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Abstract

Although large language models (LLMs) ex-
hibit remarkable capacity to leverage in-context
demonstrations, it is still unclear to what extent
they can learn new facts or concept definitions
via prompts. To address this question, we ex-
amine the capacity of instruction-tuned LLMs
to follow in-context concept annotation guide-
lines for zero-shot sentence labeling tasks. We
design guidelines that present different types
of factual and counterfactual concept defini-
tions, which are used as prompts for zero-shot
sentence classification tasks. Our results show
that although concept definitions consistently
help in task performance, only the larger mod-
els (with 70B parameters or more) have limited
ability to work under counterfactual contexts.
Importantly, only proprietary models such as
GPT-3.5 can recognize nonsensical guidelines,
which we hypothesize is due to more sophis-
ticated alignment methods. Finally, we find
that FALCON-180B-CHAT is outperformed by
LLAMA-2-70B-CHAT is most cases, which in-
dicates that increasing model scale does not
guarantee better adherence to guidelines. Al-
together, our simple evaluation method reveals
significant gaps in concept understanding be-
tween the most capable open-source language
models and the leading proprietary APIs.1

1 Introduction

Large language models (LLMs) are known to dis-
till knowledge from vast datasets during the pre-
training phase (Brown et al., 2020). Such knowl-
edge can be queried via prompting, which allows
the application of LLMs to several knowledge-
intensive tasks in zero-shot and few-shot settings.
In particular, recent work demonstrates promising
applications of LLMs to reduce the cost of data
annotation in several domains (Wang et al., 2021;
Agrawal et al., 2022; Zhu et al., 2023).

1Code and dataset are available at https://github.com/
thefonseca/concept-guidelines

Consider the following concepts:
- Background: A sentence that provides
context, foundational knowledge, or
relevant information about the research
topic, existing theories, prior studies,
or the broader scientific field in which
the research is situated.

(more definitions cK: δ(cK). . . )
- Conclusion: A sentence that summarizes
the key takeaways, implications, inter
pretations, or insights derived from the
study’s results.

Classify the text below into one of the
categories listed above. Be concise and
write only the category name.

Text: Therefore, the phase transition
can be classified as essentially driven
by Coulomb interactions.
Concept: Conclusion

Figure 1: An abridged example of zero-shot sentence
classification using a concept guideline prompt. We
perform controlled interventions in concept defini
tions (pairs of concept labels cK and their descriptions
δ(cK)) while keeping the task prompt fixed. We aim
to gauge the capacity of the model to learn new concepts
during inference, without in-context demonstrations.

Most data labeling efforts based on LLMs lever-
age in-context demonstrations to elicit the desired
concepts. However, previous work suggests that
language models cannot learn from in-context
ground-truth labels but just leverage demonstra-
tions to infer the task format and label space (Min
et al., 2022). In contrast, human annotators typ-
ically follow guidelines, which in addition to ex-
amples, include concept definitions (Liakata and
Soldatova, 2008) that complement and modify the
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annotator’s prior concept understanding to align
with the labeling goals.

In this work, we assess the capacity of LLMs
to follow analogous in-context concept annota-
tion guidelines for sentence classification tasks.
Our goal is to verify if language models can learn
from in-context definitions and change their behav-
ior consistently in downstream tasks (Onoe et al.,
2023). To this end, we design several types of
guidelines that represent both factual and counter-
factual concept definitions2. Our assumption is that
learning from concept definitions would imply the
capacity to reason in contexts that contradict the
model’s prior knowledge.

In our experiments, we evaluate the LLAMA-2
model by Touvron et al. (2023) (7B, 13B, and 70B-
parameter chat variants), FALCON-180B-CHAT

(Almazrouei et al., 2023), GPT-3.5, and GPT-4
(OpenAI, 2023) on zero-shot sentence classifica-
tion tasks (as illustrated in Figure 1). The tasks
require the recognition of scientific concepts, for
which labels are likely present in the models’ pre-
training data. (Liakata and Soldatova, 2008). To
control for pattern memorization, we also annotate
a novel dataset of company disclosures with finan-
cial concepts based on the Integrated Reporting
framework (Cheng et al., 2014).

In both domains, we observe a consistent clas-
sification performance improvement when models
have access to concept labels paired with their fac-
tual concept definitions (compared to just a list of
labels). However, when presented with counterfac-
tual guidelines, only larger models (70B parameters
or more) tend to output predictions consistent with
guidelines. Still, we observe that scaling alone is
not sufficient, as FALCON-180B-CHAT is outper-
formed by LLAMA-2-70B-CHAT in most settings.
Importantly, only proprietary models are able to
recognize unsolvable tasks, that is, ones for which
the guidelines provide nonsensical concept labels.
Finally, we find that the performance of more ca-
pable models such as GPT-3.5 is more strongly
correlated to the degree of guideline factuality com-
pared to LLAMA-2-7B, suggesting that the former
model has a more nuanced concept understanding.

Overall, some of our findings reinforce previ-
ous studies focusing on few-shot learning using

2In this work, we denote as counterfactual those concept
definitions that disagree with commonsense understanding,
which we assume to be prevalent in a default world model (Wu
et al., 2023) derived from the pre-training data. We formalize
factual and counterfactual guidelines in Section 2.1.

perturbed labels (Wei et al., 2023) and chain-of-
thought reasoning (Saparov and He, 2022). How-
ever, our classification tasks require the model
to generalize only from concept definitions, with-
out demonstrations. Additionally, unlike previous
work, we provide extensive experiments using state-
of-the-art open-source models. Although these
models may approach the aggregate performance
of proprietary APIs, our results reveal important
gaps in terms of concept understanding, especially
in counterfactual scenarios and regarding the ability
to recognize nonsensical tasks.

2 Concept Classification with Guidelines

Let S and C be random variables representing sen-
tences (from the set of token sequences S) and cor-
responding latent concepts to be inferred (from the
concept set C; e.g., whether the sentence conveys
scientific background or methods). To specify the
task, we introduce annotation guidelines G, which
specify concept labels and their definitions. Then,
the concept annotation process for a sentence s
given the guideline g is formalized as follows:

cs = argmax
c′∈C

P (C = c′ | K,G = g, S = s),(1)

where cs is the inferred concept and K represents
prior domain knowledge about the concepts of in-
terest. Then, we define a language model Pθ that
approximates Eq. 1 through conditional generation:

ys = Pθ(· | promptG(g); promptT (s)), (2)

where ys is a concept label, that is, a sequence of
tokens corresponding to a concept cs. The func-
tions promptG and promptT are textual templates
that describe concept guidelines and a concept clas-
sification task respectively (see Figure 1). These
guidelines and task prompts concatenated condi-
tion the language model generation.

The language model parameters θ capture the
prior conceptual knowledge K acquired during
pre-training and instruction-tuning. In addition,
we hypothesize that θ encodes the conditional de-
pendency between the guidelines G and the con-
cepts C as the guidelines express relationships be-
tween concept labels and their task-specific def-
initions. By performing controlled interventions
in the guidelines, we aim to measure how concept
understanding is affected by the following factors:
1) the lexical information of concept labels and
concept definitions; 2) the degree of factuality of
concept definitions. In the next section, we present
guidelines designed to capture such factors.
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2.1 Concept Guidelines
We associate each concept ci ∈ C to a natural lan-
guage definition dj ∈ D through a injective con-
cept definition function δ : C → D, where each
ci ∈ C and dj ∈ D are sequences of tokens. Each
association δ(ci) = dj represents a factual defini-
tion if i = j and a counterfactual definition other-
wise. Then, a concept guideline is formalized as a
tuple G = ⟨C,D, δ⟩. Depending on the choice of
the function δ, we derive different types of factual
and counterfactual concept guidelines, which we
describe below.

Factual guidelines Gf The factual guidelines
combine the concept labels with their correspond-
ing factual definitions, that is, δ(ci) = di for all
i. To illustrate, a factual guideline prompt would
include the following definition for the scientific
concept BACKGROUND:

Background: A sentence that provides context,
foundational knowledge, or relevant information
about the research topic, existing theories, prior
studies, or the broader scientific field in which the
research is situated.

The factual guideline serves as a control base-
line to compare against other types of guidelines.
For each of the scientific and financial concepts ex-
plored in this paper, we use definitions generated by
GPT-3.5. These definitions are further reviewed
for quality and redacted to remove explicit men-
tions of label names. We detail the generation of
concept definitions in Section 2.2.

Out-of-dictionary guidelines GOOD We replace
real concept labels ci from factual guidelines
with out-of-dictionary (OOD) words such as
Snizzlewump and Wobblequark. With those
OOD words, we remove the dependency with
respect to prior knowledge tied to the lexical
information of concept labels. The OOD labels
are generated by GPT-3.5 using the prompt:
Generate a list of random out-of-dictionary
words. The resulting words are: Flibberknock,
Quibblesnatch, Blibberflop, Ziggledorf,
Snizzlewump, Wobblequark, Jibberplunk,
Crumblefluff, Splonglewort, Dinglewhack.

Empty-definition guidelines Gε As a variant
of the factual and OOD guidelines above, we re-
place each definition with an empty string, that is,
δ(ci) = ε for all i. We denote these guidelines Gf,ε

and GOOD,ε respectively, and use them to gauge the

contribution of concept definitions compared to the
factual guideline Gf baseline.

Counterfactual guidelines Gc A guideline is
considered counterfactual when at least one con-
cept ci is paired with a definition from another
concept cj , that is, δ(ci) = dj for i ̸= j. Since
δ is injective, we have the number of counterfac-
tual definitions (the degree of counterfactuality of
a guideline) ranging from two to |C|.

2.2 Concept Definitions
Ideally, we would use the same guidelines pro-
vided to humans (e.g., the financial guidelines in
Appendix E) for annotation with LLMs. However,
the human guidelines are not uniform across
concepts and contain several examples and explicit
references to external content. Thus, to minimize
the confounding factors related to differences
in definitions across concepts in both financial
and scientific domains, we use model-generated
concept definitions3. Specifically, we prompt
GPT-3.5 (refer to Section 3.3 for API usage
details) to provide a short description of a concept
in the context of a sentence annotation task. For
scientific concepts, we use the following prompt:

We need to classify sentences in
scientific articles according to the
information they convey: background,
motivation, method, results, or
conclusion. Please provide a short
definition for each of those labels to
be used in annotation guidelines.

Then, we review and edit the definitions to remove
explicit mentions of label names such as A sentence
is classified as "Motivation" when it explains (...).
The final scientific concept definitions are provided
in Appendix B, Table 5. Similarly, we generate
definitions for financial concepts using the prompt:

We need to classify sentences in
company disclosure reports according
to the capital information they convey:
financial, manufactured, intellectual,
human, social and relationship, or
natural. Based on the Integrated
Reporting framework, please provide a
short definition for each of those
labels to be used in annotation
guidelines.

3For completeness, we also provide experimental results
with human guidelines in Appendix A.
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The financial concept definitions (after review) are
provided in Appendix B, Table 6.

3 Experimental Setup

To experiment with different types of guidelines
defined in Section 2.1, we choose concepts C for
which the language models have exposure via pre-
training data. The first domain we explore relates
to rhetorical roles in scientific articles (Section 3.1),
which is extensively covered in the literature (Li-
akata et al., 2012). Since the pre-training data for
LLMs likely include various scientific concept clas-
sification datasets, we annotate a novel dataset of
sentence-level financial concepts (Section 3.2). In
addition to controlling for label memorization, our
financial annotation based on the Integrated Report-
ing framework (Cheng et al., 2014) covers concepts
that are technical but arguably more accessible than
scientific rhetoric. In Sections 3.3 and 3.4, we de-
tail the LLM baselines used in the experiments and
the classification task hyperparameters.

3.1 Scientific Concepts Dataset

To test a model’s knowledge of scientific concepts
we use the ARTCorpus dataset (Liakata and Solda-
tova, 2008), which consists of 35,040 sentences
from 225 chemistry papers annotated by experts.
Each sentence is annotated with one of the 11 Core
Scientific Concepts (CoreSCs) derived from the
EXPO ontology (Soldatova and King, 2006).

In the CoreSC scheme, the scientific concepts
are structured hierarchically, with concepts such
as hypothesis, motivation, and goal being different
sub-types of scientific objectives. Since the dataset
is relatively small, we observed that some classes
were too fine-grained, resulting in a strong label im-
balance. To address this issue, we merged some of
the categories that shared the same parent concept,
yielding the following set of categories: BACK-
GROUND, OBJECTIVE, METHODS, RESULTS, and
CONCLUSION. This classification scheme is also
used in other PubMed-derived datasets such as the
PubMed RCT (Dernoncourt and Lee, 2017). In our
experiments, we use 500 sentences (100 samples
per scientific concept) sampled from the ARTCor-
pus training split.

3.2 Financial Concepts Dataset

In this section, we introduce the methodology used
to collect and annotate a dataset of company dis-
closures with financial concepts.

3.2.1 Data Collection
We collected narrative sections from 10-K annual
reports extracted from the Electronic Data Gath-
ering, Analysis, and Retrieval (EDGAR) system
(SEC, 2014), which is used by companies to sub-
mit documents to the United States Securities and
Exchange Commission (SEC). For each report, we
use the following sections: Item 1 - Business, Item
7 - Management’s Discussion and Analysis, and
Item 7A - Quantitative and Qualitative Disclosure
about Market Risk. The reports are published in
December 2021 by companies in the S&P 500 in-
dex (S&P Global, 2024) with the largest market
capitalization across 11 industry sectors.

3.2.2 Annotation Scheme
Several reporting standards (IFRS4, GAAP5) and
ontologies such as FIBO (Bennett, 2013) have been
developed, but they are often too technical and com-
plicated to derive a simple taxonomy of financial
concepts. Fortunately, the Integrated Reporting
<IR> framework6 offers a suitable set of domain
concepts for the task. It defines a set of report-
ing elements that deliver a holistic view of how
the company uses capital to generate value (in this
case, value in a broad sense, not just financial).

In this work, we use one dimension of the <IR>
framework related to capitals, which is the pool
of funds available to an organization for use in the
production of goods or the provision of services.
The capital concept types are: FINANCIAL, MAN-
UFACTURED, INTELLECTUAL, HUMAN, SOCIAL

AND RELATIONSHIP, and NATURAL.

3.2.3 Annotation Process
In this section, we describe the main steps of the an-
notation workflow, which include annotator selec-
tion and training, an agreement assessment phase,
and the final annotation phase. Our annotation pro-
cess is inspired by the General Scientific Concepts
guidelines (Liakata and Soldatova, 2008), but our
concepts typology is not hierarchical and does not
account for instances of concepts (i.e., assigning
identifiers for each concept instance).

Hiring and training Two final-year undergradu-
ate students and one graduate student with a back-
ground in finance/economics were hired as anno-
tators. The compensation was 10 British Pounds

4https://www.ifrs.org
5https://www.investopedia.com/terms/g/gaap.asp
6https://integratedreporting.org
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Annotation
Round

Annotator Agreement

A12 A13 A23

Round 1 0.27 0.35 0.35
Round 2 0.45 0.60 0.35

Table 1: Annotator agreement on capital labels. Aij is
the weighted Cohen’s κ between annotators i and j.

per hour of work, with an estimated effort of 50
sentences per hour. Each annotator received one-
to-one training about the motivation, annotation
scheme, and guidelines, which included a descrip-
tion of each financial concept, examples, and gen-
eral instructions covering edge cases. The full
guideline content is provided in Appendix E.

Agreement assessment In the first round of an-
notation, each labeler worked on the same report
(with 1,291 sentences) and then the agreement was
estimated using the weighted Cohen’s κ statistic
(Artstein and Poesio, 2008). The weighted version
was adopted because each annotator is allowed up
to two choices for capitals, so partial agreements
are also taken into account. Formally, we define the
disagreement weight d as the symmetric difference
between the sets of labels La,i and Lb,i assigned to
sample i by annotators a and b respectively:

di(a, b) = |(La,i ∪ Lb,i) \ (La,i ∩ Lb,i)|.

The disagreements di(a, b) are used in the weighted
Cohen’s κ formulation by Artstein and Poesio
(2008), Section 2.6.2.

The first round aimed at gauging the annotator’s
understanding of the guidelines and also, collect-
ing feedback to improve the instructions. After
analysis of the results, a one-to-one review session
was delivered to give feedback about some com-
mon misconceptions and disagreements. A second
report (562 sentences) was released to assess the ef-
fect of the improved guidelines. As shown in Table
1, the scores improved significantly in the second
round, suggesting the changes in the guidelines
were effective7. The final concept labels for the
first two reports were chosen by majority voting.8

Final annotation Following Liakata and Solda-
tova (2008), the first two phases of annotation are

7Due to the inherent ambiguity of the task, the agreement
scores are moderate. We discuss this issue in the limitations
section.

8Voting ties were adjudicated by the guideline’s author.

Company Sector Sentences Labelers
Monster
Beverage

Consumer
Staples

1291 3

Chevron Energy 562 3

Netflix
Communication

Services
648 1

Amazon
Consumer

Discretionary
609 1

Sherwin-
Williams

Materials 687 1

Table 2: Statistics for annual reports (published in De-
cember 2021) annotated with financial concept labels.

used for quality assessment, and each subsequent
report is annotated by just one annotator. Table 2
details the annotation statistics. In our experiments,
we use a balanced sample of 540 sentences, with
90 sentences for each of the 6 financial concepts.

3.3 Models
In our experiments, we use the leading open-source
and proprietary instruction-tuned language models
currently available, covering a wide range of sizes
(from 7B to 180B for open-source models). We
focus on instruction-tuned models as non-instruct
models require the task specification via in-context
samples (Xie et al., 2021; Min et al., 2022), which
in our early experiments resulted in poor perfor-
mance when mixed with concept guidelines.

• LLAMA-2 (Touvron et al., 2023), a family of
open-source large language models that achieve
state-of-the-art results at the moment of this writ-
ing. We use the LLAMA-2-CHAT variants (7B,
13B, and 70B parameters), which are pre-trained
on 2 trillion tokens of data and fine-tuned via
supervised fine-tuning and Reinforcement Learn-
ing with Human Feedback (RLHF). Unless oth-
erwise stated, all mentions of LLAMA-2 in this
work refer to the chat variants.

• GPT-3.5 and GPT-4 (OpenAI, 2023), two pro-
prietary models that offer the best instruction-
following capabilities at the time of this writing.
In our experiments, GPT-3.5 and GPT-4 refer
to the gpt-3.5-turbo-0613 and gpt-4-0613
models respectively9, which are invoked via the
chat completions API10.
9https://platform.openai.com/docs/models

10https://platform.openai.com/docs/guides/gpt
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• FALCON-180B (Almazrouei et al., 2023), a 180-
billion language model trained on 3.5 trillion to-
kens from the RefinedWeb dataset (Penedo et al.,
2023). We use the FALCON-180B-CHAT version
that is fine-tuned on further instruction, question
answering, and chat datasets. In contrast to the
other language models above, it does not use
Reinforcement Learning with Human Feedback
(RLHF) in its fine-tuning phase.

3.4 Concept Classification Details
For concept classification, we perform conditional
generation (Eq. 2) using the Hugging Face trans-
formers library (Wolf et al., 2020). To build the
model inputs, we apply the prompt template in
Appendix C, replacing the placeholders with the
concept labels, definitions, the input sentence, and
a concept domain indicator. Since the input sen-
tences are short (around 30 words on average), no
truncation is applied. We provide details on the
prompts and inference parameters in Appendix C.

Post-processing Since we use unconstrained gen-
eration for classification, in some instances the out-
put includes extra dialog verbiage and even expla-
nations for the predictions. By examining these
outputs, we can gain more detailed insights into
the model behavior, for instance, when it refuses to
classify sentences with out-of-dictionary labels (re-
fer to details in Section 4). To extract labels from
those outputs, we apply a post-processing heuristic
that checks if any of the labels is a substring of the
output. If there is a single substring that meets this
requirement, it is considered as the prediction11.
Finally, for OOD guidelines, we replace the OOD
label predictions with the corresponding factual la-
bels, so the performance metrics can be computed
with respect to the ground-truth labels.

4 Results and Discussion

LLMs Leverage Concept Labels and Definitions
Using a factual guideline Gf as a reference, results
from Figure 2 show that removing concept defini-
tions (guideline Gf,ε) reduces consistently the ac-
curacy of concept classification. However, the clas-
sification performance without concept definitions
is still significantly higher than the random base-
line, which suggests that the models have relevant
prior knowledge related to the concept label lexi-
cal information. The average accuracy loss when

11We also examine all predictions manually to check for
edge cases in model outputs.

removing concept definitions is 3.7% and 8.2% for
scientific and financial concepts respectively, which
indicates that financial definitions have a stronger
influence on model predictions.

Counterfactual Understanding Emerges with
Scaling As pointed out above, the lexical infor-
mation from both concept labels and definitions
contributes to task performance. However, we want
to verify if the associations between labels and defi-
nitions are relevant. In Figure 2, we observe that the
smaller LLAMA-2-7B and LLAMA-2-13B mod-
els have a similar performance under the factual
Gf and counterfactual guideline Gc settings. In
contrast, there is a consistent drop in accuracy for
LLAMA-2-70B, GPT-3.5, and GPT-4, which indi-
cates that these models are effectively changing the
labels according to the counterfactual semantics.
Despite having more than two times the number
of parameters of LLAMA-2-70B, FALCON-180B
behaves similarly to the smaller LLAMA-2 models
when conditioned with the counterfactual guideline.
In this case, scaling is not a sufficient condition to
improve understanding in counterfactual contexts.

As further evidence of the capacity of GPT mod-
els to follow guidelines, we sample counterfactual
concept guidelines such that they are balanced with
respect to the number of counterfactual concepts.
Then, we evaluate the classification performance
for each guideline on the same data samples and av-
erage the results for guidelines with the same num-
ber of counterfactual concepts. The curves in Fig-
ure 3 show decreasing classification performance
as the scientific guidelines become more coun-
terfactual, with GPT-3.5 results having a higher
Pearson correlation of −0.73 compared to −0.10
for LLAMA-2-7B. A similar trend is observed for
financial guidelines, as additional evidence that
GPT-3.5 is more sensitive to counterfactual guide-
lines. However, the ability to adhere to counterfac-
tual guidelines is not uniform across concepts. In
Figure 4, we observe that some concept changes
(e.g., from scientific RESULTS to CONCLUSION)
are followed much less frequently. We hypothesize
that the semantic similarity between concepts may
impact the accuracy in counterfactual settings. We
leave the study of such factors for future work.

Larger Models Can Rename Existing Concepts
We consider the effects of removing the lexical
information from concept labels by using out-of-
dictionary labels (GOOD guideline). Again, the
largest models (70B or more parameters) tend to
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Figure 2: Concept classification accuracy for different scientific (top) and financial (bottom) concept guidelines.
In this experiment, the counterfactual guideline Gc is a random permutation where all concept definitions are
counterfactual. Empty-Def refers to the empty-definition factual (Gf,ε) and out-of-vocabulary guidelines (GOOD,ε).
Error bars represent the 95% confidence interval and the dashed line indicates the random classifier baseline.

perform on par with the original factual guideline
Gf across both domains. Even though the models
are not learning entirely new concepts, it is remark-
able that they can associate novel labels with ab-
stract concepts and leverage them to solve tasks.
We believe this ability might be relevant for natural
language reasoning problems that require symbolic
formulation (Pan et al., 2023).

Proprietary Models Recognize Unknown Con-
cepts While LLAMA-2-70B has performance
similar to GPT-3.5 on most settings, when pre-
sented with out-of-dictionary (OOD) labels without
definitions (GOOD,ε guideline), it predicts labels
randomly. This result confirms that OOD labels
provide no information related to scientific or fi-
nancial concepts. However, GPT-3.5 and GPT-4
behave differently, often refusing to assign con-
cepts to the sentences and instead generating out-
puts such as None of the categories listed above
are appropriate for classifying the given text. For
instance, GPT-3.5 refuses to classify 58% and
51% of sentences from scientific and financial doc-
uments respectively, while the open-source models

always predict one of the nonsensical labels. We
hypothesize that this ability to recognize unknown
concepts is derived from careful alignment efforts
(Ouyang et al., 2022), which presents an avenue
for improving open-source language models.

Agreement with Human Annotators Using
sample sentences from the second report of the
financial annotation, we measure the agreement of
the models’ financial concept predictions (using
factual concept guidelines) to each human annota-
tor. We find that LLAMA-2-7B and GPT-4 achieve
average Cohen’s κ scores on par with expert anno-
tators (Table 3). This result is in line with previous
work showing that LLMs can be a useful tool in
annotation pipelines (Wang et al., 2021).

5 Related Work

Previous work examined if LLMs exhibit human-
like conceptual grounding (Piantadosi and Hill,
2022). Patel and Pavlick (2021) demonstrate that
LLMs such as GPT-3 can generalize spatial and
color concepts in some settings. Using several
counterfactual reasoning tasks such as arithmetic,
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Figure 3: Concept classification accuracy results for different levels of counterfactuality of scientific (left) and
financial (right) concept guidelines. We sample 10 guidelines for each counterfactuality level and average the
classification accuracies. Error bars represent the standard deviations.
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Figure 4: Guideline adherence scores per financial and scientific concept for GPT-3.5. Each cell Aij shows the
fraction of concept predictions that adhere to concept definitions δ(cj) = di, where the rows indicate original factual
labels ci that are randomly replaced by labels cj (columns). Off-diagonal results indicate counterfactual definitions.

Model Annotation Agreement

A1 A2 A3 Avg

Human Average 0.46 0.43 0.37 0.42

LLAMA-2-7B 0.46 0.47 0.35 0.43
GPT-4 0.47 0.53 0.35 0.45

Table 3: Financial concept annotation agreement to
annotators A1, A2, and A3. Results are non-weighted
Cohen’s κ on a subset of sentences for which human
annotators assigned at least one capital concept.

chess, and drawing Wu et al. (2023) show that
some proprietary models have limited capacity for
reasoning under counterfactual conditions. Our
work explores concept classification tasks that are

more abstract than spatial concepts but still simpler
than the more complex tasks proposed by Wu et al.
(2023). As a consequence, we can more precisely
control the level of counterfactuality of the tasks
while keeping the same level of difficulty.

A variety of approaches related to editing factual
knowledge of LLMs has been explored recently
(Onoe et al., 2023; Meng et al., 2022; Zhu et al.,
2020). This line of work proposes different ways
to edit memory related to entities and assess if
the model outputs in different contexts are con-
sistent with the newly introduced facts. Those
approaches focus on updating model parameters
while we examine model behavior under in-context
concept edits. Min et al. (2022) study the role of
in-context demonstrations for various classification
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tasks. They conclude that associations of samples
and labels do not strongly influence the model’s per-
formance, suggesting that non-instruct LLMs can-
not learn new information from the demonstrations.
In contrast, our results suggest that instruction-
tuned models are consistently influenced by in-
context concept definitions.

Our evaluation protocol is similar to Wei et al.
(2023) work as they use flipped and “semantically-
unrelated” labels in task demonstrations. While
they focus on in-context learning, our experiments
are zero-shot tasks including only concept defini-
tions. Thus, our setting is arguably harder, requir-
ing the models to generalize from guidelines (not
examples) that are relatively agnostic with respect
to the classification task. Furthermore, we put a sig-
nificant effort into evaluating open-source models
that are state-of-the-art at the time of this submis-
sion. To our knowledge, this kind of evaluation is
not addressed by previous work and is relevant to
inform the improvement of open-source initiatives.

The potential of LLMs as zero-shot and few-
shot data annotators has been demonstrated in med-
ical (Agrawal et al., 2022), social science (Zhu
et al., 2023), and other language understanding
tasks (Wang et al., 2021). Our work provide further
evidence that instruction-tuned models can perform
concept classification with agreement scores com-
parable to expert annotators. Additionally, we show
that similarly to humans, LLMs can leverage con-
cept guidelines to improve the annotation quality.

6 Conclusion

By using factual and counterfactual concept guide-
lines for sentence classification, we demonstrate
measurable gaps in concept understanding between
leading open-source and proprietary instruction-
tuned models. While some level of counterfactual
concept understanding emerges with scaling, open-
source models cannot recognize nonsensical (out-
of-dictionary) guidelines, which the closed APIs
can address more consistently. One question to
be addressed in future work would be to investi-
gate potential correlations between the capacity
of reasoning in counterfactual contexts and other
common generation issues such as hallucination.

Limitations

Opacity of Proprietary Models The experimen-
tal results from Section 4 confirm that the propri-
etary models excel in almost all classification set-

tings. However, we cannot determine if the main
cause for the best performance is the scale, training
data, or fine-tuning methods since we do not have
access to their implementation details.

Inference costs for Large Models Our experi-
ments are severely limited by the computing re-
quirements of the larger open-source LLM mod-
els. For instance, FALCON-180B-CHAT requires
around 400GB of memory for inference, equivalent
to 5 Nvidia A100-80GB GPUs. Thus, we limit our
counterfactual guideline experiments (Figure 3) to
include only a subset of possible permutations for
LLAMA-2-7B and GPT-3.5.

Consequences of Counterfactual Performance
to Other Tasks In this work, we measure the
capacity of several language models to work un-
der counterfactual contexts. Future investigation
efforts could explore how this ability correlates to
a potential reduction of hallucinations in genera-
tive tasks or even improved performance in natural
language reasoning problems (Pan et al., 2023).

Financial Annotation Agreement Due to the
ambiguity of financial annotation the task, the
agreement scores we report in Section 3.2.3 are
relatively moderate (average κ = 0.47 for the sec-
ond round in Table 1). One of the main factors for
disagreement is that some sentences are complex
and may contain multiple capitals, as illustrated in
the following example (passages conveying capi-
tals are underlined):

Such factors include the duration and scope
of the pandemic, including any resurgences of
the pandemic, and the impact on our workforce
and operations; the negative impact of the pan-
demic on the economy and economic activity,
including travel restrictions and prolonged low
demand for our products; the ability of our
affiliates, suppliers and partners to successfully
navigate the impacts of the pandemic; the actions
taken by governments, businesses and individu-
als in response to the pandemic; the actions of
OPEC and other countries that otherwise impact
supply and demand and correspondingly, com-
modity prices; the extent and duration of recovery
of economies and demand for our products after
the pandemic subsides; and Chevron’s ability to
keep its cost model in line with changing demand
for our products.

In many cases, annotators chose a non-
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intersecting subset of the capitals, which counts
as a disagreement (even though both are partially
correct). Those voting ties were reviewed and ad-
judicated by the author of the guidelines. Previous
scientific annotation projects like (Liakata et al.,
2012) also report a moderate agreement (κ = 0.55,
median of the best annotators), which demonstrates
the difficulty in annotating technical documents.

Finally, even though report agreements between
LLM annotations and humans in Table 3, our ex-
periments are not designed to fairly compare anno-
tation quality. Before annotation, humans received
training and guidelines that are more comprehen-
sive than LLM guidelines. Secondly, humans were
able to “calibrate” their labels according to previ-
ously annotated sentences, whereas LLMs do not
have access to this memory.
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A Results with Human Guidelines

To complement the results in Section 4, we provide
classification accuracies and agreement scores for
guidelines using the same definitions provided to
human annotators. We observe that models tend
to ignore the concept definitions in favor of their
prior knowledge about financial concepts, thus re-
ducing the effects of our counterfactual guidelines.
This effect is reflected in the more uniform accu-
racy results shown in Figure 5 (compared to Figure
2). The human guidelines also result in a slight
increase in agreement with human annotators, as
shown in Table 4 (compared to Table 3).

LLAMA-2-7B GPT-3.5 GPT-4
0

10
20
30
40
50
60
70
80
90
100

Factual Gf Empty-Def Gf,ε

Counterfactual Gc GOOD

Empty-Def GOOD,ε

Figure 5: Concept classification accuracy for different
financial concept guidelines, using the same definitions
provided to human labelers (Figure 8). In this experi-
ment, the counterfactual guideline Gc is a random per-
mutation where all concept definitions are counterfac-
tual. Empty-Def refers to the empty-definition factual
(Gf,ε) and out-of-vocabulary guidelines (GOOD,ε). Er-
ror bars represent the 95% confidence interval and the
dashed line indicates the random classifier baseline.

B Concept Definitions

The Tables 5 and 6 present the definitions for scien-
tific and financial concepts used in our experiments.
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Model Annotation Agreement

A1 A2 A3 Avg

Human Average 0.46 0.43 0.37 0.42

LLAMA-2-7B 0.50 0.46 0.41 0.46
GPT-4 0.51 0.57 0.42 0.50

Table 4: Financial concept annotation agreement to
annotators A1, A2, and A3, using the same definitions
provided to human labelers (Figure 8). Results are non-
weighted Cohen’s κ on a subset of sentences for which
human annotators assigned at least one capital concept.

C Inference Prompts and Parameters

The prompt illustrated in Figure 112 consists of
a guideline prompt promptG and a task prompt
promptT . The content of promptG is a list of con-
cept definitions:

Consider the following concept categories:
- {c1}: {δ(c1)}
. . .
- {cK}: {δ(cK)}

where δ(cK) is a function that maps the con-
cept label cK to its definition. Then, we
define the content of promptT as follows:

Classify the text below into one of the
categories listed above. Be concise
and write only the category name.

Text: {input sentence s}
{domain} Concept:

where the placeholder {domain} is replaced with
the text Scientific for scientific concepts and
the empty string for financial concepts.

Finally, the prompts above are wrapped into
model-specific prompts. For the LLAMA-2 models,
we use the following prompt:

[INST] {promptG}

{promptT } [/INST]

And for FALCON-180B, we use the following
prompt:

User: {instruction} {promptG}

{promptT }
Falcon:

12The prompt in Figure 1 is simplified to improve readabil-
ity.

Note that we do not use system prompts for both
models, as we found that system prompts result in
more verbose outputs. The main parameters for
inference are provided in Table 7.

D Guidance Adherence Results

To complement the results in Figure 4, we provide
the guidance adherence metrics for LLAMA-2-7B
in Figure 6.
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Figure 6: Guideline adherence scores per financial (top)
and scientific (bottom) concept for LLAMA-2-7B. Each
cell Aij shows the fraction of concept predictions that
adhere to concept definitions δ(cj) = di, where the
rows indicate original factual labels ci that are randomly
replaced by labels cj (columns). Off-diagonal results
correspond to counterfactual concept definitions.

E Financial Annotation Details

Before engaging in the annotation task, the hired
annotators were presented with the textual guide-
lines listed in Figure 8. The web-based anno-
tation interface (Figure 7) is implemented using
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Concept Definition
Background A sentence that provides context, foundational knowledge, or relevant infor-

mation about the research topic, existing theories, prior studies, or the broader
scientific field in which the research is situated. It helps readers understand the
background against which the research is conducted.

Motivation A sentence that explains the reasons, objectives, or goals behind the research. It
often includes statements about the research gap, the problem being addressed,
the significance of the study, and why the research is important.

Method A sentence that describes the research methods, techniques, procedures, and
data collection processes used in the study. This category also encompasses
details about the experimental design, data analysis, and any materials or
instruments utilized.

Result A sentence that presents the empirical findings, outcomes, observations, or
data generated by the research. It includes quantitative and qualitative results,
statistical analyses, tables, figures, and any other information related to the
research findings.

Conclusion A sentence that summarizes the key takeaways, implications, interpretations, or
insights derived from the study’s results. It often discusses the broader signifi-
cance of the findings, suggests future research directions, and may reiterate the
study’s contributions to the field.

Table 5: Scientific concept definitions used in sentence classification guidelines.

Concept Definition
Financial A sentence that pertains to monetary resources, assets, liabilities, revenues, ex-

penses, or any other financial information related to the company’s operations,
investments, and financial performance.

Manufactured A sentence that refers to physical assets, infrastructure, and tangible resources
such as buildings, machinery, equipment, or any other manufactured or con-
structed items that contribute to the company’s value.

Intellectual A sentence that relates to intangible assets, knowledge, intellectual property,
patents, trademarks, copyrights, research and development activities, or any
other intellectual assets that enhance the company’s competitiveness and inno-
vation.

Human A sentence that involves information about the company’s workforce, including
employees, skills, expertise, training, recruitment, talent development, and any
other human resources aspects that contribute to the company’s success.

Social and
relationship

A sentence that deals with the company’s relationships and interactions with
external stakeholders, communities, customers, suppliers, partners, and any
other social or relationship-based assets that affect the company’s operations
and reputation.

Natural A sentence that addresses environmental resources, sustainability efforts, eco-
logical impacts, conservation initiatives, or any other aspects related to the
company’s use of natural resources and its environmental responsibility.

Table 6: Financial concept definitions used in sentence classification guidelines.
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LLAMA-2

Number of parameters 7B / 13B / 70B
Max context length 4096

FALCON-180B-CHAT

Number of parameters 180B
Max context length 2048

LLAMA-2 and FALCON-180B-CHAT

Parameter type float16
Nucleus temperature 0.8
Nucleus top-p 0.95

GPT-3.5 and GPT-4

Model GPT-3.5 gpt-3.5-turbo-0613
Model GPT-4 gpt-4-0613
temperature 1
top_p 1
presence_penalty 0
frequency_penalty 0

All models

Max generation tokens 128

Table 7: Summary of generation details and parameters.

Label Studio13. The interface shows the sample
sentence and requests the annotator to classify
it in one of the six capital concepts (Financial,
Manufactured, Intellectual, Human, Social
and relationship, and Natural) or None if the
content is not related to any capital. The annotator
also has the option to indicate a secondary capital,
if applicable.

The annotation tasks were performed in 2021,
when the UK minimum wage was 8.91 British
Pounds14, and annotators received 10 British
Pounds per hour of work. The experiment design
and conditions went through formal approval by
an internal ethics committee. The data was not re-
leased or stored in public servers to avoid potential
contamination.

13https://github.com/HumanSignal/label-studio
14https://www.gov.uk/national-minimum-wage-rates
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Figure 7: The annotation interface for the annotation of financial concepts. Given a sample sentence, annotators are
requested to assign one of six capital concepts or None, if not applicable.
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The concepts described in this section follow closely the definitions of the International <IR> frame-
work, and should be sufficient to perform the annotation. According to the IR framework, capitals are
“stocks of value that are increased, decreased or transformed through the activities and outputs of the
organization.” They can be classified in financial, manufactured, intellectual, social and relationship,
and human (<IR> framework, section 2C).

Financial capital
The pool of funds that is available to an organization for use in the production of goods or the provision
of services. It can be obtained through financing or generated through operations and investments.
Example: “The discussion also provides information about the financial results of our business
segments to provide a better understanding of how those segments and their results affect the financial
condition and results of operations of Ameren as a whole.”

Manufactured capital
Manufactured physical objects (excluding natural physical objects) that are available to an organization
for use in the production of goods or the provision of services, including, buildings, equipment,
and infrastructure (such as roads, ports, bridges, etc). Example: “Due to the long lead time for the
manufacture, repair, and installation of the components, the energy center is expected to return to
service in late June or early July 2021.”

Intellectual capital
Organizational, knowledge-based intangibles, including: Intellectual property, such as patents, copy-
rights, software, rights and licences “Organizational capital” such as tacit knowledge, systems, proce-
dures and protocols. Example: “The absence of revenues from a software licensing agreement with
Ameren Missouri decreased margins $5 million.”

Human capital
People’s competencies, capabilities and experience, and their motivations to innovate, including their:
1) alignment with and support for an organization’s governance framework, risk management approach,
and ethical values; 2) sbility to understand, develop and implement an organization’s strategy; 3)
loyalties and motivations for improving processes, goods and services; 4) Other matters related to
people management. Example: “As the situation rapidly evolved, we remained focused on safely
serving our customers and protecting the health and safety of our employees.”

Social and relationship capital
The institutions and the relationships within and between communities, groups of stakeholders and
other networks, including: 1) shared norms, and common values and behaviours; 2) key stakeholder
relationships, and the trust and willingness to engage that an organization has developed and strives to
build and protect with external stakeholders; 3) intangibles associated with the brand and reputation
that an organization has developed; 4) an organization’s social licence to operate. Example: “In March
2020, the MoPSC issued an order in Ameren Missouri’s July 2019 electric service regulatory rate
review, approving nonunanimous stipulation and agreements.”

Natural capital
All renewable and non-renewable environmental resources and processes that provide goods or services
that support the past, current or future prosperity of an organization, including air, water, land, minerals,
and biodiversity. Example: “These amounts include the 700 MWs of wind generation projects discussed
below, which will support Ameren Missouri’s compliance with the state of Missouri’s requirement of
achieving 15% of native load sales from renewable energy sources beginning in 2021.”

Figure 8: Guidelines for financial concept annotation provided to human labelers.
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