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Abstract

Multimodal entity linking (MEL), which aligns
ambiguous mentions within multimodal con-
texts to referent entities from multimodal
knowledge bases, is essential for many natu-
ral language processing applications. Previous
MEL methods mainly focus on exploring com-
plex multimodal interaction mechanisms to bet-
ter capture coherence evidence between men-
tions and entities by mining complementary in-
formation. However, in real-world social media
scenarios, vision modality often exhibits low
quality, low value, or low relevance to the men-
tion. Integrating such information directly will
backfire, leading to a weakened consistency
between mentions and their corresponding en-
tities. In this paper, we propose a novel latent
space vision feature optimization framework
MELOV, which combines inter-modality and
intra-modality optimizations to address these
challenges. For the inter-modality optimization,
we exploit the variational autoencoder to mine
shared information and generate text-based vi-
sual features. For the intra-modality optimiza-
tion, we consider the relationships between
mentions and build graph convolutional net-
work to aggregate the visual features of seman-
tic similar neighbors. Extensive experiments
on three benchmark datasets demonstrate the
superiority of our proposed framework.

1 Introduction

Entity linking (EL) is the task of assigning ambigu-
ous mentions in text to their corresponding entities
in a knowledge base. As a bridge between un-
structured content and structured knowledge bases,
EL plays a vital role in many downstream natu-
ral language processing applications, such as con-
tent analysis (Huang et al., 2018), semantic search
(Blanco et al., 2015), question answering (Xiong
et al., 2019; Longpre et al., 2021) and so on.
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Michael Jackson

Michael Kors

…

Multimodal KB

Michael Jordan

Scottie Pippen

Low-Quality

Every show of 
Michael was perfect.

Low-Value

Low-Relevance

Good Image

Mentions with Context

Michael led the Bulls 
to win the NBA 

championship again.

I am very happy to buy 
my favorite handbag 

in Michael.
Scottie played very 

well in Bulls. …

Multimodal KB

(a) Low-Quality

Every show of 
Michael was perfect.

(b) Low-Value

(c) Low-Relevance

(d) Good Image

Mentions with Context

Michael led the Bulls 
to win the NBA 

championship again.

I am very happy to buy 
my favorite handbag 

in Michael.
Scottie played very 

well in Bulls.

Michael Jackson

Michael Kors

Michael Jordan

Figure 1: Examples of multimodal entity linking with
low-quality, low-value, low-relevance and good visual
images. Entities that share the same color as mentions
are the corresponding gold entities.

Traditional EL methods (Chisholm and Hachey,
2015; Eshel et al., 2017) mainly focus on address-
ing the text-based EL by resolving text context.
However, with the rapid development of social me-
dia, images along with text have become the most
common form of web information, which brings
new challenges for EL models to effectively in-
tegrate visual information and understand multi-
modal content. Thus, the multimodal entity linking
(MEL) task (Moon et al., 2018) has been proposed,
which extends the scope from textual EL to hetero-
geneous formats, i.e. linking mentions with textual
context and visual context to referent entities in
multimodal knowledge bases.

Multiple previous MEL works (Adjali et al.,
2020; Gan et al., 2021; Wang et al., 2022a; Zhang
and Huang, 2022; Wang et al., 2023; Xing et al.,
2023; Shi et al., 2023; Luo et al., 2023; Zhang et al.,
2023) mainly focus on exploring complex multi-
modal interaction mechanisms to better capture
coherence evidence between mentions and entities
by mining complementary information. Although
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these works have achieved promising performance
in the past few years, they usually assume that each
mention is associated with high-quality, high-value,
and high-relevance visual images, which is unreal-
istic in real-world social media scenarios. Figure
1 shows several social media examples and MEL
still faces the pervasive challenges presented by the
following poor visual images:

Low-quality. User-posted images may appear
blurry, unclear, or pixelated due to factors such as
image compression, low original image quality and
network transmission issues.

Low-value. As shown in Figure 1(b), this im-
age is widely used in social media, which only
expresses the happy mood of users in most cases.
However, this type of images does not enhance the
overall comprehension of the text and may even
mislead the MEL model into linking “Michael” to
a person rather than the brand “Michael Kors”.

Low-relevance. Accompanying images often
correspond to the whole context of text, rather than
being specifically tied to the mention. Figure 1(c) is
such an example whose image is low-relevance to
the mention “Michael” in text, which will interfere
with MEL models matching “Michael Jordan”.

There is a huge gap between all of these poor
visual images and the images of their correspond-
ing entities. Integrating them directly will back-
fire, leading to a weakened consistency between
mentions and their corresponding entities. Some
previous works (Zhang et al., 2021) have realized
the negative impact of noisy images. They propose
a straightforward method to remove these poor im-
ages by assessing the correlation score between
the mention image and mention text. However,
the low-quality and low-relevance images still pos-
sess valuable implicit visual cues. Discarding them
outright would result in the loss of significant com-
plementary visual information. Thus, while the
straightforward approach is effective in handling
low-value images, it is still not ideal for dealing
with low-quality and low-relevance images.

To address these challenges, in this paper, we
propose a novel Multimodal Entity Linking frame-
work with Optimized Visual features in latent
space, MELOV in short. Our MELOV con-
tains two perspectives of optimization, i.e. inter-
modality and intra-modality. Specifically, for the
inter-modality optimization, we exploit variational
autoencoder to mine shared semantic information
from heterogeneous textual features and gener-
ate latent vision-specific features. For the intra-

modality optimization, we observe that similar or
related mentions often possess related visual in-
formation, which is very useful for optimizing
poor images. An example is shown in Figure 1(d),
“Michael Jordan” even appears directly in this im-
age. To effectively aggregate the visual information
of semantic similar neighbors, we construct men-
tion graphs using correlation scores between men-
tions and employ graph convolutional network for
information propagation within the graphs. Finally,
our MELOV adaptively assesses the contributions
of original visual features, inter-modality generated
visual features, and intra-modality aggregated vi-
sual features to the MEL task, and fuses them in
varying proportions within the latent space. The op-
timized visual features can simultaneously handle
all types of poor images.

The main contributions of this paper are summa-
rized as follows:

• For the first time, we analyze various types of
poor images in multimodal entity linking and
propose to optimize visual features in latent
space, aiming to not only eliminate the nega-
tive effects of poor images but also retain the
implicit visual cues of original images.

• We propose a joint optimization framework
that incorporates inter-modality generation
and intra-modality aggregation, effectively
leveraging the shared information from hetero-
geneous textual features and relevant visual
details of semantic similar neighbors.

• We compare our MELOV with state-of-the-art
MEL approaches on three public benchmark
datasets. Experimental results demonstrate
the superiority of our proposed framework.

2 Related Work

2.1 Entity Linking

Traditional entity linking (EL) mainly focuses on
text-only corpus, which has been widely explored
in recent years. EL methods can be roughly divided
into two groups based on their granularity: local-
level and global-level. The local-level approaches
(Francis-Landau et al., 2016; Cao et al., 2017; Es-
hel et al., 2017; Gupta et al., 2017; Peters et al.,
2019; Wu et al., 2020; Sui et al., 2022, 2023) sepa-
rately link each mention according to the similarity
between mentions with context and entities. The
global-level approaches (Le and Titov, 2018; Yang
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Figure 2: The overall architecture of our proposed MELOV framework, which contains three components: feature
extraction, visual feature optimization, and multimodal entity linking.

et al., 2018; Fang et al., 2019; Yang et al., 2019)
strive to jointly disambiguate mentions by consider-
ing the global coherence of entities within the same
document. While these methods have achieved sig-
nificant progress, they are designed solely for text
modality and cannot effectively integrate abundant
complementary information from visual images.
This limits the performance of EL methods in the
surge of multimodal information and motivates re-
searchers to study multimodal entity linking.

2.2 Multimodal Entity Linking
Multimodal entity linking (MEL) is an extension of
EL that utilizes additional visual images to aid in
disambiguating mentions. Moon et al. (2018) first
proposes the task and leverages cross-modal atten-
tion to fuse features. Adjali et al. (2020) designs
concatenation operation and triplet loss to interact
modality. Wang et al. (2022a) proposes a hierarchi-
cal multimodal co-attention to mine fine-grained
relationships across modalities. Zhang et al. (2023)
combines global and bottleneck fusions to integrate
multimodal information. Shi et al. (2023) leverages
the in-context learning of LLMs to generate target
entities. Xing et al. (2023) explicitly models and
dynamically selects different alignment relations
between mentions and entities. Luo et al. (2023)
uses multi-grained interactions and unit-consistent
learning to enhance the representations.

In general, all these methods mainly focus on
exploring complex multimodal interaction mecha-
nisms to better capture coherence evidence between
mentions and entities. However, they overlook the
prevalence of poor visual images accompanying
text for MEL. Integrating them directly will back-
fire, leading to a weakened consistency between
mentions and their corresponding entities. To re-

move the negative impact of noisy images, Zhang
et al. (2021) assesses the correlation scores between
the text and image of mentions to filter out poor
images. However, many poor images still possess
valuable implicit visual cues. Discarding them out-
right would result in the loss of significant comple-
mentary visual information. This motivates us to
find another way, that is optimizing visual features
in latent space to not only eliminate the negative
effects of poor images but also retain the implicit
visual cues of original images.

3 Methodology

Figure 2 shows the overall architecture of our
MELOV. We first extract both global and local fea-
tures of textual and visual inputs to obtain global
descriptive semantics and preserve fine-grained de-
tails of words or image patches. Afterwards, we
optimize visual features at two perspectives: inter-
modality generation based on the shared informa-
tion of heterogeneous textual modality and intra-
modality aggregation based on the correlation of
mentions. We obtain the optimized visual features
by adaptively fusing the two perspective features
and original features. Finally, we employ multi-
grained interactions using optimized visual features
as input to derive the similarity matching score for
each mention-entity pair to make the ultimate mul-
timodal entity linking decisions.

3.1 Feature Extraction

To extract meaningful textual features, following
Luo et al. (2023), we utilize pre-trained BERT (De-
vlin et al., 2019) as our textual encoder. The in-
puts of each mention mi and entity ei are respec-
tively constructed as: [CLS] me [SEP] and [CLS]
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en [SEP], where me = mention [SEP] sent and
en = title [SEP] attr. The mention, sent, title,
and attr refer to word-piece tokens of the men-
tion, the sentence where the mention is located, the
entity title, and the attributes associated with the en-
tity. Then we feed the inputs into BERT and obtain
the hidden states of all word tokens TMi and TEi .
Finally, we regard the hidden state corresponding
to the position of special [CLS] token as global tex-
tual features tGMi

and tGEi
, the entire hidden states

as local textual features TL
Mi

and TL
Ei

.
To capture expressive visual features, following

Luo et al. (2023), we employ pre-trained Vision
Transformer (ViT) (Dosovitskiy et al., 2021) as our
visual encoder. Given an image of a mention or
entity, we first rescale it into C×H×W pixels and
reshape it into H × W/P 2 flattened 2D patches.
Here, C represents the number of channels, H×W
denotes the image resolution and P is the patch size.
Then, we feed them into ViT and obtain the hidden
states of all patches. Similar to the textual feature
extraction, we regard the hidden state of the [CLS]
as global visual features vGO

Mi
or vG

Ei
, the whole

hidden states as local visual features V LO
Mi

or V L
Ei

.

3.2 Visual Feature Optimization
In multimodal entity linking, heterogeneous textual
features encompass abundant shared semantic in-
formation of visual and textual modalities, such as
the characteristics and categories of mentions. On
the other hand, visual features of similar or related
mentions contain rich vision-specific details asso-
ciated with the mention. Both the two perspectives
are significant for optimizing visual features.

3.2.1 Inter-Modality Generation
For inter-modality optimization, we propose to
utilize the cross-reconstruction of variational au-
toencoder (VAE) (Yi et al., 2023) to mine shared
semantic information from heterogeneous textual
features and generate vision-specific features in la-
tent space. Specifically, the VAE encoder takes
the mention global textual features tGMi

as input to
feed-forward neural networks (FFNNs) to derive
latent mean vector µ and standard deviation vec-
tor σ: µ = tGMi

Wµ and σ = tGMi
Wσ, where

Wµ and Wσ ∈ Rdt×dz are trainable weights,
dt is the dimension of textual features. The two
vectors jointly describe the distribution of latent
space z ∼ q(z|tGMi

) = N (µ, σ2). We utilize the
reparameterization strategy (Kingma and Welling,
2014) to sample the latent variation: z = µ+σ⊙ϵ,

where ϵ ∼ N (0, I). Then the latent variation z is
fed into the VAE decoder to generate global visual
features vGG

Mi
= zWd, where Wd ∈ Rdz×dv and

dv is the dimension of visual features. Based on
the evidence lower bound function (Kingma and
Welling, 2014) for VAE, the training loss of our
global feature generation is computed as follows:

LGG = ||vGO
Mi

− vGG
Mi

||2 + KL(q(z|tGMi
)||p(z))

(1)
By constructing visual features as accurately as

possible, our model learns to mine shared semantic
information from heterogeneous textual features
within latent space, enabling the generation of text-
based vision-specific features. Similarly, for local
features, we also generate V LG

Mi
by utilizing VAE

and calculate the local loss LLG. The final loss of
our inter-modality generation is calculated as:

LG = LGG + LLG (2)

3.2.2 Intra-Modality Aggregation
To effectively leverage intra-modality related visual
information of semantic similar neighbors, we pro-
pose to construct mention graphs and employ graph
convolutional network (GCN) (Kipf and Welling,
2017) for information aggregation. Specifically,
considering that the textual modality provides the
most reliable information about mentions, we cal-
culate the similarity between mentions by utilizing
textual representations. The common approach for
this is to calculate the Cosine or Euclidean distance.
However, these traditional similarity measures are
not sufficient in accurately capturing the local man-
ifold structure and are unable to capture complex
relationships such as higher-order statistics. In-
spired by Kang et al. (2017); Zhang et al. (2022),
we utilize a kernel-driven approach to calculate the
similarity for two given mentions mi and mj :

sim(mi,mj) = exp(−
||tGMi

− tGMj
||22

2b2
) (3)

where b represents the bandwidth used to regulate
the emphasis given to the similarity of small dis-
tances relative to large distances. We determine
this value by setting it as a fraction of the average
distance between mentions. For all mentions in
the training set, the similarity matrix A ∈ Rn×n is
created by assessing the sim(mi,mj) of each pair
of mentions, where n is the number of mentions.

In our similarity matrix, all cells are always pos-
itive, indicating that all mentions are treated as
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similar. However, this will introduce noise from
dissimilar mentions. Thus, we employ a learnable
threshold to filter out these dissimilar mentions:

Aij =

{
Aij ifAij > τ

0 ifAij ≤ τ
(4)

where τ is the learnable threshold. We formulate
the original global visual features of all mentions
vGO
M ∈ Rn×dv as a graph, with the similarity ma-

trix A as the graph adjacency matrix. Then, we
employ GCN to facilitate the information propaga-
tion within the graph, thereby aggregating visual
information from semantic similar neighbors. A
GCN layer is a nonlinear transformation which
maps from vl

M to vl+1
M , defined as:

vl+1
M = ϕ(Avl

MWg + bg) (5)

where l is the current layer index, v0
M = vGO

M ,
Wg ∈ Rdv×dv and bg ∈ Rdv , ϕ is a non-linear
activation function. After L layers of GCN, we
obtain the intra-modality aggregated global visual
features vGA

M . Similarly, for the local features,
we formulate V LO

M as a graph and feed them into
another GCN to obtain intra-modality aggregated
local visual features V LA

M .

3.2.3 Information Adaptive Fusion
Now we possess three different types of visual fea-
tures: original visual features focus on original
visual images themselves, inter-modality generated
visual features emphasize shared semantic infor-
mation from heterogeneous textual features, and
intra-modality aggregated visual features highlight
related visual details of semantic similar neighbors.
To take all of them into consideration, we utilize
the attention mechanism to adaptively assess their
contributions to the MEL task and fuse them in
different proportions. Specifically, for global vi-
sual features, we put them into different FFNNs
and utilize the Sigmoid function to obtain the con-
tribution weights αO, αG and αA. Furthermore,
we add a constraint αO + αG + αA = 1 by cal-
culating αO = αO

αO+αG+αA , αG = αG

αO+αG+αA ,
αA = 1− αO − αG. The optimized global visual
features are obtained by calculating the weighted
sum of different global visual features:

vG
M = αO · vGO

M + αG · vGG
M + αA · vGA

M (6)

Similarly, we also utilize the attention mechanism
to obtain the optimized local visual features V L

M .

Num. of WikiMEL RichpediaMEL WikiDiverse

Sentences 22,070 17,724 7,405
M. in train 18,092 12,463 11,351
M. in valid 2,585 1,780 1,664
M. in test 5,169 3,562 2,078
Entities 109,976 160,935 132,460

Table 1: Overall statistics of WikiMEL, RichpediaMEL
and WikiDiverse datasets. M. denotes Mentions.

3.3 Multimodal Entity Linking

To derive matching scores for each mention-entity
pair, following Luo et al. (2023), we utilize multi-
grained multimodal interaction, which contains
text-based, vision-based and cross-modal interac-
tions. Our text-based interaction involves two
scores. The global-to-global score measures the
global consistency by using dot product: SG2G

T =
tGM · tGE . And the global-to-local score captures
fine-grained context consistency clues between
entity global features and mention context vec-
tor: SG2L

T = tGE · ht, where the mention con-
text vector ht is obtained using attention mech-
anism, mean pooling MP and layer norm LN: ht =
LN(MP(softmax(QKT

√
dt

)V )), Q = TL
E , K = V =

TL
M . We obtain the text-based matching score by

averaging the two scores: ST = (SG2G
T +SG2L

T )/2.
In our vision-based interaction, we employ a

dual-gated mechanism to consider both mention
and entity views. For entity-to-mention interac-
tion, we first interact entity global and mention
local features: hvc = LN(vG

E + MP(V L
M ))Wv1,

where Wv1 ∈ Rdv×dv . Then, we interact men-
tion global features with a gate operation: hv =
LN(Tanh(hvcWv2) · hvc + vG

M ), where Wv2 ∈
Rdv×1. After sufficient interaction and fusion, we
obtain the matching score from entities to mentions
SE2M
V = hv · V G

E and similarly from mentions to
entities SM2E

V . The vision-based matching score is
the average of them: SV = (SE2M

V + SM2E
V )/2.

Our cross-modal interaction measures the con-
sistency between mentions and entities after inte-
grating visual and textual information. We first
use FFNNs to map the textual and visual fea-
tures tGE , tGM , V L

E and V L
M to shared dense space

features het, hmt, Hev and Hmv. To aggregate
entity image patch information, we employ cor-
relation scores between textual and visual fea-
tures as guidance: αi

c = exp(het·Hi
ev)∑np

i=1 exp(het·Hi
ev)

, hec =
∑np

i=1 α
i
c·H i

ev, where np is the patch number. Then,
we interact the textual features with a gate opera-
tion to obtain the entity cross-modal representa-
tion he = LN(Tanh(hetWc) · het + hec), where
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Models WikiMEL RichpediaMEL WikiDiverse
H@1 H@3 H@5 MRR H@1 H@3 H@5 MRR H@1 H@3 H@5 MRR

BLINK 74.66 86.63 90.57 81.72 58.47 81.51 88.09 71.39 57.14 78.04 85.32 69.15
BERT 74.82 86.79 90.47 81.78 59.55 81.12 87.16 71.67 55.77 75.73 83.11 67.38
CLIP 83.23 92.10 94.51 88.23 67.78 85.22 90.04 77.57 61.21 79.63 85.18 71.69
ViLT 72.64 84.51 87.86 79.46 45.85 62.96 69.80 56.63 34.39 51.07 57.83 45.22
METER 72.46 84.41 88.17 79.49 63.96 82.24 87.08 74.15 53.14 70.93 77.59 63.71
DZMNED 78.82 90.02 92.62 84.97 68.16 82.94 87.33 76.63 56.90 75.34 81.41 67.59
JMEL 64.65 79.99 84.34 73.39 48.82 66.77 73.99 60.06 37.38 54.23 61.00 48.19
VELML 76.62 88.75 91.96 83.42 67.71 84.57 89.17 77.19 54.56 74.43 81.15 66.13
GHMFC 76.55 88.40 92.01 83.36 72.92 86.85 90.60 80.76 60.27 79.40 84.74 70.99
MIMIC 87.98 95.07 96.37 91.82 81.02 91.77 94.38 86.95 63.51 81.04 86.43 73.44

MELOV 88.91 95.61 96.58 92.32 84.14 92.81 94.89 88.80 67.32 83.69 87.54 76.57
MELOV w/o inter 88.25 95.21 96.40 91.92 83.72 92.22 94.44 88.74 65.93 82.24 87.20 75.12
MELOV w/o intra 88.52 95.37 96.48 92.03 83.58 92.03 94.40 88.40 64.73 81.94 86.80 75.06
MELOV w/o τ 88.82 95.45 96.51 92.14 83.63 92.71 94.51 88.66 65.28 82.28 87.18 75.36
MELOV (filter) 88.24 95.18 96.37 91.85 80.66 90.34 93.63 86.36 62.75 80.13 86.14 72.87

Table 2: Experimental results on three MEL datasets. We report the results of baselines according to Luo et al.
(2023). The results of our MELOV are averaged 5 runs using different random seeds. The highest values are in bold.

Wc ∈ Rdc×dc . Similarly, we obtain the mention
representation hm by replacing het and Hev with
hmt and Hmv. We compute the cross-modal match-
ing score using the dot product: SC = he · hm.

The final score is defined as the average of the
three scores S = (ST + SV + SC)/3. To maxi-
mize the score of the corresponding entity among
others and ensure to learn good representations in
each interaction, we employ an in-batch contrastive
training approach that considers all interactions as
our loss function. For each mention-entity pair
(mi, ei) in a batch of B pairs, the training loss is
computed as follows:

LE =
∑

X∈{∅,T,V,C}
− log(

exp(SX(mi, ei))∑B
j exp(SX(mi, ej))

)

(7)
where ei is the gold entity of the mention mi. Even-
tually, the loss of our MELOV is calculated as:

L = LE + λLG (8)

where λ is the hyperparameter to control the loss.

4 Experiments

4.1 Datasets and Baselines
We evaluate our MELOV under three public mul-
timodal entity linking datasets: WikiMEL (Wang
et al., 2022a), RichpediaMEL (Wang et al., 2022a),
and WikiDiverse (Wang et al., 2022b). Table 1
shows the overall statistics of these three datasets.
For fair comparison, following previous works
(Wang et al., 2022a; Luo et al., 2023), we utilize
a subset KB of Wikidata as our entity set in each
dataset. For WikiMEL and RichpediaMEL, the

data is split into 70% training, 10% validation and
20% test sets respectively. As for WikiDiverse, the
proportions are 80%, 10% and 10%.

For the quantitative evaluation of our proposed
MELOV, we utilize the following competitive meth-
ods for comparison. The first type of baselines is
the text-based methods that only use the textual
modality information, including BLINK (Wu et al.,
2020), and BERT (Devlin et al., 2019). Another
type is the language-and-vision pre-training mod-
els, including CLIP (Radford et al., 2021), ViLT
(Kim et al., 2021), and METER (Dou et al., 2022).
Furthermore, our baselines also contain state-of-
the-art MEL methods, including DZMNED (Moon
et al., 2018), JMEL (Adjali et al., 2020), VELML
(Zheng et al., 2022), GHMFC (Wang et al., 2022a),
and MIMIC (Luo et al., 2023).

4.2 Implementation Details

In our experiments, following (Luo et al., 2023),
we initial the weights of BERT and ViT by us-
ing the pre-trained CLIP-Vit-Base-Patch32 version.
The maximum sequence length of words for tex-
tual input is set to 40. All images are rescaled into
224×224 resolution and the patch size P is 32. We
use the AdamW (Loshchilov and Hutter, 2019) op-
timizer with a batch size of 128 for optimizing. We
train our MELOV 20 epochs with a learning rate
of 1e-5. Experiments were conducted on a PC with
256 GB RAM, 4 Intel(R) Xeon(R) Gold 6226R
CPUs and an NVIDIA GeForce RTX A6000 GPU
with 48 GB memory. For evaluation, we utilize the
H@k and MRR as our metrics. H@k represents
the hit rate of the corresponding entity among the
top-k ranked entities. And MRR indicates the mean
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Figure 3: Performance of our MELOV with varying
hyperparameters on RichpediaMEL and WikiDiverse.

reciprocal rank of the corresponding entity.

4.3 Overall Performance
Table 2 shows the experimental results of our
MELOV in comparison with baselines on three
MEL benchmark datasets. We have the follow-
ing observations. Firstly, the text-based methods
BLINK and BERT perform unsatisfactorily since
they only rely on textual inputs and ignore visual
information. Secondly, some multimodal meth-
ods, such as ViLT and JMEL, exhibit inferior per-
formance compared to text-based methods. This
observation indicates that shallow modality interac-
tion and naive multimodal fusion do not enhance,
and may even degrade, the performance of MEL.
Thirdly, most multimodal methods, such as CLIP,
GHMFC and MIMIC, perform significantly better
than text-based methods. And MIMIC achieves
the best results among all baselines, which demon-
strates the effectiveness of integrating visual in-
formation and the superiority of our chosen multi-
grained interaction in our multimodal entity linking
module. Finally, our MELOV outperforms all base-
lines on all three datasets and achieves new state-of-
the-art performance. Specifically, MELOV gains
0.93%, 3.12% and 3.81% absolute improvement of
H@1 on WikiMEL, RichpediaMEL and WikiDi-
verse respectively. This suggests the effectiveness
of optimizing visual features in latent space and the
superiority of our MELOV.

4.4 Ablation Study
To better understand our proposed MELOV, we
conduct a series of ablation studies, as also pre-
sented in Table 2. We can observe that MELOV
w/o inter-modality generation and MELOV w/o
intra-modality aggregation both result in a de-

Metrics WikiMEL RichpediaMEL WikiDiverse
H@1 MRR H@1 MRR H@1 MRR

Dot 88.05 91.92 83.00 87.95 64.70 74.75
Cosine 87.53 91.54 83.12 88.26 65.39 75.17
Euclidean 88.33 92.08 83.25 88.56 65.60 75.42
Kernel 88.91 92.32 84.14 88.80 67.32 76.57

Table 3: Performance with different similarity metrics
of our MELOV on three MEL datasets.

crease in performance, confirming the effective-
ness of these two optimizations. The performance
of MELOV w/o inter drops more on WikiMEL,
while MELOV w/o intra drops more on Richpedi-
aMEL and WikiDiverse. This is reasonable since
different datasets have distinct optimization require-
ments. We also find that our MELOV outperforms
MELOV w/o τ , highlighting the importance of uti-
lizing such a learnable threshold in the similarity
matrix to avoid the noise brought by dissimilar men-
tions. Finally, we replace the whole optimization
process with the filtering way proposed by Zhang
et al. (2021). We observe that this leads to a signif-
icant performance drop and MELOV (filter) even
performs worse than MIMIC on RichpediaMEL
and WikiDiverse. This is consistent with our claim
that many poor images still possess valuable im-
plicit visual cues. Discarding them outright would
result in the loss of significant complementary vi-
sual information, ultimately causing a significant
degradation in performance. And our method, op-
timizing visual features in latent space, is a better
way to handle poor images.

4.5 Hyperparameter Analysis

To investigate the impact of hyperparameters on
the performance of our MELOV, we vary them (the
latent dimension size dz , number of GCN layers
L, and final loss hyperparameter λ) on Richpedi-
aMEL and WikiDiverse, which is shown in Figure
3. Firstly, we find that dz has a significant impact
on the final performance by influencing the effect
of generating visual features. A small dimension
may make our model inadequate to mine shared
information from heterogeneous textual features,
while a large one may cause redundancy to lead
to performance degradation. Secondly, increasing
the number of GCN layers does not always lead to
improved performance. Excessive message pass-
ing and aggregation can potentially exacerbate the
issue of data sparsity. Finally, λ, which is used to
control the strength of LG, also affects the perfor-
mance. In general, our MELOV obtains best results
while setting dz as 64, L as 2, and λ as 0.001.
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Figure 4: Case study of our MELOV and MIMIC. There are three cases from the test set of WikiDiverse. Each case
contains a mention with multimodal context and the predicted H@1 entities. The symbol ✓ marks the gold entity.

4.6 Analysis of Similarity Calculation

To explore the effect of employing various similar-
ity metrics in computing the GCN similarity ma-
trix on our MELOV performance, we compare our
kernel-driven approach with three traditional sim-
ilarity metrics (i.e. dot product similarity, Cosine
similarity and Euclidean distance), as presented
in Table 3. Upon observation, Euclidean distance
outperforms the other two traditional metrics, indi-
cating its efficacy in capturing numerical disparities
among feature nodes. Furthermore, kernel-driven
approach demonstrates superior performance in
comparison to these traditional metrics, highlight-
ing the effectiveness of our chosen similarity cal-
culation method. This approach can adequately
capture local manifold structure and complex rela-
tionships such as higher-order statistics.

4.7 Case Study

To conduct a qualitative analysis, Table 4 presents
three WikiDiverse cases comparing our MELOV
with the current state-of-the-art baseline MIMIC.
Notably, all the three cases contain poor mention
images. They will mislead MEL models into link-
ing to wrong text-related entities, armed forces
related entities and human-related entities respec-
tively, like MIMIC. However, our MELOV effec-
tively leverages the shared information from hetero-
geneous textual features and relevant visual details
of semantic similar neighbors to optimize visual
features in latent space to avoid this phenomenon,
which helps to make correct decisions.

4.8 Performance on Zero-Shot Setting

With the proliferation of vast amounts of data on
the web, new entities are emerging constantly. As
shown in the left part of Figure 5, all three datasets
contain a large number of unseen samples, whose
entities never appear during training. Thus, it is
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Figure 5: Performance on zero-shot setting. The left part
is the proportions of seen and unseen samples in test sets
of three datasets. The right part is the H@1 results for
unseen samples. WM., RM. and WD. denote WikiMEL,
RichpediaMEL and WikiDiverse respectively.

necessary to investigate the performance of MEL
models on the zero-shot setting, which mainly
focuses on unseen entities. We conduct experi-
ments on these unseen samples and the results are
shown in the right part of Figure 5. We can find
that our MELOV significantly outperforms the ex-
isting state-of-the-art model MIMIC on all three
datasets. Through the joint optimization of inter-
modality generation and intra-modality aggrega-
tion, our MELOV can learn richer and more suit-
able visual representations, thereby enhancing the
generalization ability on new entities.

5 Conclusion

In this paper, we focus on poor images in multi-
modal entity linking. To avoid the negative effects
of poor images while preserving the implicit vi-
sual cues of original images, we propose MELOV,
a novel joint optimization framework to combine
inter-modality generation and intra-modality aggre-
gation to optimize visual features in latent space.
This effectively leverages the shared information
from heterogeneous textual features and relevant
visual details of semantic similar neighbors, al-
lowing for simultaneously handling all types of
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poor images. Experimental results on three pub-
lic multimodal entity linking datasets demonstrate
the effectiveness of optimizing visual features in
latent space and our proposed MELOV achieves
new state-of-the-art performance.

Limitations

Although our MELOV has demonstrated its effec-
tiveness on the multimodal entity linking task, there
are still some limitations to be addressed in the fu-
ture: 1) In this work, for inter-modality generation,
we only utilize the variational autoencoder to mine
shared semantic information from heterogeneous
textual features and generate vision-specific fea-
tures. However, other state-of-the-art generation
frameworks also can be used and may work bet-
ter. We leave the exploration of other generation
frameworks to future work. 2) Another limitation
is the resource limitation. We argue that the more
resources we leverage, the richer and more suitable
the optimized visual features will be. However, for
a fair comparison with baselines, we only use the
inter-modality heterogeneous textual information
and intra-modality related visual information. We
will investigate to utilize more resources to opti-
mize visual features in future work.
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