and other baselines. We can see
that simultaneous incremental approaches all pro-
vide a much more efficient conversion compared
to the re-translation approach. While the mean
times spent are mostly similar within those ap-
proaches, the standard wait-k policy provides the
smallest total time spent. With regard to the max-
imum time spent, our approach demonstrates the
best results.
Lastly, Figure 4 allows us to better see the la-

tency and quality trade-offs between all the ap-
proaches. Here, we can see that both our and the re-
translation approaches give very good results for
non-computational latency and conversion quali-
ties. However, taking the computational latency
into account, our approach provides a better solu-
tion with a substantial margin.

5 Analysis of Boundary Predictors

Boundary predictions play a central role in the
implementation of our policy, as conversion er-
rors caused by a wrong boundary prediction can
propagate to the next tokens and drastically affect
the final conversion quality of our model. In this
section, we will evaluate the performance of our
boundary predictors in isolation, and further ana-
lyze its effects on end-to-end results.

0 20 40 60 80 100 120 140
CER

2.5

5.0

7.5

10.0

12.5

15.0

17.5

No
n-

co
m

pu
ta

tio
na

l L
at

en
cy

Re-translation

Wait-3

Wait-6
Wait-9
Mod-wait-2

Mod-wait-3

Mod-wait-6

Ours

Computational Latency (Max)
22
24
31
32
35
43
65
188

Figure 4: Latencies and CER trade-off between base-
lines.

Model P R F1 Accsent #cor

Online 93.92 94.02 93.77 20.90 0
k = 2 98.63 98.27 98.37 63.20 2.184
k = 4 99.48 99.48 99.45 86.75 2.352
k = 6 99.58 99.63 99.58 89.90 2.363

Table 4: Evaluation of the boundary predictors with re-
spect to reference boundary information. #cor denotes
the average number of corrections happening per sen-
tence if the given predictor was used for corrections
alongside the online predictor.

8049



0.0 0.2 0.4 0.6 0.8 1.0
Relative Location

0.000

0.025

0.050

0.075

0.100
Pr

ob
ab

ilit
y

Figure 5: Relative position of corrections happening in
a sentence.

Boundary Prediction Quality Table 4 shows
the boundary prediction results of our online and
wait-k predictors with various k values. We can ob-
serve that even for low values of k, the wait-k pre-
dictor greatly improves prediction accuracy over
the online predictor. Interestingly, the number of
average corrections per sentence in the case of us-
ing two predictors as discussed previously, stays
mostly the same regardless of k, and appears to sta-
bilize for k ≥ 4.

Effects on End-to-End Results While bound-
ary predictor results offer insights, they don’t re-
veal their impact on overall model performance.
We thus proceed to have a look at the end-to-end
results of our model concerning our predictors in
different settings, and also compare those with
the model’s performance on reference boundary
data. The results, represented in Table 5, demon-
strate that there is a noticeable gap between con-
version qualities when using an online predictor
versus using the reference boundary data, and that
incorporating wait-k predictors alongside the on-
line predictor helps us to greatly close that gap,
achieving better conversion quality. As for non-
computational latency, we can observe that incor-
porating a wait-k predictor for backtracking can
actually slightly reduce the latency potentially due
to better conversion quality, however, the latency
keeps increasing as k increases, overtaking the ben-
efit margin. Finally, as expected, the correction
mechanism can increase the computation time, al-
though the effects seem to be quite marginal.

Relative Position of Corrections Figure 5
shows the relative positions of a sentence in
which boundary prediction mismatches, and con-
sequently corrections, occur. We can observe
that corrections tend to happen mostly uniformly
across sentences, with a slightly higher change to
happen at the beginning of a sentence, enabling a
consistent experience for the end user with regard
to possible corrections made.

6 Previous Work

In the conventional approach to Japanese IMEs,
kana-kanji conversion is conducted within the
noisy channel framework which incorporates a (ei-
ther statistical or neural) language model, and a
translation model, to find the best kana-kanji rep-
resentation for a kana sequence (Mori et al., 1998;
Kudo, 2011; Yao et al., 2018).
Besides the conventional framework, other ap-

proaches such as using discriminative methods
(Tokunaga et al., 2011) and incorporating a joint
source channel model (Okuno and Mori, 2012)
have been proposed to further improve the results.
Although limited to Chinese, more recently

there have been some attempts to incorporate mod-
ern neural architectures in IMEs. Huang et al.
(2018) implements a Chinese IME by formulating
pinyin to Chinese conversion as a neural machine
translation (NMT) task and uses an attention-based
encoder-decoder model. Nonetheless, using a full-
sentencemodel and a bi-directional encoder makes
it computationally inefficient. Tan et al. (2022) ex-
plores using GPT (Radford and Narasimhan, 2018;
Radford et al., 2019) for pinyin to Chinese con-
version, however, their solutions are also either in-
compatible with Japanese or computationally inef-
ficient for real-world scenarios.

7 Conclusion and Future Work

In this work we proposed the alignment-based
decoding policy for achieving high-quality low-
latency simultaneous kana-kanji conversion using
neural encoder-decoder networks. Our results
demonstrate that neural encoder-decoder networks
can be a viable option for high-quality Japanese
IMEs, and we thus encourage more exploration
in that area, especially with regards to efficiently
adding common IME features such as next-word
prediction.
In the future, we hope to further address remain-

ing efficacy questions such as memory consump-
tion when it comes to utilizing neural encoder-
decoders for IMEs to enablemore viable on-device
solutions.

8 Limitations

Although our proposed approach is not limited
to Japanese, its advantages might no longer be
tangible when applied to other languages due to
some language-specific assumptions such as un-
segmented input and a many-to-one alignment be-

8050



Model
Conversion Quality Non-Computational latency Computational latency

P R F1 CER Accsent RAL Mean Max Total

Reference (w/o correction) 95.07 95.27 95.15 5.51 50.25 2.55 10 18 486
Online (w/o correction) 88.07 88.35 88.12 14.28 21.9 2.62 10 20 486
k = 2(w/correction) 92.95 93.05 92.97 8.09 40.00 2.61 10 20 477
k = 4(w/correction) 94.48 94.74 94.58 6.17 47.4 2.72 10 21 496
k = 6(w/correction) 94.58 94.81 94.67 6.04 48.6 2.92 10 24 495

Table 5: End-to-end results for various boundary predictor settings.

tween input and output. For example, in the case of
some types of simultaneous pinyin to Chinese con-
version, we are provided with the segmented input
and we can assume a fidelity of one, which could
potentially make the conversion possible with a
simpler model.
Moreover, despite their advantages, neural-

network-based approaches (especially approaches
based on encoder-decoder architectures) can have
some disadvantages compared to conventional
methods. For instance, in addition to the higher
computational cost, providing customizations such
as modifiable vocabulary and online learning are
not trivial in deep learning approaches, requiring
further investigation regarding their viability.

References
N. Arivazhagan, Colin Cherry, Wolfgang Macherey,

and George F. Foster. 2020. Re-translation versus
Streaming for Simultaneous Translation. In Interna-
tional Workshop on Spoken Language Translation.

Kyunghyun Cho and Masha Esipova. 2016. Can neu-
ral machine translation do simultaneous translation?
ArXiv, abs/1606.02012.

Maha Elbayad, Laurent Besacier, and Jakob Verbeek.
2020. EfficientWait-kModels for SimultaneousMa-
chine Translation. Publisher: arXiv Version Num-
ber: 2.

Jiatao Gu, Graham Neubig, Kyunghyun Cho, and Vic-
tor O.K. Li. 2017. Learning to Translate in Real-time
with Neural Machine Translation. In Proceedings of
the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume
1, Long Papers, pages 1053–1062, Valencia, Spain.
Association for Computational Linguistics.

Yafang Huang, Zuchao Li, Zhuosheng Zhang, and Hai
Zhao. 2018. Moon IME: Neural-based Chinese
Pinyin Aided Input Method with Customizable As-
sociation. In Proceedings of ACL 2018, System
Demonstrations, pages 140–145, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Taku Kudo. 2011. Tōkei-teki kanakanji henkan
shisutemu Mozc [Statistical kana-kanji conversion
system Mozc]. The 17th Annual Conference of the
Association for Natural Language Processing, 2011.

Mingbo Ma, Liang Huang, Hao Xiong, Renjie Zheng,
Kaibo Liu, Baigong Zheng, Chuanqiang Zhang,
Zhongjun He, Hairong Liu, Xing Li, Hua Wu, and
Haifeng Wang. 2019. STACL: Simultaneous Trans-
lation with Implicit Anticipation and Controllable
Latency using Prefix-to-Prefix Framework. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 3025–
3036, Florence, Italy. Association for Computational
Linguistics.

Kikuo Maekawa, Makoto Yamazaki, Toshinobu
Ogiso, Takehiko Maruyama, Hideki Ogura, Wakako
Kashino, Hanae Koiso, Masaya Yamaguchi, Makiro
Tanaka, and Yasuharu Den. 2014. Balanced corpus
of contemporary written Japanese. Language
Resources and Evaluation, 48(2):345–371.

Shinsuke Mori, Masatoshi Tsuchiya, Osamu YAMAJI,
and Makoto Nagao. 1998. Kana-Kanji Conversion
by A Stochastic Model. IPSJ SIG Notes, 21:75–81.
Publisher: Information Processing Society of Japan
(IPSJ).

Yoh Okuno and Shinsuke Mori. 2012. An Ensemble
Model of Word-based and Character-based Models
for Japanese and Chinese Input Method. In Proceed-
ings of the Second Workshop on Advances in Text
Input Methods, pages 15–28, Mumbai, India. The
COLING 2012 Organizing Committee.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Jun-
jie Bai, and Soumith Chintala. 2019. Pytorch: An
imperative style, high-performance deep learning li-
brary.

Alec Radford and Karthik Narasimhan. 2018. Im-
proving language understanding by generative pre-
training.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

8051

https://doi.org/10.48550/ARXIV.2005.08595
https://doi.org/10.48550/ARXIV.2005.08595
https://aclanthology.org/E17-1099
https://aclanthology.org/E17-1099
https://doi.org/10.18653/v1/P18-4024
https://doi.org/10.18653/v1/P18-4024
https://doi.org/10.18653/v1/P18-4024
https://ci.nii.ac.jp/naid/10029478915/en/
https://ci.nii.ac.jp/naid/10029478915/en/
https://ci.nii.ac.jp/naid/10029478915/en/
https://doi.org/10.18653/v1/P19-1289
https://doi.org/10.18653/v1/P19-1289
https://doi.org/10.18653/v1/P19-1289
https://doi.org/10.1007/s10579-013-9261-0
https://doi.org/10.1007/s10579-013-9261-0
https://cir.nii.ac.jp/crid/1573387452004359808
https://cir.nii.ac.jp/crid/1573387452004359808
https://aclanthology.org/W12-4802
https://aclanthology.org/W12-4802
https://aclanthology.org/W12-4802
http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1912.01703


Harsh Satija and Joelle Pineau. 2016. Simultaneousma-
chine translation using deep reinforcement learning.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Minghuan Tan, Yong Dai, Duyu Tang, Zhangyin Feng,
Guoping Huang, Jing Jiang, Jiwei Li, and Shum-
ing Shi. 2022. Exploring and Adapting Chinese
GPT to Pinyin Input Method. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1899–1909, Dublin, Ireland. Association for Compu-
tational Linguistics.

Hiroyuki Tokunaga, Daisuke Okanohara, and Shinsuke
Mori. 2011. Discriminative Method for Japanese
Kana-Kanji Input Method. InWTIM@IJCNLP.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need.

Jiali Yao, Raphael Shu, Xinjian Li, Katsutoshi Oht-
suki, and Hideki Nakayama. 2018. Real-time Neu-
ral-based Input Method.

Renjie Zheng, MingboMa, Baigong Zheng, Kaibo Liu,
and Liang Huang. 2020. Opportunistic Decoding
with Timely Correction for Simultaneous Transla-
tion. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics,
pages 437–442, Online. Association for Computa-
tional Linguistics.

A User Experience of Japanese IMEs

Although most Japanese IMEs provide a similar
user experience (UX) for inputting text via kana-
kanji conversion, the small differences can poten-
tially have great implications on the underlying
approach and also the evaluation strategy. Two
approaches can generally be found within the de-
sign of Japanese IMEs from the view point of UX
paradigms, opt-in conversion, in which an IME ex-
pects explicit user actions for kana-kanji conver-
sion, and opt-out conversion, in which the aim is
to conduct the conversion with as little interruption
as possible.

Opt-in Conversion The UX of most common
approaches to kana-kanji conversion can be con-
sidered to fall into the opt-in conversion paradigm,
which heavily relies on explicit user actions.

The opt-in paradigm, does not conduct any im-
plicit conversions on the input, rather it requires

仮名漢字

かな漢字

かなかんじ①

仮名漢字② へんかん

変換

返還

③ 仮名漢字変換

(a) The opt-in approach. Here, in Step 1, the user has to ex-
plicitly select a candidate for the input kana to conduct conver-
sion. Step 2 shows the same process repeated for the second
chunk to get the final output of Step 3.

① かな漢字変換

かな漢字② 変換

仮名漢字

カナ漢字

③ 仮名漢字変換

(b) The opt-out approach. Here, in Step 1, the conversion is
already implicitly applied on top the user input without any
explicit actions. Step 2 shows an optional user interaction to
fix a hypothetical mistake to get the final output of Step 3.

Figure 6: Kana-kanji conversion within the two differ-
ent UX paradigms for the user input phrase “かなか
んじへんかん” (“ka na ka n ji he n ka n”), meaning
“kana-kanji conversion”.

the user to opt in for the desired conversion by
explicitly choosing from a candidate list provided
separately from the input, as demonstrated in Fig-
ure 6a.
The opt-in approach encourages the users to con-

duct conversions in short chunks rather than longer
phrases or sentence units, which can result in many
manual interactions by the user to conduct the con-
version. In addition, conducting conversions in
short chunks leads to more limited context for the
IME, and subsequently lower quality suggestions.

Opt-out Conversion The alternative paradigm,
namely the opt-out conversion, tries to provide a
more seamless and interruption-free experience by
reducing the required number of user actions.
The opt-out conversion paradigm, illustrated in

Figure 6b, simultaneously applies the best conver-

8052

https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/2022.acl-long.133
https://doi.org/10.18653/v1/2022.acl-long.133
https://doi.org/10.48550/ARXIV.1706.03762
https://doi.org/10.48550/ARXIV.1706.03762
https://doi.org/10.48550/ARXIV.1810.09309
https://doi.org/10.48550/ARXIV.1810.09309
https://doi.org/10.18653/v1/2020.acl-main.42
https://doi.org/10.18653/v1/2020.acl-main.42
https://doi.org/10.18653/v1/2020.acl-main.42


sion prediction on top of the input field as the user
types without requiring any explicit actions. In this
approach the suggestions are usually hidden by de-
fault to encourage the user to continue typing un-
interrupted while also providing more context to
the IME for better conversion, and are only shown
by explicit user actions or in situations such as low
confidence conversions by the IME (i.e Step 2 in
Figure 6b).
The opt-out conversion paradigm can lead to a

more efficient experience in practice as most con-
versions will not require explicit corrections, espe-
cially that longer context can help the IME pro-
vide higher quality conversions. Due to this, we
propose our approach with the opt-out paradigm
in mind, meaning focusing on sentence-level and
top-1 conversion results instead of ranking-based
results of shorter chunks.

B Prediction Errors Caused by Our
Approach

Generally the errors occurring within our approach
can be categorized in two main groups, namely:

• Errors caused by wrong boundary predictions

• Errors caused by alternative writing styles

ErrorsCaused byWrongBoundary Predictions
This type of error is mostly unique to our approach
as it heavily relies on word boundary predictions to
conduct conversion. Although subword tokeniza-
tion appears to allow our approach to recover from
some wrong boundary predictions, at points such
mistakes lead to actual conversion errors, as shown
in the below example:

Source:
e
え

n
ん

ze
ぜ

tsu
つ

wo
を

chū
ちゅう

shi
し

Predicted
Boundaries:

e
え

n
ん

ze
ぜ

tsu
つ

wo
を

ch
ちゅ

u
う

shi
し

Prediction: ...
enzetsu
演説

wo
を

chūshi
中止

(...stop the speech)

Reference: ...
enzetsu
演説

wo
を

chūshi
注視

(...pay close attention to the speech)

in which the model predicts an extra boundary be-
tween “ちゅう” (“chū”) and “し” (“shi”), leading
to an incorrect conversion for the word “注視”.

Errors Caused by Alternative Writing Styles
This type of error is not really unique to our pro-
posed approach but rather originates from the char-
acteristic of the Japanese language, in which one
word can have multiple acceptable surface forms
(with potentially variable dependency on context).
This issue is usually mitigated by presenting the
user with a ranked list of conversion candidates
instead or alongside the best prediction. Below
shows an example of such a conversion error made
by our model:

Source:
ze
ぜ

hi
ひ

ze
ぜ

hi
ひ

ha
は

i
い

ke
け

n
ん

shi
し

ta
た

i
い

Prediction:
zehizehi
ぜひぜひ、

haiken shitai
拝見したい...

(...would really like to see...)

Reference:
zehizehi
是非是非、

haiken shitai
拝見したい...

...would really like to see...)

here the alternative writing of “是非” has lead to a
different prediction compared to the reference.
In addition two the twomain groups, another no-

table error category, although less frequent, con-
sists of words unseen in the training data, particu-
larly proper nouns which can have a much greater
degree of irregularities, making it harder for the
model to guess the correct surface form based on
contextual cues. However, similar to the preced-
ing category, the challenge of out-of-vocabulary
(OOV) words is not unique to our approach.
This category of errors can potentially be miti-

gated by standard online learning approaches.

C Training Environment and
Hyperparameters

In this section we briefly discuss the training en-
vironment details and hyperparameters not men-
tioned in the main body of this paper. For finer
details please refer to our code.

Hardware Training was conducted on two
40GB NVIDIA A100 GPUs, totalling around 6.2
GPU hours per model. Although even much
shorter training time of around 2.0 GPU hours
showed fairly acceptable results in our experi-
ments.

Software Table 6 includes some of the main soft-
ware and packages used in our work.

Hyperparameters Table 7 represents some of
the main details and hyperparameters used for our

8053



Name Version
cuda-runtime 11.8.0
libcublas 11.11.3.6
libblas 3.9.0
numpy 1.26.0
pandas 2.1.1
python 3.11.6
pytorch 2.1.0
pytorch-lightning 2.0.9
sentencepiece 0.1.99
tokenizers 0.13.3

Table 6: Package versions.

training. The choices for hyperparameters are
made mostly based on the standard Transformer
implementation (Vaswani et al., 2017), task re-
quirements (e.g. deep encoder and shallow de-
coder for faster inference), andmanual tuning. The
values are kept consistent between various models
as much as possible to enable direct comparison of
evaluation results.

Hyperparameter Value
Activation ReLU
dmodel 512
Dropout 0.1
Max Len 1024
Epochs 9
#Attention Heads 8
#Decoder Layers 2
#Encoder Layers 10
Source Vocab Size 300
Target Vocab Size 16000
Optimizer AdamW
LR 0.0005
LR Scheduler Linear + Cosine Decay
Warmup Steps 2500
Weight Decay 0.0001
Betas (0.9, 0.98)
Epsilon 1.0e-09
#Total Parameters ∼48M

Table 7: Model details and hyperparameters.

8054


