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Abstract
Recent advancements in large language models
(LLMs) have showcased significant improve-
ments in mathematics. However, traditional
math benchmarks like GSM8k offer a unidi-
mensional perspective, falling short in provid-
ing a holistic assessment of the LLMs’ math
capabilities. To address this gap, we introduce
MathBench, a new benchmark that rigorously
assesses the mathematical capabilities of large
language models. MathBench spans a wide
range of mathematical disciplines, offering a
detailed evaluation of both theoretical under-
standing and practical problem-solving skills.
The benchmark progresses through five distinct
stages, from basic arithmetic to college math-
ematics, and is structured to evaluate models
at various depths of knowledge. Each stage
includes theoretical questions and application
problems, allowing us to measure a model’s
mathematical proficiency and its ability to ap-
ply concepts in practical scenarios. MathBench
aims to enhance the evaluation of LLMs’ math-
ematical abilities, providing a nuanced view
of their knowledge understanding levels and
problem solving skills in a bilingual context.
The project is released at https://github.
com/open-compass/MathBench.

1 Introduction

Mathematical reasoning and problem-solving rep-
resent pivotal facets of human intelligence and have
captivated the interest of artificial intelligence (AI)
research for decades. The capability of machines
to grasp, interpret, and address mathematical chal-
lenges not only serves as a benchmark for their
cognitive prowess but also fulfills a critical role in
their deployment across various sectors.

The advent of modern Large Language Models
(LLMs) such as OpenAI’s ChatGPT and GPT-4
(Achiam et al., 2023) has marked a significant mile-
stone, showcasing an unparalleled ability to gener-

† Corresponding authors.

Figure 1: MathBench Overview. MathBench com-
prises multiple stages of progressively increasing chal-
lenges. Each stage encompasses bilingual theoretical
and application-oriented questions, with each question
precisely tagged with a three-level label to indicate its
fine-grained knowledge point.

ate text that mirrors human-like discourse and to
unravel intricate mathematical conundrums (Liu
et al., 2023a).

Despite these advancements, the evaluation of
LLMs’ mathematical capabilities remains ham-
pered by some inherent limitations of exist-
ing benchmarks (GSM8k (Cobbe et al., 2021),
MathQA(Amini et al., 2019), etc.). These re-
sources predominantly offer a singular perspective
on problem-solving abilities and lack comprehen-
sive difficulty grading. Math (Hendrycks et al.,
2021b) attempted to classify high-school math com-
petition problems into varying levels of complexity
based on annotators’ subjective evaluations, offer-
ing an incomplete picture of mathematical profi-
ciency. Such datasets, while valuable, fall short
in encapsulating the full spectrum of mathemat-
ical knowledge and overlook the importance of
fundamental theory understanding, which is essen-
tial for tackling application problems (Upadhyay
and Chang, 2017). Those limitations make it dif-
ficult to conduct a comprehensive evaluation of
LLMs’ math capability (both theory and applica-
tion) across different levels and disciplines and
under a multilingual context.

In response to these challenges, we construct
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Figure 2: Framework of MathBench, We first categorize the mathematical content into four main educational
stages and one basic arithmetic stage. Then, we extend from these to fill in two more fine-grained levels of
knowledge points, forming the final MathBench framework.

MathBench, a novel and comprehensive multilin-
gual benchmark meticulously created to evaluate
the mathematical capabilities of LLMs across a di-
verse range of difficulties, from basic arithmetic
to challenging college-level mathematics. Math-
Bench sets itself apart with a unique five-stage tax-
onomy, mapped to the educational trajectory from
primary school through to college. This mecha-
nism is designed to assess LLMs’ mathematical
understanding in breadth and depth. The bench-
mark incorporates carefully curated questions that
cover basic theory knowledge and practical appli-
cations. This dual focus enables MathBench to
probe and interpret the models’ capabilities from a
foundational standpoint. Additionally, MathBench
supports bilingual evaluation in both Chinese and
English, which facilitates a more nuanced and com-
prehensive assessment of LLMs’ math capabilities,
offering a realistic reflection of the global land-
scape of mathematical knowledge.

In this paper, we detail the methodology behind
the creation of MathBench, including the hierarchi-
cal knowledge system that underpins the dataset,
the data collection process, and the criteria for ques-
tion selection. We hope that MathBench can serve
as a valuable resource for researchers and develop-
ers seeking to advance the mathematical abilities of
LLMs and to understand the limitations of existing
models in solving diverse and complex mathemati-
cal problems.

MathBench features the following contributions:

• We introduce MathBench, a comprehensive

dataset that features a five-level difficulty mech-
anism with a hierarchical knowledge system.
• MathBench includes a wide variety of question
types, from fundamental mathematical concepts to
practical application in real-world scenarios.
• We conduct extensive experiments on Math-
Bench across different models to identify bottle-
necks in current LLMs. The provided discussion
and analysis are expected to offer new avenues for
improving their mathematical capabilities.

2 Methodology

MathBench features a well-crafted difficulty hier-
archy and an emphasis on evaluating the theoret-
ical knowledge understanding of LLMs. Sec. 2.1
presents the tiered levels and the corresponding
knowledge foundations, explaining the ability tax-
onomy and design rationale. Sec. 2.2 details the
collection process and statistics of MathBench.

2.1 The Hierarchical Knowledge System

In MathBench, we define a knowledge framework
with five main stages and three levels in order to
obtain fine-grained evaluation results. Among five
stages, four stages are mapped to the four main
education stages: Primary, Middle, High, and Col-
lege, while the other stage is named Arithmetic,
serving as the foundation of the remaining four
stages.1 Each Stage in MathBench is associated
with two fine-grained knowledge levels: Subject

1The ‘Arithmetic’ stage evaluates the ability to perform
four basic math operations: add, subtract, multiply, divide.
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Table 1: Overview of Datasets Included in Math-
Bench. MCQ stands for Multi-Choice Question.

Name Dataset Type Question Type

GSM-X-CN Self-Collected Open-ended QA
GSM-X-Plus Self-Collected Open-ended QA
CEVAL-Math Open Source MCQ
MMLU-College-Math Open Source MCQ
Math401 Open Source MCQ
Hungarian-Math-MCQ Self-Collected MCQ
AMC-8 & 12 Self-Collected MCQ
SAT Self-Collected MCQ
Gaokao Self-Collected MCQ
Zhongkao Self-Collected MCQ
Kaoyan Self-Collected MCQ
SciBench Open Source MCQ
Arithmetic-HG Open Source Open-ended QA
Theory-Knowledge-Primary Self-Collected MCQ
Theory-Knowledge-Middle Self-Collected MCQ
Theory-Knowledge-High Self-Collected MCQ
Theory-Knowledge-College Self-Collected MCQ

Area and Topic, accordingly. As shown in Figure 2,
we extend MathBench from the basic stages to a
comprehensive range of mathematical concepts and
problem-solving skills. Such taxonomy is designed
to capture the depth and breadth of mathematical
knowledge, from foundational arithmetic to com-
plex, abstract college-level concepts.

Subject Areas include major mathematical dis-
ciplines such as Algebra, Geometry, Trigonometry,
Calculus, Statistics, Probability, etc.. This cate-
gorization allows for a wide range of questions,
facilitating an organized approach to covering the
diverse areas of mathematics. Within each subject
area, we further refine the classification into spe-
cific Topics. For example, under Algebra, topics
might include Linear Equations, Quadratic Equa-
tions, Polynomials, and Functions. The Topic-level
granularity ensures that the dataset can provide de-
tailed insights into a model’s understanding and
proficiency in specific areas of mathematics.

In MathBench, each question is tagged with
metadata indicating its stage (Primary, Middle,
High, College, or Arithmetic), subject area, and
topic. Such tags enable a fine-grained analysis of
models’ performance across different areas of math-
ematics and allow researchers to identify specific
strengths and weaknesses in mathematical under-
standing.

Moreover, the inclusion of the Arithmetic stage
emphasizes the importance of mastering basic math
operations, which is the foundation of all subse-
quent mathematical learning and problem-solving.

2.2 Data Collection and Statistics

With the pre-defined knowledge framework, we pri-
marily collect questions from two perspectives: (a).
theoretical knowledge questions, to test the model’s
grasp of basic formulas, theories, and their corollar-
ies, which are the foundation for solving mathemat-
ical problems; (b). practical application questions,
which often require a good understanding of the
fundamental theories, reflecting the ability to apply
these theories in practice.

Question Format Definition. During the evalu-
ation, some models struggle with open-ended ques-
tions and fail to follow instructions and provide
plain and concise answers. Therefore, we reformu-
late questions that could have complex answers2

into the multiple-choice format, typically with four
options. During collection and annotation, we en-
sure the uniqueness of the correct answer and the
high confusion-level of distractive options.

Theoretical Knowledge Questions. For theoret-
ical knowledge questions, we collect the definition
and detailed corollaries of knowledge points topic
by topic from the math textbooks and the Internet.
We then transform them to multi-choice questions
with high-quality annotations.

Practical Application Questions. On selecting
the practical application questions, we primarily
consider the following aspects: 1. The question
needs to match the corresponding education level;
2. The questions should comprehensively cover the
previously defined knowledge taxonomy; 3. The
questions should be well-formulated so that LLMs
can answer them properly. We primarily focus
on stage-based educational exams or competitions.
Those questions are comprehensive and representa-
tive, offering a certain degree of difficulty gradient,
such as ZhongKao, GaoKao in Chinese Math and
AMC, SAT in English math. Additionally, we in-
corporate open-source questions to enhance the
diversity and breadth of the questions. We list the
sources of questions in MathBench in Table 1.

Quality Screening. To enhance the quality
of the MathBench dataset, we implement a semi-
automated question filtering process to mitigate is-
sues such as intrinsic question errors and alignment
with educational stages utilizing GPT-4, details pre-
sented in Appendix A.3.

2All theoretical knowledge questions and practical appli-
cation questions from middle school to college level
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Dataset Summary. We curate 3709 questions
for the final MathBench, including both Chinese
and English languages across five stages with three-
level knowledge taxonomy. This compendium is
divided into two distinct sections: MathBench-T,
which consists of 2,209 theoretical questions, and
MathBench-A, comprising 1,500 questions focused
on practical applications. Each question has been
subjected to a rigorous semi-automated vetting pro-
cess. Detailed statistics can be found in the Ap-
pendix A.1.

3 Experiments and Analysis

3.1 Configuration
Evaluation Protocols. We employ CircularEval
(CE) (Liu et al., 2023b) and Perplexity (PPL) as
our principal evaluation methodology for Chat and
Base models respectively. CE systematically as-
sesses an N -option multi-choice question by evalu-
ating it N times, each time permuting the order of
the options.

To maintain consistency in evaluations, we stan-
dardized the maximum output length to 2048 to-
kens and employed a greedy decoding strategy for
all Large Language Models (LLMs). For open-
ended questions, we utilized a few-shot CoT set-
ting, whereas for multiple-choice questions on Chat
models, we implemented a zero-shot CoT approach.
In the case of Base models during PPL evaluation,
a few-shot setting was adopted. We used Open-
Compass (Contributors, 2023) as the evaluation
framework for our assessments.

Evaluated Models. Our evaluation encom-
passes both closed-source commercial LLMs and
open-source LLMs, covering more than 20 models.
Based on MathBench, we deliver a thorough evalu-
ation of the capabilities of current LLMs. We list
all evaluated LLMs below:
• Closed-source models: GPT-3.5 and GPT-43from
Openai, Qwen-Max4, DeepSeek-V2-API5, GLM46

and Anthropic Claude-3-Opus7.
3GPT-4 version: gpt-4-0125-preview and

GPT-4o(GPT-4o-2024-05-13); GPT-3.5 version:
gpt-3.5-turbo-0125

4https://help.aliyun.com/zh/dashscope/
create-a-chat-foundation-model?spm=
a2c4g.11186623.0.0.581c64d16b7Azw

5https://platform.deepseek.com/
api-docs

6https://open.bigmodel.cn/dev/howuse/
glm4

7https://www.anthropic.com/news/
claude-3-family

• OpenSource LLMs: We evaluate a wide spec-
trum of LLMs, including Llama3(Touvron et al.,
2023), Qwen (Bai et al., 2023), InternLM2
(Team, 2023a), Yi 8, Baichuan2 (Yang et al.,
2023), DeepSeek(DeepSeek-AI et al., 2024), Mix-
tral(Jiang et al., 2024)and ChatGLM3 (Zeng et al.,
2022).
• OpenSource Math LLMs: Llemma(Azerbayev
et al., 2023), MetaMath-llemma(Yu et al.,
2023), DeepSeek-Math(Shao et al., 2024), MAm-
moTH(Yue et al., 2023) and InternLM2-Math(Ying
et al., 2024).

3.2 Main Results
We showcase the principal outcomes of MathBench
in Table 2, detailing the application-oriented as-
pects in (MathBench-A), and the theoretical com-
ponents in (MathBench-T).

3.2.1 MathBench-A
Among all models evaluated in the MathBench ap-
plication, GPT-4o (GPT-4o-2024-05-13) achieves
the highest overall average score, particularly ex-
celling in the more challenging Middle, High,
and College stages. Following GPT-4o, Claude-
3-Opus and DeepSeek-V2-API outperform in ba-
sic arithmetic operations, specifically in the Arith-
metic and Primary stages respectively. For open-
source LLMs, Qwen1.5-110B-Chat stands out as
the best performer, distinguishing itself as the lead-
ing player among all open-source models. Ad-
ditionally, DeepSeek-Math-7B-RL, an LLM de-
signed for mathematical tasks, secures its position
as the top open-source model in mathematics, de-
spite its relatively small parameter size.

Among open-source chat models, performances
across models with ∼7B, ∼20B, and ∼70B param-
eter size reveal distinct capabilities:
∼7B Chat Models. InternLM2-Chat-7B and
Llama-3-8B-Instruct emerges as the superior model
at the ∼7B scale and outperforms other 7B Chat
models across all stages. It’s noteworthy that, as
the difficulty of problems increases, the gap be-
tween Llama-3-8B-Instruct and other models also
grows. For instance, on the five stages from Arith-
metic to College Math, It outperforms ChatGLM3-
6B by 43.95%, 73.17%, 82.48%, 258.49%, and
723.53%, respectively. The trend indicates that
as the difficulty escalates, the performance dispar-
ity between models significantly increases since
higher-stage math problems often involve more

8https://github.com/01-ai/Yi
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Models Arith Primary Middle High College Avg.
★Closed-source Models

GPT-3.5-Turbo-0125 72.7 72.3 27.3 18.3 14.3 41.0
GLM4 61.7 80.0 55.7 38.7 20.7 51.3
GPT-4-0125-Preview 76.0 82.3 59.0 41.3 35.3 58.8
Qwen-Max-0428 72.3 86.3 65.0 45.0 27.3 59.2
DeepSeek-V2-API 82.7 89.3 59.0 39.3 29.3 59.9
Claude-3-Opus 85.7 85.0 58.0 42.7 43.7 63.0
GPT-4o-2024-05-13 77.7 87.7 76.3 59.0 54.0 70.9

♡Open-source Chat Models
Yi-6B-Chat 35.3 36.3 7.0 3.0 4.3 17.2
ChatGLM3-6B 38.0 41.0 13.7 5.3 1.7 19.9
DeepSeek-7B-Chat 48.3 47.7 8.7 4.3 2.7 22.3
Qwen-7B-Chat 50.7 50.7 22.0 9.3 6.0 27.7
InternLM2-Chat-7B 52.0 66.3 30.0 13.7 8.7 34.1
Llama-3-8B-Instruct 54.7 71.0 25.0 19.0 14.0 36.7
Baichuan2-13B-Chat 40.0 44.7 13.7 4.7 1.7 20.9
Yi-34B-Chat 50.7 62.0 23.0 14.7 7.7 31.6
Qwen-14B-Chat 63.7 61.7 39.0 21.0 12.0 39.5
InternLM2-Chat-20B 62.3 72.7 37.7 24.7 13.0 42.1
DeepSeek-67B-Chat 62.0 72.7 33.3 21.3 12.0 40.3
Qwen-72B-Chat 72.0 71.7 53.7 32.0 19.0 49.7
Llama-3-70B-Instruct 70.3 86.0 53.0 38.7 34.0 56.4
Qwen1.5-110B-Chat 70.3 82.3 64.0 47.3 28.0 58.4

△Mathematical Models
MammoTH-7B 27.0 24.3 2.7 1.7 0.7 11.3
MammoTH-13B 35.0 43.0 5.0 4.7 5.0 18.5
MammoTH-70B 35.7 60.0 11.0 10.7 6.0 24.7
Metamath-Llemma-7B 51.7 51.0 8.3 8.3 5.0 24.9
InternLM2-Chat-Math-7B 53.7 67.0 41.3 18.3 8.0 37.7
DeepSeek-Math-7B-Instruct 61.0 74.0 30.3 24.7 14.3 40.9
InternLM2-Chat-Math-20B 58.7 70.0 43.7 24.7 12.7 41.9
DeepSeek-Math-7B-RL 68.0 83.3 44.3 33.0 23.0 50.3

MathBench-A.

Models Primary Middle High College Avg.
★Closed-source Models

GPT-3.5-Turbo-0125 70.1 56.7 47.3 52.5 56.7
GLM4 88.6 79.5 63.7 60.6 73.1
GPT-4-0125-Preview 87.2 81.0 72.0 73.3 78.4
Claude-3-Opus 86.0 79.0 72.6 77.4 78.7
DeepSeek-V2-API 88.9 83.7 70.3 76.3 79.8
Qwen-Max-0428 90.4 83.2 73.4 74.8 80.4
GPT-4o-2024-05-13 92.2 88.3 82.0 85.6 87.0

♡Open-source Chat Models
DeepSeek-7B-Chat 33.3 26.0 14.4 13.6 21.8
ChatGLM3-6B 41.6 32.4 20.2 12.0 26.6
Yi-6B-Chat 48.0 33.5 21.8 23.9 31.8
Qwen-7B-Chat 53.1 43.5 32.9 31.2 40.2
Llama-3-8B-Instruct 60.2 51.3 43.5 53.6 52.1
InternLM2-Chat-7B 67.3 55.8 45.4 42.7 52.8
Baichuan2-13B-Chat 45.4 36.9 24.1 21.0 31.9
InternLM2-Chat-20B 64.5 56.2 49.9 43.2 53.4
Yi-34B-Chat 70.9 57.0 43.6 46.8 54.6
Qwen-14B-Chat 71.6 64.0 49.7 49.4 58.7
DeepSeek-67B-Chat 78.1 65.7 55.6 64.6 66.0
Llama-3-70B-Instruct 71.4 64.3 62.1 71.2 67.2
Qwen-72B-Chat 90.9 80.9 67.1 69.8 77.2
Qwen-1.5-110B-Chat 93.4 85.0 76.5 81.5 84.1

△Mathematical Models
MammoTH-7B 11.6 9.1 8.4 6.3 8.8
MammoTH-13B 27.5 18.6 15.0 17.1 19.5
MetaMath-Llemma-7B 36.6 33.5 28.8 25.9 31.2
MammoTH-70B 58.1 47.1 39.3 44.6 47.3
InternLM2-Chat-Math-7B 65.6 60.2 51.7 46.5 56.0
DeepSeek-Math-7B-Instruct 73.3 58.4 49.3 50.3 57.8
InternLM2-Chat-Math-20B 73.2 70.5 60.6 53.0 64.3
DeepSeek-Math-7B-RL 79.6 72.0 61.3 68.7 70.4

MathBench-T.

Table 2: Overall Comparison of Models on MathBench-A & T. The Arithmetic and Primary stage for MathBench-
T are combined because they share the same theory knowledge. Models are classified into three categories according
to their purpose and origin. The model name in bold indicates the top performer among Open-source or Closed-
source models, while an underline signifies the leading model within a similar parameter size group.

complex concepts and problem-solving strategies,
imposing greater demands on the models’ compre-
hension and reasoning abilities. All ∼7B models
struggle with advanced mathematical problems, in-
dicating a challenge in smoothly resolving complex
questions for small-scale LLMs.

∼20B Chat Models. InternLM2-Chat-20B per-
forms the best at the ∼20B scale, followed by
Qwen-14B-Chat. Though Yi-34B-Chat has a much
larger parameter size, it lags behind other ∼20B
models. Similar to ∼7B models, models around
∼20B also struggle with more complex mathemati-
cal problems at the High School and College stage.

∼70B Chat Models and Math Models. In the
realm of large-scale open-source language mod-
els, a significant performance disparity is evident
when comparing models of varying sizes. Notably,
the Qwen1.5-110B-Chat model demonstrates ex-
ceptional proficiency in addressing mathematical
application problems. Its performance not only sur-
passes that of other open-source chat-oriented mod-
els but also eclipses the capabilities of numerous
specialized mathematical models. Remarkably, it
exhibits comparable effectiveness to closed-source

models, such as GPT-4-0125-Preview, in solving
application problems (58.4 vs 58.8).

Focusing on models dedicated to mathematical
tasks, the DeepSeek-Math-7B-RL model stands out
for its adeptness in tackling application-based ques-
tions across a spectrum of stages, encompassing
basic Primary, High and College math. Remark-
ably, it outstrips not only its counterparts, but also
the substantially larger DeepSeek-67B-Chat model,
by a margin of 24.8%. This is particularly notewor-
thy given that the DeepSeek-Math-7B-RL achieves
this superior performance with a model size nearly
one-tenth that of the DeepSeek-67B-Chat, under-
scoring the efficiency and targeted capability of the
former in mathematical problem-solving domains.

3.2.2 MathBench-T

In the theoretical segment of MathBench, des-
ignated as MathBench-T, GPT-4o consistently
achieved balanced and exceptional results across
nearly all theoretical stages. Although Qwen-1.5-
110B-Chat exhibited slightly superior performance
in the Primary stage, GPT-4o attained an average
theoretical score of 87.0. This score was the high-
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est among all tested Closed-source Models and
Open-source Chat Models. When combined with
an application score of 70.9 in MathBench-A, these
results indicate that GPT-4o demonstrates both bal-
anced and superior performance in theory and ap-
plication on MathBench. This underscores GPT-
4o’s strong grasp of theoretical knowledge and its
proficiency in applying such knowledge effectively.

Among other models except GPT-4o, the Qwen
series models stood out, with Qwen-Max-0428
and Qwen1.5-110B-Chat ranking just behind GPT-
4o. Notably, in the theoretical stage of Primary,
Qwen1.5-110B-Chat scored the highest among all
models with an 93.4 CE score. However, GPT-
4o’s advantage lies in higher educational stages or
perhaps more advanced theoretical stages. For ex-
ample, in the college-level theoretical knowledge
stage, GPT-4o achieved a CE score of 84.1, which
is 16.9 points higher than the best open-source math
model, Deepseek-Math-7B-RL.

Similar to MathBench-A, InternLM2-Chat-7B
demonstrated robust theoretical capabilities at
the common 7B stage models. Despite achiev-
ing similar effectiveness to Llama-3-8B-Instruct,
InternLM2-Chat-7B exhibited a significantly larger
lead in the theoretical stage, surpassing the Qwen-
7B-Chat model by 31.3%. Within the domain of
mathematical chat models, Deepseek-Math-7B-RL
continued to outperform numerous mathematical
models, achieving superior results in both theory
and application. Notably, it even surpassed Llama-
3-70B-Instruct in the theoretical domain.

Overall, in the tests conducted on MathBench,
there was not a significant rank change between
models in terms of theoretical and application ca-
pabilities. That is, models that ranked highly in
application capabilities also tended to perform well
in theoretical tests, and vice versa.

3.3 Detailed Analysis

With MathBench, we can easily assess the model’s
mathematical capabilities at different granularities
including education stage, language, subject area,
or even specific topics with questions on both theo-
ries and applications. Below, we will delve deeper
into the evaluation results and discuss about the
following questions:

How Models’ Scores on Application Problems
Vary Across Stages? Figure 3 presents the aver-
age performance of all aforementioned models on
application questions in MathBench. Most models

Figure 3: Scores of Application Problems at Each
Stage. Models exhibit similar performances in Arith-
metic and Primary stages, while demonstrating a clear
performance decline from Primary to College stages.

Figure 4: Bilingual Comparison on MathBench.
showcasing scores in Chinese, English , and their aver-
age for the gray dashed line. The Arithmetic stage is not
include because there no impact of language in it.

perform reasonably well on Arithmetic and Pri-
mary math problems. However, their effectiveness
drastically declines when it comes to the Middle
stage or above. Such phenomenon suggests that
existing models are good at tasks that can be solved
through direct computation, pattern recognition, or
memorizing basic concepts. However, they show-
case inferior performance when solving more com-
plex math problems.

Is There A Gap between Theory Understanding
and Application Capabilities? Theories serve
as the foundation for addressing the majority of
application problems. As illustrated in Figure 5,
we present the trend of LLMs in terms of theoret-
ical and application scores across different stages.
In the Primary stage, the two scores are highly
correlated for most LLMs, with only a few ex-
ceptions. Among top-ranked models, Qwen-72B-
Chat demonstrates the best theoretical ability, while
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Claude-3-Opus demonstrates superior application
ability. When it comes to more advanced stages,
models require better computational and reason-
ing capabilities to achieve good application scores.
GPT-4 leads in the application track across all
stages, while the gap is larger in more advanced
stages. For example, comparing to Qwen-72B-
Chat, the difference in theoretical and application
scores (Dt, Da) increases from (1.4, 8.7) in the
Middle stage to (6.0, 11.7) in the High stage, and
finally to (13.5, 23.0) in the College stage. More-
over, from the Middle stage onwards, there is a
general trend of decline in both theoretical and
application abilities of models. Compared to theo-
retical scores, the decline in application scores is
more serious.

Which Model Performs Better under the Bilin-
gual Scenario? Figure 4 demonstrates the bilin-
gual capabilities of various LLMs on MathBench,
indicating the importance of linguistic versatility in
mathematical tasks that demand an understanding
of nuances in language and math concepts across
different languages. Among all LLMs, GPT-4 leads
with the highest bilingual score of 67.1, showing
a balanced performance between Chinese (65.2)
and English (69.0). This demonstrates GPT-4’s ad-
vanced bilingual processing abilities. Other models
including Qwen-72B-Chat and DeepSeek-Math-
7B-RL also exhibit significant bilingual capabil-
ities. It’s also noteworthy that among all LLMs
evaluated, most of them feature a much larger per-
formance gap between Chinese and English, com-
pared to GPT-4. The detailed result of bilingual
test of MathBench can be found in Appendix B.4.

Enhancing Model Proficiency in Fundamental
Theories: Initial Explorations In an effort to
augment the model’s grasp and application of the-
oretical concepts in problem-solving contexts, we
embarked on exploratory initiatives, focusing pri-
marily on two methodologies: Chain of Thought
(CoT) and Knowledge Infusion.

We selectively sampled 200 questions from
MathBench, deliberately skewed towards theoreti-
cal reasoning and application (with a distribution of
40% application-oriented and 60% theory-centric
questions), to perform ancillary experiments on the
Qwen-72B-Chat model. The outcomes, delineated
in Table 3, elucidate the accuracy achieved through
different strategic approaches.

• Straight: Immediate response without pre-

ceding CoT.

• CoT: Response derived post-CoT, serving as
MathBench’s standard evaluative criterion.

• Straight-Knowledge: Immediate response,
preconditioned by the integration of relevant
knowledge points prior to posing the question.

• CoT-Knowledge: Response post-CoT, facili-
tated by the preliminary inclusion of pertinent
knowledge points.

Strategy Accuracy (%)
Straight 26.6
CoT 29.8
Straight-Knowledge 31.3
CoT-Knowledge 33.4

Table 3: Comparative accuracy of different strategies.

Knowledge points were meticulously curated
from academic textbooks and instructional re-
sources. The experimental data suggests a pro-
gressive enhancement in efficacy: Straight < CoT <
Straight-Knowledge < CoT-Knowledge. This pro-
gression evidences the significant impact of both
CoT and knowledge point infusion on augmenting
model performance for questions heavily reliant
on theoretical reasoning or practical application,
with their combined utilization yielding the most
favorable outcomes.

4 Discussion

4.1 Effect of Model Size on Math Capabilities
We found that for models of different sizes within
the same series, most of them conform to the Scal-
ing Law (Kaplan et al., 2020) on MathBench. For
example, Qwen series, MammoTH series, and Yi
series have shown steady improvement in their
MathBench scores as the parameter size increases,
as shown in Figure 6. However, it doesn’t mean that
models with small parameter sizes can not achieve
good math performance. For instance, DeepSeek-
Math-7B demonstrates outstanding performance
on MathBench and outperforms models with 10x
parameters, including DeepSeek-72B and a larger
math model MammoTH-70B.

4.2 Error Analysis
In our study, we conduct a comprehensive error
analysis on a set of 80 theoretical and 100 ap-
plication questions random selected from every
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Figure 5: Theoretical Score vs. Applied Score on MathBench. Primary and Arithmetic are averaged because they
share the same theory knowledge points.

Figure 6: Model Size vs. Average Score. The compari-
son chart of model parameter size versus performance
on MathBench for selected representative models, with
models from the same series connected by lines of the
same color. The horizontal red dotted line represents
the score of GPT-4.

stages, for models selected across different scales,
as illustrated in Figure 7. The error categories
are uniformly observed across all evaluated mod-
els, indicating common challenges that transcend
specific parameter scales. Our selection of mod-
els includes GPT-3.5, GPT-4, InternLM2-Chat-
7B, Qwen-14B-Chat, Qwen-72B-Chat, Deepseek-
Math-7B-RL and MammoTH-70B. Detailed cases
for error analysis can be found in Appendix C.2.
Insufficiency of knowledge. For theoretical ques-
tions, 78% of model errors are due to misconcep-
tions about mathematical concepts, which notably
emerged as a significant concern in several models.
Such errors accounted for 49.5% of all mistakes,
underscoring a general challenge in grasping fun-
damental knowledge and terminology.
Deficiencies in reasoning. Furthermore, models
exhibited shortcomings in logical reasoning, with
33.4% of errors attributed to logically consistent

Figure 7: Response Error Analysis for Both Theoret-
ical and Application Questions. The predominant
sources of errors are a fundamental misunderstanding
of the concepts, followed by incorrect reasoning paths.

but flawed reasoning processes. Moreover, errors
such as reasoning that deviated from the intended
query accounting for 9.6%, underscored the mod-
els’ limitations in understanding user intentions
and providing pertinent responses.
Response length limit. Though statistically not
the primary error mode (4.0%), responses that ex-
ceeded the token limit shed light on the challenge
of reasoning complex tasks within limited length
and adhering to given instructions.
Other cases. Occasionally, models will generate
responses devoid of an explicit reasoning process,
obstructing additional scrutiny. Moreover, mod-
els endowed with enhanced reasoning capabilities
exhibit a greater capacity for critical thinking re-
garding the options presented, thereby offering al-
ternative answers that transcend the limitations of
predetermined choices.

5 Related Work

Solving math word problems through automated
methods has been a long-standing concern for re-
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searchers. This section summarizes seminal studies
and delineates key evaluation datasets proposed
for assessing mathematical problem-solving ap-
proaches, tracing the field’s evolution from its ori-
gins to the present day.

Preliminary Mathematical Datasets Previous
works proposed datasets such as Alg514 (Kush-
man et al., 2014), SingleEq (Koncel-Kedziorski
et al., 2015), and DRAW-1K (Upadhyay and Chang,
2017) are primarily concentrated on elementary lin-
ear algebraic problems. Similarly, datasets like
AddSub (Hosseini et al., 2014) and SingleOp (Roy
et al., 2015) MultiArith (Roy and Roth, 2016) are
exclusively dedicated to fundamental arithmetic op-
erations: addition, subtraction, multiplication, and
division. These datasets are very limited both in
the form and content of their assessments, focusing
solely on a specific small part of basic mathematics.

Benchmarks tailored to specific educational
tiers Some benchmarks are designed based on
educational levels. Math23k (Wang et al., 2017)
collects a corpus of real math word problems for
elementary school students. While ASDiv (Miao
et al., 2021) expands the textual patterns to encom-
pass most problem types found in elementary math-
ematics. GSM8K (Cobbe et al., 2021) presents a
high-quality collection of elementary mathematical
word problems that, on average, require multiple
steps to solve and provide solutions in natural lan-
guage annotations. These datasets mostly focus
on elementary mathematics and seldom examine
college-level knowledge.

Enriching the diversity of mathematical prob-
lem types within benchmarks MathQA (Amini
et al., 2019) seeks to categorize problems from
AQuA (Ling et al., 2017) into different mathemati-
cal domains based on the frequency of mathemati-
cal terminology used. Mathematics Dataset (Sax-
ton et al., 2019) expands the subject of mathematics
and this dataset covers a broader spectrum of math-
ematics, including arithmetic, algebra, probability,
and calculus. MATH (Hendrycks et al., 2021b) fea-
tures a higher level of complexity, comprising prob-
lems ranging from arithmetic to calculus, and aims
at testing models’ capabilities in understanding and
solving complex mathematical challenges. While
these efforts have enhanced the diversity of the data
in certain aspects, they are lacking in diversity in
other aspects such as question formulation (Saxton
et al., 2019).

Integrating mathematical problems with do-
main knowledge NumGLUE (Mishra et al.,
2022) not only assesses the ability of models to
solve mathematical problems given direct compu-
tational expressions, but it also designs multiple
tasks to comprehensively evaluate the models’ abil-
ities to use other reasoning skills, such as common
sense and reading comprehension. Lila (Mishra
et al., 2023) is developed through the extension of
20 datasets that cover a broad range of mathemat-
ical topics. This dataset exhibits varying degrees
of linguistic complexity and features diverse ques-
tion formats as well as background knowledge re-
quirements. These works inspire us to design more
diversified testing scenarios.

6 Conclusion

In summary, MathBench adopts structured ap-
proaches to categorize questions by stage and
knowledge level. It aims to provide a comprehen-
sive evaluation of LLMs’ mathematical proficiency.
By covering a wide range of subject areas and top-
ics across educational stages, MathBench offers
a unique resource for researchers and educators
interested in advancing the field of mathematical
learning and assessment.

7 Limitations

We have developed a comprehensive mathemati-
cal evaluation benchmark, MathBench, which in-
cludes a detailed knowledge framework and multi-
dimensional, fine-grained mathematical questions.
Despite its strengths, the benchmark currently has
several limitations, which are summarized as fol-
lows:

Data Source: To enhance diversity, some ques-
tions were sourced from open-source datasets(∼
19%). However, these open-source questions may
be subject to data contamination, which could com-
promise the assurance that models have not been
exposed to these questions before. In future iter-
ations, we plan to automate the construction of
questions across various stages to more effectively
test the models’ genuine mathematical capabilities.

Lack of Detailed Reasoning Paths: Given the
diversity of questions and time constraints, Math-
Bench currently does not provide detailed reason-
ing paths for each question. This limitation makes
it challenging to unlock the full potential of the
questions. Moving forward, we aim to investigate
semi-automated methods to offer both natural lan-
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guage and code-based reasoning approaches for
each question, thereby maximizing the value of
MathBench’s questions.

8 Ethical Considerations

For our benchmarks, we relied on reference mate-
rials and closed-source models that are accessible
to the public, thereby avoiding any potential harm
to individuals or groups. The data produced by
the LLMs underwent a meticulous human selection
and processing phase to ensure the protection of
privacy and confidentiality. We did not use any
personally identifiable information, and all data
were anonymized prior to analysis. Additionally,
we employed ChatGPT and Grammarly to refine
our manuscript’s language.
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A MathBench Statistics

A.1 Dataset Statistics
The detailed statistics of MathBench questions, Ta-
ble 4 for the data distribution of theoretical and
application questions across various stages, Table 5
for fine-grained knowledge levels.

Table 4: Detailed Composition of the MathBench

Stage Type English Chinese Total

Arithmetic
Theoretical - - -
Application 300 - 300

Primary
Theoretical 109 208 317
Application 150 150 300

Middle
Theoretical 175 334 509
Application 150 150 300

High
Theoretical 281 470 751
Application 150 150 300

College
Theoretical 316 316 632
Application 150 150 300

A.2 Data collection details
For self-collected questions in MathBench, We pri-
marily collect through the following methods:

For the Primary stage GSM-X-CN and GSM-
X-Plus datasets, we semi-automatically generate
new questions using GPT-4. Specifically, the con-
struction of the GSM-X-CN Chinese question set
involved two steps:

We first translate English questions in GSM8k
test set into Chinese using GPT-4, resulting in a
Chinese version of GSM8k. We then replace the
entity names under the Chinese context while en-
suring that the questions’ meanings remained un-
changed. This process creates elementary-level
questions suitable for Chinese Q&A.

For the GSM-X-Plus dataset, which is in English,
we generate new questions by first generating solu-
tion code for the original test set questions. We then
replace some numeric parameters (taken from the
original questions) in the question with multiples of
the variable k. By executing the modified solution
code, we obtain the new answers. In MathBench,
we set k ∈ (2, 10).

For exams such as AMC, GaoKao, ZhongKao,
etc., we initially collect relevant questions from the
Internet. These questions are then underwent pro-
cessing and annotation by domain experts. Ques-
tions for primary and secondary education levels
are handled and annotated by undergraduate stu-
dents, while questions for university-level exams
were processed and annotated by graduate students
specializing in mathematics or computer science.
The description of knowledge-based questions is
provided in Sec. 2.2.

In addition to the self-collected datasets de-
scribed above, we also incorporate questions
from the following open-source datasets: CE-
VAL (Huang et al., 2023), MMLU (Hendrycks
et al., 2021a), Arithmetic-HG, Math401 (Yuan
et al., 2023) and SciBench (Wang et al., 2024). We
download the data from OpenDataLab (He et al.,
2022). All open-source datasets we used are MIT
License.

A.3 Quality Screening
Given the wide variety of sources and types of
questions, we notice that the following issues may
affect the benchmark quality: 1. Intrinsic errors
in the questions, such as being unanswerable or
having multiple correct answers. 2. Questions of
low evaluation value, too difficult or too trivial for
the intended education stage.

All of the above situations can easily lead to
unstable model responses and increased probability
of incorrect answers in CircularEval. To address
these issues, we employ a novel semi-automated
question filtering approach for quality screening.

Specifically, we use GPT-4 to perform Circular
Evaluation (CE) on all questions. We then select
questions that GPT-4 answered incorrectly 0, 1, or
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Table 5: MathBench Subject Area Statistics. Data is shown at the Subject Area level for conciseness, omitting the
more detailed Topic level due to its breadth.

Stage Subject Area English Chinese Total

Primary & Arith.
Introduction to Numbers and Algebra 44 73 117
Introduction to Geometry 10 62 72
Comprehensive Application 55 73 128

Middle
Basic Numbers and Algebra 133 182 315
Basic Geometry 33 137 170
Basic Probability and Statistics 9 15 24

High
Intermediate Numbers and Algebra 146 189 335
Intermediate Geometry 114 219 333
Intermediate Probability and Statistics 21 62 83

College
Advanced Mathematics 119 119 238
Linear Algebra 99 99 198
Probability and Statistics 98 98 196

2 times out of four attempts (CE − 0, CE − 1,
CE − 2) for manual review to ensure the overall
question quality.

B Detailed Experimental Results

B.1 Overall Results

The overall experimental results for chat models
are shown in Table 6, and Table 7 for base mod-
els. We report the average score of theoretical and
application questions for stages except Arithmetic,
which is predominantly indicative of pure compu-
tational prowess.

B.2 Evaluation of Base Models

The results for the Base models are presented in
Table 8. Consistency in performance is observed
between the Base models and their Chat model
counterparts, with InternLM2-7B emerging as the
optimal model in the 7B parameter range. Qwen-
14B and Qwen-72B demonstrate superior perfor-
mance within their respective parameter classes
on the MathBench benchmark. For mathemati-
cal tasks, Deepseek-Math-7B-Base’s results align
closely with those seen in the Chat model evalua-
tions, indicating a significant correlation between
the efficacy of Base models and their corresponding
Chat models, which leads to similar performance
trends across models within the same category.

Notably, ChatGLM3-6B-Base secures the
second-highest ranking in the 7B base model eval-
uation, outperforming several other models, includ-

ing Qwen-7B and Mistral-7B-v0.1. However, this
performance is not mirrored in its Chat model
variant, ChatGLM3-6B, which is surpassed by
Qwen-7B-Chat by 95.2% on MathBench-A and
by 104.7% on MathBench-T. This discrepancy in
performance between the Chat and Base versions
of the model may be attributed to the different fine-
tuning strategies applied during the subsequent tun-
ing phase, which could explain the observed gap in
performance.

B.3 Results with Accuracy

The detailed accuracy results are presented in Ta-
ble 9.

B.4 Bilingual

The corresponding results is presented in Table 10.

B.5 Detailed Model Performance for Each
Topic

In Figure 8 indicating average knowledge point per-
formance, it is evident that topics associated with
fundamental mathematical skills—such as ’Unit
Conversion,’ ’Four Operations,’ and ’Basic Con-
cepts of Equations’—register higher average scores.
This suggests that the majority of models exhibit
a proficient command of simple and elementary
mathematical questions.

Conversely, topics demanding abstract reason-
ing and intricate computations, like ’Double In-
tegrals,’ ’Mathematical Logic,’ and ’Set Theory,’
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Table 6: Overall Comparison of Chat Models on MathBench. Models are classified into three categories
according to their purpose and origin. The model name in bold indicates the top performer among Open-source or
Closed-source models, while an underline signifies the leading model within a similar parameter size group.

Models Arith Primary Middle High College Avg.
★Closed-source Models

GPT-3.5-Turbo-0125 72.7 71.2 42.0 32.8 33.4 48.8
GLM4 61.7 84.3 67.6 51.2 40.6 62.2
GPT-4-0125-Preview 76.0 84.8 70.0 56.7 54.3 68.6
Qwen-Max-0428 72.3 88.4 74.1 59.2 51.1 69.8
DeepSeek-V2-API 82.7 89.1 71.4 54.8 52.8 69.9
Claude-3-Opus 85.7 85.5 68.5 57.6 60.5 70.9
GPT-4o-2024-05-13 77.7 89.9 82.3 70.5 69.8 79.0

♡Open-source Chat Models
DeepSeek-7B-Chat 48.3 40.5 17.4 9.4 8.1 22.1
ChatGLM3-6B 38.0 41.3 23.0 12.8 6.8 23.2
Yi-6B-Chat 35.3 42.2 20.3 12.4 14.1 24.5
Qwen-7B-Chat 50.7 51.9 32.7 21.1 18.6 33.9
InternLM2-Chat-7B 52.0 66.8 42.9 29.5 25.7 43.5
Baichuan2-13B-Chat 40.0 45.0 25.3 14.4 11.4 26.4
Yi-34B-Chat 50.7 66.5 40.0 29.1 27.3 43.1
Llama-3-8B-Instruct 54.7 65.6 38.1 31.2 33.8 44.4
InternLM2-Chat-20B 62.3 68.6 46.9 37.3 28.1 47.8
Qwen-14B-Chat 63.7 66.6 51.5 35.4 30.7 49.1
DeepSeek-67B-Chat 62.0 75.4 49.5 38.5 38.3 53.1
Llama-3-70B-Instruct 70.3 78.7 58.7 50.4 52.6 61.8
Qwen-72B-Chat 72.0 81.3 67.3 49.6 44.4 63.4
Qwen1.5-110B-Chat 70.3 87.9 74.5 61.9 54.7 71.2

△Mathematical Models
MammoTH-7B 27.0 17.9 5.9 5.0 3.5 10.1
MammoTH-13B 35.0 35.2 11.8 9.9 11.0 19.0
Metamath-Llemma-7B 51.7 43.8 20.9 18.6 15.5 28.0
MammoTH-70B 35.7 59.1 29.1 25.0 25.3 36.0
InternLM2-Chat-Math-7B 53.7 66.3 50.8 35.0 27.3 46.8
DeepSeek-Math-7B-Instruct 61.0 73.7 44.4 37.0 32.3 49.3
InternLM2-Chat-Math-20B 58.7 71.6 57.1 42.6 32.8 53.1
DeepSeek-Math-7B-RL 68.0 81.5 58.2 47.2 45.8 60.4

show lower average scores. Addressing the mathe-
matical queries in these topics may require bespoke
model analysis and optimization. It is crucial to pin-
point the source of inaccuracies within these topics,
whether it be due to a deficit in reasoning ability
or an unstable grasp of the relevant foundational
theoretical concepts.

B.6 The Gap between Circular and Accuracy
Evaluation

A comparison between Circular Evaluation (CE)
scores and Accuracy (ACC) scores is illustrated
in Figure 9. As model performance improves, the

discrepancy between CE and ACC scores becomes
increasingly narrow, suggesting that more power-
ful models tend to provide more robust and stable
answers in mathematical question answering.

B.7 How Models Perform with Code Agent on
MathBench

We utilize the external code interpreter and fol-
low the ReAct (Yao et al., 2023) protocol in La-
gent (Team, 2023b) to evaluate LLMs’ ability
in solving mathematical problems of MathBench.
The results, as depicted in Figure 10, show the
comparison of performance with and without the
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Table 7: Overall Comparison of Base Models on MathBench. Models are classified into categories based on their
parameter size and the dataset they were trained on. The model name in bold indicates the top performer within all
base models, while an underline signifies the leading model within a similar parameter size group.

Models Arithmetic Primary Middle High College Average
♡Open-source Base Models

Llama-2-7B 28.0 11.3 16.1 19.1 20.0 18.9
Deepseek-7B-Base 31.0 19.1 22.2 22.5 22.9 23.5
Baichuan2-7B-Base 44.0 29.8 30.8 26.9 27.2 31.7
Qwen-7B 44.3 42.2 37.4 28.3 31.2 36.7
ChatGLM3-6B-Base 39.7 50.7 46.1 37.5 35.3 41.9
InternLM2-7B 49.0 56.1 46.3 41.2 44.2 47.4
Llama-2-13B 30.0 25.4 26.1 24.7 25.6 26.4
Baichuan2-13B-Base 47.7 44.8 39.3 30.1 39.3 40.2
InternLM2-20B 57.3 61.8 47.0 42.7 46.0 51.2
Qwen-14B 52.0 63.0 57.4 45.8 49.7 53.6
Llama-2-70B 44.3 49.2 39.1 34.8 46.8 42.9
Mixtral-8x7B-v0.1 55.3 52.6 42.1 40.1 51.9 48.4
Deepseek-67B-Base 45.3 64.2 51.6 44.0 50.7 51.2
Qwen-72B 62.3 77.9 69.8 64.4 64.4 67.8

△Mathematical Models
Llemma-7B 41.3 25.8 30.7 32.0 38.4 33.6
InternLM2-Base-Math-7B 46.0 38.2 40.4 34.7 43.2 40.6
Llemma-34B 44.3 43.8 40.4 37.4 46.6 42.5
InternLM2-Base-Math-20B 48.0 49.5 47.3 44.0 46.8 47.1
Deepseek-Math-7B-Base 58.3 62.3 55.7 50.6 57.5 56.9

Models Arith Primary Middle High College Avg.
♡Open-source Base Models

Llama-2-7B 28.0 9.0 27.0 31.3 31.7 25.4
Deepseek-7B-Base 31.0 14.0 26.7 32.3 28.0 26.4
Baichuan2-7B-Base 44.0 24.3 31.0 33.7 28.7 32.3
Mistral-7B-v0.1 42.7 30.0 35.0 32.7 35.3 35.1
Qwen-7B 44.3 46.3 38.0 32.3 36.3 39.5
ChatGLM3-6B-Base 39.7 48.3 43.7 38.0 33.0 40.5
InternLM2-7B 49.0 63.3 46.7 38.7 38.0 47.1
Llama-2-13B 30.0 21.0 30.7 31.7 28.3 28.3
Baichuan2-13B-Base 47.7 42.3 36.7 31.7 38.7 39.4
Qwen-14B 52.0 57.7 51.7 39.3 43.7 48.9
InternLM2-20B 57.3 70.7 45.3 39.3 37.0 49.9
Llama-2-70B 44.3 50.3 35.3 34.0 40.7 40.9
Mixtral-8x7B-v0.1 55.3 49.7 35.0 34.0 42.3 43.3
Deepseek-67B-Base 45.3 62.7 41.3 40.3 41.7 46.3
Qwen-72B 62.3 71.7 62.0 58.0 51.3 61.1

△Mathematical Models
Llemma-7B 41.3 27.3 34.7 41.3 41.0 37.1
Llemma-34B 44.3 45.0 35.7 34.0 40.3 39.9
InternLM2-Base-Math-7B 46.0 42.0 43.0 35.3 38.7 41.0
InternLM2-Base-Math-20B 48.0 50.3 46.3 42.0 40.3 45.4
Deepseek-Math-7B-Base 58.3 62.0 47.0 47.0 47.7 52.4

MathBench-A.

Models Primary Middle High College Avg.
♡Open-source Base Models

Llama-2-7B 13.6 5.1 6.8 8.4 8.5
Deepseek-7B-Base 24.2 17.7 12.6 17.9 18.1
Baichuan2-7B-Base 35.2 30.5 20.1 25.6 27.9
Qwen-7B 38.0 36.8 24.3 26.1 31.3
Mistral-7B-v0.1 39.8 33.4 27.8 45.9 36.7
ChatGLM3-6B-Base 53.0 48.6 37.1 37.7 44.1
InternLM2-7B 49.0 45.9 43.6 50.5 47.2
Llama-2-13B 29.9 21.4 17.8 22.8 23.0
Baichuan2-13B-Base 47.2 41.9 28.5 39.9 39.4
InternLM2-20B 52.9 48.7 46.1 54.9 50.6
Qwen-14B 68.4 63.0 52.3 55.7 59.9
Llama-2-70B 48.0 42.9 35.6 53.0 44.9
Mixtral-8x7B-v0.1 55.5 49.1 46.1 61.4 53.0
Deepseek-67B-Base 65.7 61.9 47.7 59.8 58.8
Qwen-72B 84.1 77.5 70.9 77.5 77.5

△Mathematical Models
Llemma-7B 24.3 26.6 22.7 35.8 27.3
InternLM2-Chat-Math-7B 34.4 37.7 34.1 48.4 38.7
Llemma-34B 42.7 45.2 40.9 52.8 45.4
InternLM2-Base-Math-20B 48.7 48.4 46.0 53.2 49.1
Deepseek-Math-7B-Base 62.5 64.5 54.2 67.4 62.1

MathBench-T.

Table 8: Overall Comparison of Base Models on MathBench A & T. The Arithmetic and Primary stage for
MathBench-T are combined because they share the same theory knowledge. Models are classified into categories
based on their parameter size and the dataset they were trained on. The model name in bold indicates the top
performer within all base models, while an underline signifies the leading model within a similar parameter size
group.

Code Agent on the Theory and Application sec-
tions of MathBench. Overall, the inclusion of the
Code Agent significantly enhances performance in
the Application section, especially in Arithmetic,

where it boosts the performance of InternLM2-
7B-Chat by about 64% (from 53.0 to 87.3). This
demonstrates that the addition of the Code Agent
can substantially improve the model’s basic numer-
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Table 9: Overall Comparison with Accuracy on MathBench. Models are classified into three categories according
to their purpose and origin.

Models Arithmetic Primary Middle High College Average
★Closed-source Models

GPT-3.5-Turbo-0125 74.8 71.8 79.5 85.3 85.3 77.9
Claude-3-Opus 83.8 85.2 90.0 87.2 86.0 86.4
DeepSeek-V2-API 83.9 82.0 89.1 90.5 89.7 87.0
GLM4 83.9 81.3 92.2 91.5 93.7 88.5
GPT-4-0125-Preview 91.1 86.4 91.4 92.4 92.7 90.3
Qwen-Max-0428 88.0 87.5 92.9 94.8 87.5 90.8
GPT-4o-2024-05-13 91.9 91.5 93.7 96.2 94.0 93.3

♡Open-source Chat Models
DeepSeek-7B-Chat 48.3 40.5 17.4 9.4 8.1 22.1
Yi-6B-Chat 35.7 41.3 23.0 12.8 6.8 23.2
Qwen-7B-Chat 50.7 51.9 32.7 21.1 18.6 33.9
InternLM2-Chat-7B 52.0 66.8 42.9 29.5 25.7 43.5
ChatGLM3-6B 41.0 53.2 51.2 38.9 34.0 43.7
Llama-3-8B-Instruct 54.7 65.6 38.1 31.2 33.8 44.4
Baichuan2-13B-Chat 40.0 45.0 25.3 14.4 11.4 26.4
Yi-34B-Chat 50.7 66.5 40.0 29.1 27.3 43.1
InternLM2-Chat-20B 62.3 68.6 46.9 37.3 28.1 47.8
Qwen-14B-Chat 63.7 66.6 51.5 35.4 30.7 49.1
DeepSeek-67B-Chat 62.0 75.4 49.5 38.5 38.3 53.1
Llama-3-70B-Instruct 70.3 78.7 58.7 50.4 52.6 61.8
Qwen-72B-Chat 72.0 81.3 67.3 49.6 44.4 63.4
Qwen1.5-110B-Chat 70.3 87.9 74.5 61.9 54.7 71.2

△Mathematical Models
MammoTH-7B 27.0 17.9 5.9 5.0 3.5 10.1
MammoTH-13B 35.0 35.2 11.8 9.9 11.0 19.0
Metamath-Llemma-7B 51.7 43.8 20.9 18.6 15.5 28.0
MammoTH-70B 35.7 59.1 29.1 25.0 25.3 36.0
InternLM2-Chat-Math-7B 53.7 66.3 50.8 35.0 27.3 46.8
DeepSeek-Math-7B-Instruct 61.0 73.7 44.4 37.0 32.3 49.3
InternLM2-Chat-Math-20B 58.7 71.6 57.1 42.6 32.8 53.1
DeepSeek-Math-7B-RL 68.0 81.5 58.2 47.2 45.8 60.4

ical calculation capabilities. However, for more
complex problems, such as those in the College
level Application section, the Code Agent does
not notably improve model capabilities and even
slightly degrades performance. For theoretical
problems, the Code Agent does not significantly
enhance InternLM2-7B-Chat’s performance across
various stages on MathBench. This suggests that
mathematical theoretical ability, as a crucial foun-
dational skill for models, requires more than just ex-
ternal tools. Instead, it necessitates exploring more
effective ways to enhance large language models’
understanding and application of mathematical con-

cepts.

B.8 Reasoning Path

Analyzing the reasoning paths of various models
across multiple difficulty levels reveals significant
performance disparities. We set a brief discussion
below and provide more detailed cases for reason-
ing path analysis in Appendix C.3.
Performance across diverse difficulties. In
straightforward scenarios, models swiftly solve the
problems with direct reasoning and yield logical
outcomes. Yet, complex issues, marked by dense
symbols, vast knowledge, and intricate links, neces-
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Models Primary Middle High College Avg.
★Closed-source Models

GPT-3.5-Turbo-0125 77.6 43.1 44.1 41.3 51.5
GLM4 82.7 59.6 60.3 47.8 62.6
Qwen-Max-0428 85.2 63.3 60.9 50.1 64.9
GPT-4-0125-Preview 82.4 66.7 64.6 58.2 68.0
DeepSeek-V2-API 90.7 66.8 61.7 60.9 70.0
Claude-3-Opus 85.1 67.4 65.5 70.5 72.1
GPT-4o-2024-05-13 88.3 80.2 78.4 75.9 80.7

♡Open-source Chat Models
DeepSeek-7B-Chat 41.9 16.2 9.8 8.0 19.0
ChatGLM3-6B 45.3 20.1 17.7 7.5 22.6
Yi-6B-Chat 44.5 17.7 15.6 16.3 23.5
Qwen-7B-Chat 49.4 24.6 23.3 21.6 29.7
InternLM2-Chat-7B 68.5 34.2 35.7 32.1 42.6
Llama-3-8B-Instruct 76.4 43.8 40.5 41.3 50.5
Baichuan2-13B-Chat 49.2 20.4 16.0 11.4 24.3
Yi-34B-Chat 63.5 31.1 32.8 27.6 38.8
Qwen-14B-Chat 63.3 38.7 37.0 32.6 42.9
InternLM2-Chat-20B 75.5 44.9 47.2 36.4 50.9
DeepSeek-67B-Chat 77.0 48.6 47.3 41.3 53.6
Qwen-72B-Chat 80.1 53.6 49.0 45.0 56.9
Qwen-1.5-110B-Chat 85.0 65.0 65.5 55.8 67.9
Llama-3-70B-Instruct 88.1 68.1 64.7 62.1 70.7

△Mathematical Models
MammoTH-7B 26.3 9.1 8.5 6.3 12.5
MammoTH-13B 49.2 18.8 15.1 16.7 24.9
MetaMath-Llemma-7B 62.7 30.3 29.6 22.2 36.2
DeepSeek-Math-7B-Instruct 71.7 34.4 33.0 29.2 42.3
InternLM2-Chat-Math-7B 66.6 32.1 31.0 28.4 39.5
MammoTH-70B 70.2 31.6 30.4 31.4 40.9
InternLM2-Chat-Math-20B 70.7 38.3 36.3 31.8 44.3
DeepSeek-Math-7B-RL 82.7 53.1 50.7 49.1 58.9

English Part.

Models Primary Middle High College Avg.
★Closed-source Models

GPT-3.5-Turbo-0125 64.8 41.0 21.6 25.5 38.2
GLM4 86.0 75.6 42.1 33.5 59.3
GPT-4-0125-Preview 87.2 73.3 48.7 50.4 64.9
Claude-3-Opus 86.0 69.6 49.7 50.5 63.9
DeepSeek-V2-API 87.6 75.9 47.9 44.7 64.0
Qwen-Max-0428 91.6 84.9 57.4 52.1 71.5
GPT-4o-2024-05-13 91.6 84.4 62.6 63.7 75.6

♡Open-source Chat Models
DeepSeek-7B-Chat 39.0 18.5 8.9 8.3 18.7
ChatGLM3-6B 37.3 25.9 8.2 6.2 19.4
Yi-6B-Chat 39.9 22.8 9.2 11.9 20.9
Qwen-7B-Chat 54.4 40.9 18.9 15.6 32.5
Llama-3-8B-Instruct 54.8 32.5 21.9 26.3 33.9
InternLM2-Chat-7B 65.1 51.6 23.4 19.3 39.8
Baichuan2-13B-Chat 40.9 30.2 12.7 11.3 23.8
InternLM2-Chat-20B 69.4 48.9 29.6 26.9 43.7
Yi-34B-Chat 69.4 48.9 25.4 26.9 42.7
Qwen-14B-Chat 70.0 64.3 33.7 28.7 49.2
DeepSeek-67B-Chat 73.7 50.4 29.7 35.2 47.3
Llama-3-70B-Instruct 69.3 49.3 36.1 43.1 49.5
Qwen-72B-Chat 82.4 81.0 50.2 43.8 64.4
Qwen-1.5-110B-Chat 90.7 83.9 57.9 53.7 71.5

△Mathematical Models
MammoTH-7B 9.6 2.6 1.6 0.7 3.6
MammoTH-13B 24.9 11.5 7.6 8.7 13.2
MetaMath-Llemma-7B 39.0 25.9 8.9 8.3 20.5
MammoTH-70B 47.9 4.8 4.6 5.4 15.7
InternLM2-Chat-Math-7B 66.0 69.5 39.0 26.1 50.1
DeepSeek-Math-7B-Instruct 75.6 54.3 39.9 35.5 51.4
DeepSeek-Math-7B-RL 80.3 63.2 42.6 42.7 57.4
InternLM2-Chat-Math-20B 72.5 75.8 49.0 33.9 57.8

Chinese Part.

Table 10: Bilingual Comparison of Models on MathBench.

sitate broader knowledge navigation, accentuating
divergences in deductive strategies.

Reasoning paths of chat models with different
parameter sizes. Small-scale chat models strive
for logical coherence in mathematics, yet may
make mistakes due to knowledge deficiencies, par-
ticularly in symbol interpretation and relational
understanding. In contrast, large-scale models fea-
ture expansive knowledge and nuanced insights,
which enhance symbol processing and minimizing
knowledge gaps. However, even with substantial
parameters, challenges in efficient knowledge man-
agement persist, occasionally leading to irrelevant
diversions and diminished reasoning efficacy.

Reasoning paths of math models. Specialized
math models, despite the smaller parameter sizes,
exhibit superior mathematical comprehension and
systematic logical reasoning. They excel in apply-
ing mathematical knowledge and notation to reason
through complex problems.

Superlative deductive navigation of Closed-
source models. GPT-4 stands out for its effective
reasoning and deep problem comprehension. It en-
gages in logical, coherent, and succinct discussions,
adeptly navigate complex reasoning paths, and

manage mathematical symbols effectively. GPT-4
distinctively recognizes problem statement ambigu-
ities, showcasing a detailed and nuanced reasoning
process.

C Extra Analysis

C.1 Prompts Demonstration

Please refer to the respective prompt block for a
detailed demonstration.

C.1.1 English Open-ended test
The corresponding prompt is presented in Fig-
ure 21.

C.1.2 Chinese Open-ended test
The corresponding prompt is presented in Fig-
ure 22.

C.1.3 English single choice with reasoning
The corresponding prompt is presented in Fig-
ure 23.

C.1.4 Chinese single choice with reasoning
The corresponding prompt is presented in Fig-
ure 24.
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Figure 8: Average Model Scores with Topics. We average the scores of every Chat model for each topic in
MathBench. The models excel at basic-level problems, such as single Unit Conversion and basic Four Operations,
but as the required reasoning and computational abilities for a topic increase, the performance of the models
gradually declines, as observed in topics like Double Integrals, Set Theory, and Mathematical Logic.

C.2 Error Types Demonstration

Please refer to the respective cases for a detailed
error types demonstration.

C.2.1 Misunderstandings of concepts
The corresponding case is presented in Figure 12.

C.2.2 Flawed reasoning
The corresponding case is presented in Figure 13.

C.2.3 Misaligned with the question
The corresponding case is presented in Figure 14.

C.2.4 Exceed max out length
The corresponding case is presented in Figure 15.

C.2.5 Responses constrained to Options
The corresponding case is presented in Figure 16.

C.2.6 Non-adherence to the prompt
The corresponding case is presented in Figure 17.

C.3 Reasoning Paths Demonstration
C.3.1 Small-scale chat model
The corresponding case is presented in Figure 18.

C.3.2 Large-scale chat model
The corresponding case is presented in Figure 19.

C.3.3 Math model
The corresponding case is presented in Figure 20.
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Figure 9: CE Evaluation vs. ACC Evaluation. The ACC evaluation queries the model once per question and
checks for correctness, whereas the CE (CircularEval) conducts a more stringent and robust assessment by rolling
out evaluations four times with shuffled answer options, deeming a question correct only if all attempts are accurate.
The percentages depicted in the figure represent the performance decrease of models in the CE evaluation compared
to the ACC evaluation.

Figure 10: Code Agent Performance on MathBench. We use InternLM2-7B-Chat for the comparison and the
results are divided into two parts with stages: Application and Theory.
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Example

Question: If sinx◦ = a, which of the following must be true for all values of x?

A. sin(90◦ − x◦) = a

B. cos(90◦ − x◦) = a

C. sin(x2)◦ = a2

D. cosx◦ = a

Incorrect Model Answer

If x = 30◦, cos(90◦ − 30◦) = cos(60◦) =
1

2
, but sin(30◦)not equal to

1

2
. (1)

So option B is wrong ...The answer is option A.✗ (2)

Incorrect Analysis:

This reasoning is flawed because it misunderstands the complementary (3)

angle theorem, and the model even doesn’t know the basic sin(30◦) =
1

2
. (4)

Added with Basic Theorem Given the theorem and answer the question: For a right triangle with
sides a, b, and hypotenuse c, the correct formula for sine is sin = opposite

hypotenuse . The complementary
angle theorem states that sin(90◦ − x) = cos(x) and cos(90◦ − x) = sin(x).{Quesiton}
Correct Analysis:

Given sinx◦ = a, by the complementary angle theorem, (5)

sin(90◦ − x) = cos(x). (6)

Therefore, for any value of x, cos(90◦ − x◦) = sinx◦ = a. (7)

Thus, the correct answer is option B.✓ (8)

Figure 11: An example of a model’s limited theoretical capabilities.
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C.2.1 Misunderstandings of Concepts

Prompt:
Question: Let R be a ring and let U and V be (two-sided) ideals of R. Which of the following
must also be ideals of R?
I. {u+ v : u ∈ U and v ∈ V }
II. {uv : u ∈ U and v ∈ V }
III. {x : x ∈ U and x ∈ V }
Options:
(A) II only
(B) III only
(C) I and II only
(D) I and III only

✗

✗

✗

✓

Incorrect Model Answer:
1. {u+ v : u ∈ U and v ∈ V } is not necessarily an ideal of R. This is because the set may not be
closed under the ring operation. For example, if u ∈ U and v ∈ V , but u+ v /∈ U or u+ v /∈ V ,
then u+ v may not be in the set {u+ v : u ∈ U and v ∈ V }.
2. {uv : u ∈ U and v ∈ V } is an ideal of R. This is because for any r ∈ R, u ∈ U , and
v ∈ V , we have r(uv) = (ru)v ∈ UV , and (uv)r = u(vr) ∈ UV . Thus, UV is closed under left
and right multiplication by elements of R. Also, if u1v1, u2v2 ∈ UV , then (u1v1) − (u2v2) =
u1v1 − u2v2 = u1v1 + (−u2v2) ∈ UV , since −u2v2 ∈ UV because V is an ideal. Therefore,
UV is an ideal of R.
3. {x : x ∈ U and x ∈ V } is not necessarily an ideal of R. This is because the set may not be
closed under the ring operation. For example, if u ∈ U and v ∈ V , but uv /∈ U or uv /∈ V , then
uv may not be in the set {x : x ∈ U and x ∈ V }.
Therefore, the correct answer is option II. The answer is: A

Error Analysis:
In crafting its response, the model fails to accurately grasp the concept of an ideal within a ring.

Figure 12: An example of misunderstandings of mathematical concepts.
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C.2.2 Flawed Reasoning

Prompt:
Question: Which of the following circles has the greatest number of points of intersection with
the parabola x2 = y + 4?
Options:
(A) x2 + y2 = 2
(B) x2 + y2 = 9
(C) x2 + y2 = 16
(D) x2 + y2 = 1

✗

✓

✗

✗

Incorrect Model Answer:
Step 1: Understand the problem We are given a parabola, x2 = y + 4, and four circles. We need
to find which circle has the maximum number of points of intersection with the parabola.
Step 2: Analyze the options Let’s analyze each circle one by one:
Option A: x2 + y2 = 2 This equation represents a circle centered at the origin (0, 0) with radius√
2. To find the points of intersection between this circle and the parabola, we can substitute

y = x2 − 4 into the circle’s equation and see if there are any real solutions for x.
Option B: x2 + y2 = 9 This equation represents a circle centered at the origin (0, 0) with radius 3.
We can follow the same process as in Option A to find the points of intersection.
Option C: x2 + y2 = 16 This equation represents a circle centered at the origin (0, 0) with radius
4. Again, we can substitute y = x2 − 4 into the circle’s equation and look for real solutions.
Option D: x2 + y2 = 1 This equation represents a circle centered at the origin (0, 0) with radius 1.
We will follow the same process as before.
Step 3: Compare the results After analyzing all the options, we find that:
Option A has two points of intersection.
Option B has two points of intersection.
Option C has four points of intersection.
Option D has no points of intersection.
Step 4: Choose the best answer Based on our analysis, Option C has the greatest number of
points of intersection with the parabola. Therefore, the correct answer is option C.

Error Analysis:
The model accurately grasps the mathematics of parabolas and circles, using equations to identify
roots correctly. However, errors in subsequent reasoning led to inaccuracies in calculating the
intersections between circles of various sizes and the specified parabola. Therefore, we classify
this as a correct pathway of reasoning but with errors.

Figure 13: An example of flawed Reasoning despite logical consistency.
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C.2.3 Misaligned with the Question

Prompt:
Question: For how many positive integers k does the ordinary decimal representation of the
integer k! end in exactly 99 zeros?
Options:
(A) None
(B) One
(C) Four
(D) Five

✗

✗

✗

✓

Incorrect Model Answer:
Let the number of trailing zeros be m. The number is in the form of 10m = (2m)(5m). m
must be a multiple of both 2 and 5. There are four such numbers: 0, 10, 20, and 30. The answer is C.

Error Analysis:
The model overlooks discussing the tails of the factorial of decimal numbers in the problem and
instead draws an irrelevant conclusion.

Figure 14: An example of reasoning misaligned with the query’s intent.
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C.2.4 Exceed max out length

Prompt:
Question: Let Y1 < Y2 < Y3 < Y4 < Y5 < Y6 be the order statistics of a random sample of size
n = 6 from a distribution of the continuous type having (100p)th percentile πp. Compute
(a) P (Y2 < π0.5 < Y5).
Options:
(A) 0.88125
(B) 0.78125
(C) 0.77625
(D) 0.7028

✗

✓

✗

✗

Incorrect Model Answer:
1. The order statistics Y1 < Y2 < Y3 < Y4 < Y5 < Y6 of a random sample of size n = 6 from a
distribution of the continuous type having (100p) th percentile πp.
2. We want to compute P (Y2 < π0.5 < Y5).
3. The probability P (Y2 < π0.5 < Y5) is equal to the probability that the 2nd order statistic is
less than the 50th percentile (median) and the 5th order statistic is greater than the 50th percentile
(median).
4. Using the concept of order statistics, we know that Y2 is the 2nd smallest value in the sample,
Y5 is the 5th smallest value in the sample, and π0.5 is the median of the distribution.
5. The probability P (Y2 < π0.5 < Y5) is equal to the probability that exactly 2 out of the 6 sample
values are less than the median and exactly 5 out of the 6 sample values are greater than the median.
6. This is a binomial probability problem with parameters n = 6, p = 0.5, and we want to find
P (X = 2) and P (X = 5), where X is the number of sample values less than the median.
7. Using the binomial probability formula, P (X = 2) =

(
6
2

)
(0.5)2(0.5)4 = 15×0.25×0.0625 =

0.234375.
8. Similarly, P (X = 5) =

(
6
5

)
(0.5)5(0.5)1 = 6× 0.03125× 0.5 = 0.09375.

9. The probability P (Y2 < π0.5 < Y5) is the product of these two probabilities,

Error Analysis:
The model demonstrates a clear grasp of quartiles and probability distributions. However, due to
extensive reasoning rounds, responses often exceed the text length limit, resulting in truncation.
Additionally, there is an error in the model’s final statement concerning the probability product.

Figure 15: An example of responses exceeding the predefined character limit.
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C.2.5 Responses Constrained to Options

Prompt:
Question:
Statement 1 | If A is connected, the closure of A must be connected.
Statement 2 | Every continuous function f : (0, 1) → (0, 1) has a fixed point.
Options:
(A) False, False
(B) True, True
(C) True, False
(D) False, True

✗

✗

✓

✗

Incorrect Model Answer:
The first statement is true if and only if the closure of A is connected. The second statement is
false, as there are continuous functions that do not have a fixed point.
Therefore, the correct answer is option A.

Error Analysis:
The model directly provides an answer without elaborating on the reasoning process behind it,
making it challenging to ascertain the cause of the incorrect response.

Figure 16: An example of responses constrained to options.
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C.2.6 Non-adherence to the Prompt

Prompt:
Question: The World Series in baseball continues until either the American League team or the
National League team wins four games. How many different orders are possible (e.g., ANNAAA
means the American League team wins in six games) if the series goes four games?
Options:
(A) 5
(B) 4
(C) 2
(D) 6

✗

✗

✓

✗

Incorrect Model Answer:
Step 1: Understand the problem The World Series in baseball continues until either the American
League team or the National League team wins four games. We want to find out how many
different orders are possible if the series goes exactly four games.
Step 2: Identify the possibilities There are two teams playing against each other, so there are only
two possible outcomes for each game: either the American League team wins or the National
League team wins. Since the series goes exactly four games, we can represent the outcome of each
game using a single letter: Äf̈or an American League win and N̈f̈or a National League win.
Step 3: Count the number of possible orders To count the number of possible orders, we simply
need to count the number of ways we can arrange the letters Äänd N̈ẗo form a string of length four.
There are two possibilities for each position in the string, so there are a total of 2 x 2 x 2 x 2 = 16
possible orders.
Step 4: Check the answer choices None of the answer choices match our calculation of 16 possible
orders. However, since the question asks for the number of different orders if the series goes
exactly four games, and there are only two possible outcomes for each game, it stands to reason
that the correct answer should be a positive integer. Therefore, the correct answer is not among the
given options. Therefore, the correct answer is not among the options A, B, C, or D.

Error Analysis:
The model does not provide answers in the given options.

Figure 17: An example of non-adherence to the prompt.
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C.3.1 Reasoning Path of the Small-Scale Chat Model

Prompt:
Question: Alma bought a laptop computer at a store that gave a 20 percent discount off its original
price. The total amount she paid to the cashier was p dollars, including an 8 percent sales tax on
the discounted price. Which of the following represents the original price of the computer in terms
of p?
Options:
(A) p

0.88
(B) (0.8)(1.08)p
(C) p

(0.8)(1.08)
(D) 0.88p

✗

✗

✓

✗

Model Answer:
The original price of the laptop is x. After the 20% discount, the price becomes 0.8x. We also
know that the total amount Alma paid to the cashier, including the 8% sales tax, was p. So we can
set up the equation:
0.8x+ 0.08x = p
Simplifying this equation, we get:
0.96x = p
Now we can solve for x:
x = p/0.96
x = 0.88p
Therefore, the original price of the computer in terms of p is 0.88p. Option D is the correct answer.
Reasoning Path Analysis:
The model’s reasoning is predicated on an inaccurate interpretation of the tax calculation. Neverthe-
less, the mathematical reasoning employed by the model is comprehensive and logically coherent
despite simple errors, indicating a sound mathematical logic within the reasoning trajectory of the
small-scale chat model.

Figure 18: An example of reasoning path of the small-scale chat model.
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C.3.2 Reasoning Path of the Large-Scale Chat Model

Prompt:
Question: It is known that log2(x) = 5. Give the value of log2(2x). Explain your answer.
Options:
(A) 6
(B) 12
(C) 36
(D) 7

✓

✗

✗

✗

Model Answer:
Step 1: We are given that log2(x) = 5.
Step 2: Our goal is to find the value of log2(2x).
Step 3: Let’s use the property of logarithms that says logb(mn) = logb(m) + logb(n).
Step 4: In our case, we can rewrite 2x as 2 · x. So, we have:
log2(2x) = log2(2) + log2(x)
Step 5: We know that log2(2) = 1, because 21 = 2. And we also know that log2(x) = 5 (from the
problem statement). So, we can substitute these values in:
log2(2x) = 1 + 5
Step 6: Adding 1 and 5 gives us:
log2(2x) = 6
Therefore, the correct answer is option A.
Reasoning Path Analysis:
The model’s reasoning paths exhibit evident recursive relationships, cohesive logical connec-
tions, and well-defined objectives. Additionally, the model demonstrates adept utilization of
pertinent knowledge references while responding to questions, thereby enhancing its mathematical
comprehension and facilitating the provision of comprehensive and lucid reasoning paths.

Figure 19: An example of reasoning path of the large-scale chat model.
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C.3.3 Reasoning Path of the Math Model

Prompt:
Question: The first term of an arithmetic sequence is 18. The sum of the first six terms of the
sequence is equal to the sum of the first seven terms.
Show that the sum of the first 13 terms of the sequence is 0 and calculate the 13th term of the
sequence.
Options:
(A) -18
(B) -16
(C) -14
(D) -20

✓

✗

✗

✗

Model Answer:
13th term of the sequence is 0.
Let a be the first term and d be the common difference.
The sum of the first 6 terms is:
S6 = 6/2[2a+ (6− 1)d] = 3(2a+ 5d) = 6a+ 15d.
The sum of the first 7 terms is:
S7 = 7/2[2a+ (7− 1)d] = 7/2(2a+ 6d) = 7(a+ 3d) = 7a+ 21d.
Given that S6 = S7, we have:
6a+ 15d = 7a+ 21d.
Rearranging terms, we get:
a = −6d.
The sum of the first 13 terms is:
S13 = 13/2[2a+ (13− 1)d] = 13/2(2a+ 12d) = 13(a+ 6d).
Substituting a = −6d, we get:
S13 = 13(−6d+ 6d) = 13× 0 = 0.
The nth term of an arithmetic sequence is given by:
an = a+ (n− 1)d.
Substituting a = −6d, we get:
an = −6d+ (n− 1)d = d(−6 + n− 1) = d(n− 7).
For the 13th term, we have:
a13 = d(13− 7) = 6d.
But we know that a = −6d, so:
a13 = 6d = −a.
Since the first term is 18, we have a = 18, so:
a13 = −18.
Therefore, the correct answer is option A. The answer is A .
Reasoning Path Analysis:
The mathematical model correctly invokes the formulas and properties of the equivariant series in
its reasoning path and uses mathematical reasoning to draw conclusions. It correctly applied the
summation and generalization formulas of the equal difference series and used algebraic operations
to derive the results. The model was derived without logical errors, each step was based on the
results of previous reasoning, and the derivation was consistent with the known conditions.

Figure 20: An example of reasoning path of the large-scale chat model.
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C.1.1 English Open-ended test

HUMAN:’Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today.
After they are done, there will be 21 trees. How many trees did the grove workers plant today?’
BOT: ’A: We start with 15 trees. Later we have 21 trees. The difference must be the number of
trees they planted. So, they must have planted 21 - 15 = 6 trees. The answer is 6.’
HUMAN:’Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the
parking lot?’
BOT: ’A: There are 3 cars in the parking lot already. 2 more arrive. Now there are 3 + 2 = 5 cars.
The answer is 5.’
HUMAN:’Q: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do
they have left in total?’
BOT: "A: Leah had 32 chocolates and Leah’s sister had 42. That means there were originally 32 +
42 = 74 chocolates. 35 have been eaten. So in total they still have 74 - 35 = 39 chocolates. The
answer is 39."
HUMAN:’Q: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops.
How many lollipops did Jason give to Denny?’
BOT: ’A: Jason had 20 lollipops. Since he only has 12 now, he must have given the rest to Denny.
The number of lollipops he has given to Denny must have been 20 - 12 = 8 lollipops. The answer
is 8.’
HUMAN:’Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad.
How many toys does he have now?’
BOT: ’A: He has 5 toys. He got 2 from mom, so after that he has 5 + 2 = 7 toys. Then he got 2
more from dad, so in total he has 7 + 2 = 9 toys. The answer is 9.’
HUMAN:’Q: There were nine computers in the server room. Five more computers were installed
each day, from monday to thursday. How many computers are now in the server room?’
BOT: ’A: There are 4 days from monday to thursday. 5 computers were added each day. That
means in total 4 * 5 = 20 computers were added. There were 9 computers in the beginning, so now
there are 9 + 20 = 29 computers. The answer is 29.’
HUMAN:’Q: Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost
2 more. How many golf balls did he have at the end of wednesday?’
BOT: ’A: Michael initially had 58 balls. He lost 23 on Tuesday, so after that he has 58 - 23 = 35
balls. On Wednesday he lost 2 more so now he has 35 - 2 = 33 balls. The answer is 33.’
HUMAN:’Q: Olivia has $23. She bought five bagels for $3 each. How much money does she
have left?’
BOT: ’A: She bought 5 bagels for $3 each. This means she spent 5 * $3 = $15 on the bagels. She
had $23 in beginning, so now she has $23 - $15 = $8. The answer is 8.’
HUMAN:’Q: {question}’
BOT: ’A: {answer}’

Figure 21: An example prompt of English Open-ended test.
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C.1.2 Chinese Open-ended test

HUMAN: ’Q: 林中有15棵树。林务工人员今天将在林中种植树木。完成后，将有21棵
树。林务工人员今天种植了多少棵树？’
BOT: ’A:我们从15棵树开始。后来有21棵树。差值必定是他们种植的树木数量。所以，
他们必须种植了21 - 15 = 6棵树。答案是6’
HUMAN: ’Q:如果停车场有3辆车，又有2辆车进来，停车场里有多少辆车？’
BOT: ’A:停车场已经有3辆车。又进来了2辆车。现在有3 + 2 = 5辆车。答案是5’
HUMAN: ’Q:黎恩有32块巧克力，她的妹妹有42块。如果他们吃了35块，他们总共剩下
多少块？’
BOT: ’A: 黎恩有32块巧克力，Leah的妹妹有42块。这意味着原本有32 + 42 = 74块巧克
力。被吃掉了35块。所以他们总共还剩下74 - 35 = 39块巧克力。答案是39’
HUMAN: ’Q:杰森有20个棒棒糖。他给丹妮一些棒棒糖。现在Jason只剩下12个棒棒糖。
杰森给丹妮多少个棒棒糖？’
BOT: ’A: 杰森有20个棒棒糖。因为他现在只剩下12个，所以他必须把剩下的都给了丹
妮。他给丹妮的棒棒糖数量必定是20 - 12 = 8个。答案是8’
HUMAN: ’Q: 莎莎有五个玩具。在圣诞节，他从他的爸爸和妈妈那里各得到了两个玩
具。现在他有多少个玩具？’
BOT: ’A:她有5个玩具。他从妈妈那里得到了2个，所以之后他有5 + 2 = 7个玩具。然后他
从爸爸那里得到了2个，所以总共他有7 + 2 = 9个玩具。答案是9’
HUMAN: ’Q:服务器房间里有九台电脑。从周一到周四每天增加五台电脑。现在服务器
房里有多少台电脑？’
BOT: ’A: 从周一到周四有4天。每天增加5台电脑。这意味着总共增加了4 * 5 = 20台电
脑。一开始有9台电脑，所以现在有9 + 20 = 29台电脑。答案是29’
HUMAN: ’Q:迈克尔有58个高尔夫球。星期二，他丢失了23个高尔夫球。星期三，他又
丢失了2个。星期三结束时他还剩下多少个高尔夫球？’
BOT: ’A: 迈克尔一开始有58个球。星期二他丢失了23个，所以之后他还剩下58 - 23 =
35个球。星期三他又丢失了2个，所以现在他还剩下35 - 2 = 33个球。答案是33’
HUMAN: ’Q: 奥利弗有23美元。她用每个3美元的价格买了五个百吉饼。她还剩下多少
钱？’
BOT: ’A: 她以每个3美元的价格买了5个百吉饼。这意味着她在百吉饼上花费了5 * 3 =
15美元。她一开始有23美元，所以现在她还剩下23 - 15 = 8美元。答案是8’
HUMAN: ’Q: {question}’
BOT: ’A: {answer}’

Figure 22: An example prompt of Chinese Open-ended test.

C.1.3 English single choice with reasoning

"Here is a multiple-choice question about mathematics. Please reason through it step by step, and
at the end, provide your answer option with ’Therefore, the correct answer is option X’, Where ’X’
is the correct option you think from A, B, C, D. Here is the question you need to answer:
{question}
Let’s think step by step: "

Figure 23: An example prompt of English single choice with reasoning.
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C.1.4 Chinese single choice with reasoning

"以下是一道关于数学的单项选择题，请你一步一步推理，并在最后用“所以答案为选
项X”给出答案，其中“X”为选项A，B，C，D中你认为正确的选项。下面是你要回答的问
题
{question}
让我们一步一步思考："

Figure 24: An example prompt of Chinese single choice with reasoning.
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