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Abstract

This paper introduces ConceptMath, a bilin-
gual (English and Chinese), fine-grained
benchmark that evaluates concept-wise math-
ematical reasoning of Large Language Mod-
els (LLMs). Unlike traditional benchmarks
that evaluate general mathematical reasoning
with an average accuracy, ConceptMath sys-
tematically organizes math problems under a
hierarchy of math concepts, so that mathe-
matical reasoning can be evaluated at differ-
ent granularity with concept-wise accuracies.
Based on our ConcepthMath, we then evaluate
a broad range of LLMs, and we observe ex-
isting LLMs, though achieving high average
accuracies on traditional benchmarks, exhibit
significant performance variations across dif-
ferent math concepts and may even fail catas-
trophically on the most basic ones. Besides,
we also introduce an efficient fine-tuning strat-
egy to enhance the weaknesses of existing
LLMs. Finally, we hope ConceptMath could
guide the developers to understand the fine-
grained mathematical abilities of their models
and facilitate the growth of foundation mod-
els. Code is available at https://github.
com/conceptmath/conceptmath.

1 Introduction

Mathematical reasoning is a crucial capability for
Large Language Models (LLMs). Recent advance-
ments in LLMs, including Anthropic (Anthropic,
2023), GPT-4 (OpenAl, 2023), and LLaMA (Tou-
vron et al., 2023a), have demonstrated impres-
sive mathematical reasoning on existing bench-
marks with high average accuracies on datasets
like GSM8K (Cobbe et al., 2021). Although
these benchmarks are able to measure the overall
mathematical reasoning capabilities of LLMs on
average, they fail to probe the fine-grained fail-
ure modes of mathematical reasoning on specific

* First three authors contributed equally. # Correspond-
ing Author: Jiaheng Liu.
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Figure 1: The concept-wise accuracies of LLaMA2-
13B and the fine-tuned version based on our efficient
fine-tuning method (i.e., LLaMA2-FT).

mathematical concepts. For example, Fig. 1 shows
that the performance of LLaMA?2-13B varies sig-
nificantly across different concepts and fails on
simple concepts like Rational number and Cylin-
ders. 1t is crucial to know these specific failure
modes of the language model, especially in some
practical applications where we need to focus on
specific mathematical abilities. For example, for
financial analysts, calculation, measurement, and
statistics are the concepts of most interest while
others like geometry are not as important.

Moreover, the mathematics system, by its na-
ture, is more fine-grained than holistic. It is
typically organized into distinct math concepts !,
and humans develop comprehensive mathemat-
ical capabilities through a concept-by-concept,
curriculum-based learning process (Simon, 2011;
Fritz et al., 2013). These issues underscore the
core motivation of this paper: the need for a fine-
grained benchmark that evaluates concept-wise
mathematical reasoning of LLMs.

Therefore, first, we introduce ConceptMath, the

"https://en.wikipedia.org/wiki/Lists_
of_mathematics_topics
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first bilingual (English and Chinese), concept-wise
benchmark for measuring mathematical reasoning.
ConceptMath gathers math concepts from four ed-
ucational systems, resulting in four distinct mathe-
matical concept systems: English Elementary, En-
glish Middle, Chinese Elementary, and Chinese
Middle *. Each of these concept systems organizes
around 50 atomic math concepts under a three-
level hierarchy and each concept includes approxi-
mately 20 mathematical problems. Overall, Con-
ceptMath comprises a total of 4011 math word
problems across 214 math concepts, and Fig. 2
shows the diagram overview of ConceptMath.

Second, based on our ConceptMath, we per-
form extensive experiments to assess the math-
ematical reasoning of existing advanced LLMs,
including 2 close-sourced LLMs and 17 open-
sourced LLMs. These evaluations were performed
in zero-shot, chain-of-thought (CoT), and few-
shot settings. To our surprise, even though most
of the evaluated LLMs claim to achieve high aver-
age accuracies on traditional mathematical bench-
marks (e.g., GSM8K (Cobbe et al., 2021)), they
fail catastrophically across a wide spectrum of
mathematical concepts.

Third, to make targeted improvements on under-
performed math concepts, we propose an efficient
fine-tuning strategy by first training a concept clas-
sifier and then crawling a set of samples from
a large open-sourced math dataset (Paster et al.,
2023; Wang et al., 2023b) for further LLMs fine-
tuning. In Fig. 1, for LLaMA2-FT, we observe
that the results of these weaknesses improved a lot
after using the efficient fine-tuning method.

In summary, our contributions are as follows:

* We introduce ConceptMath, the first bilingual,
concept-wise benchmark for measuring mathe-
matical reasoning. ConceptMath encompasses 4
systems, approximately 214 math concepts, and
4011 math word problems, which can guide fur-
ther improvements on the mathematical reason-
ing of existing models.

* Based on ConceptMath, we evaluate many
LLMs and perform a comprehensive analysis of
their results. For example, we observe that most
of these LLMs (including open-sourced, closed-
sourced, general-purpose, or math-specialized
models) show significant variations in their per-

2The four concept systems are abbreviated as
Elementary-EN, Middle-EN, Elementary-ZH, and
Middle-ZH.

formance results across math concepts.

* We also evaluate the contamination rate of our
ConceptMath and introduce a simple and effi-
cient fine-tuning method to improve the weak-
nesses of existing LLMs.

2 ConceptMath

ConceptMath is the first bilingual, concept-wise
benchmark for measuring mathematical reasoning.
In this section, we describe the design principle,
dataset collection process, dataset statistics and an
efficient fine-tuning strategy to enhance the weak-
nesses identified by our ConceptMath.

2.1 Design Principle

We created ConceptMath based on the following
two high-level design principles:

Concept-wised Hierarchical System. The pri-
mary goal of ConceptMath is to evaluate the math-
ematical reasoning capacities of language models
at different granularity. Therefore, ConceptMath
organizes math problems within a three-level hier-
archy of mathematical concepts in Fig. 2. This ap-
proach provides concept-wise evaluation for math-
ematical reasoning of language models and makes
targeted and effective improvements possible.

Bilingualism. Most of the current mathemati-
cal benchmark focuses solely on English, leaving
multi-lingual mathematical reasoning unexplored.
As an early effort to explore multi-lingual math-
ematical reasoning, we evaluate mathematical rea-
soning in two languages: English and Chinese. Be-
sides, since cultures and educational systems vary
across different languages, common math con-
cepts can differ a lot. Therefore, we carefully col-
lect concepts in both languages, instead of merely
translating from one language to another. For ex-
ample, measurement metrics (e.g., money, size)
are different for English and Chinese.

2.2 Data Collection

Subsequently, for data collection, we take a two-
step approach to operationalize the aforemen-
tioned design principles: First, we recruit experts
to delineate a hierarchy of math concepts based on
different education systems. Secondly, we collect
problems for each concept from various sources or
design problems manually, which is succeeded by
quality assessment and data cleaning.
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(a) English Elementary (Elementary-EN)
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(c) Chinese Elementary (Elementary-ZH)
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(b) English Middle (Middle-EN)
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(d) Chinese Middle (Middle-ZH)

Figure 2: Diagram overview of four concept systems in ConceptMath. We have provided translated Chinese

concept names in English (See Appendix D).

Math Concept System Construction. Since the
education systems provide a natural hierarchy of
math concepts, we recruited four teachers from el-
ementary and middle schools, specializing in ei-
ther English or Chinese, to organize a hierarchy
of math concepts for different education systems.
This leads to four concept systems: Elementary-
EN, Middle-EN, Elementary-ZH, and Middle-ZH,
with each system consisting of a three-level hierar-
chy of around 50 atomic math concepts (Fig. 2).

Math Problem Construction. Then, we con-
ducted a thorough data acquisition from vari-
ous sources (including educational websites, text-
books, and search engines with specific concepts)
to collect math word problems (including both

questions and answers) for each math concept. To
guarantee a balance across all concepts, approxi-
mately 20 problems were gathered for each math
concept. Following this, both GPT-4 (OpenAl,
2023) and human experts were employed to ver-
ify and rectify the categorization and the solu-
tion of each problem. However, we observed that
for some concepts, the problem count was sig-
nificantly below 20. To address this long-tail is-
sue, manual efforts were undertaken to augment
these categories, ensuring a consistent collection
of 20 problems for each concept. Furthermore, to
broaden the diversity of the dataset and minimize
the risk of data contamination, all gathered prob-
lems were paraphrased using GPT-4. It is impor-
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Benchmark ‘ Language Fine-grained Size

GSMB8K (Cobbe et al., 2021) EN X 1319
MATH (Hendrycks et al., 2021c¢) EN X 5000
TabMWP (Lu et al., 2023) EN X 7686
Dolphin18K (Huang et al., 2016) EN X 1504
Math23K (Wang et al., 2017) ZH X 1000
ASDiv (Miao et al., 2020) EN X 2305
SingleOp (Roy et al., 2015) EN X 562
AddSub (Hosseini et al., 2014) EN X 395
MultiArith (Roy and Roth, 2015) EN X 600
MMLU-Math (Hendrycks et al., 2021a) EN X 906
Bilingual MWPs (Tan et al., 2021) EN&ZH X 1557
ConceptMath | EN&ZH v/ 4011

Table 1: A comparison of our ConceptMath with some
notable mathematical datasets. Note that the size is the
number of samples of the test split.
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Figure 3: Length distributions of our ConceptMath.

tant to note that the collection and annotation pro-
cesses were carried out by a team of six members,
each possessing a university degree in an engineer-
ing discipline, to maintain a high level of technical
expertise in executing these tasks.

2.3 Dataset Statistics

Comparison to existing datasets. As shown in
Table 1, our ConceptMath differs from related
datasets in various aspects: (1) ConceptMath is
the first dataset to study fine-grained mathemat-
ical concepts and encompasses 4 systems, 214
math concepts, and 4011 math word problems.
(2) Problems in ConcepthMath are carefully anno-
tated based on the mainstream education systems
for English (EN) and Chinese (ZH).

Details on the hierarchical system. Apart from
Fig. 2, we also provide the details on the hierarchi-
cal system more clearly in Appendix D.

Length distribution. Fig. 3 shows the length dis-
tribution of our ConcepthMath, where number of
tokens is reported 3. The minimum, average and
maximum of the tokens for these questions are 4,
41 and 309, respectively, which shows that they
have lexical richness.

*We use the “cl100k_base” tokenizer from https://
github.com/openai/tiktoken

2.4 Efficient Fine-Tuning

Based on our ConceptMath, we are able to iden-
tify the weaknesses in the mathematical reasoning
capability of LLMs through concept-wise evalu-
ation. In this section, we explore a straightfor-
ward approach to enhance mathematical abilities
towards specific concepts by first training a con-
cept classifier and then curating a set of samples
from a large open-sourced math dataset. Specifi-
cally, first, by additionally collecting extra 10 prob-
lems per concept, we construct a classifier capable
of identifying the concept class of a given ques-
tion. The backbone of this classifier is a pretrained
bilingual LLM, where the classification head is
operated on its last hidden output feature. Then,
we proceed to fine-tune LLMs using this specific
dataset combined with the existing general math
dataset, which aims to avoid overfitting on a rela-
tively small dataset.

3 Experiments

In this section, we perform extensive experiments
to demonstrate the effect of our ConceptMath.

3.1 Experimental Setup

Evaluated Models. We assess the mathemat-
ical reasoning of existing advanced LLMs
on ConceptMath, including 2 close-sourced
LLMs (i.e., GPT-3.5/GPT-4 (OpenAl, 2023))
and 17 open-sourced LLMs (i.e., WizardMath-
13B (Luo et al., 2023), MetaMath-13B (Yu
et al.,, 2023), MAmmoTH-13B (Yue et al.,
2023), Qwen-14B/72B (Bai et al., 2023b),
Baichuan2-13B (Baichuan, 2023), ChatGLM3-
6B (Du et al., 2022), InternLM2-7B/20B (Team,
2023a), InternLM2-Math-7B/20B (Team, 2023a),
LLaMA2-7B/13B/70B (Touvron et al., 2023b),
Yi-6B/34B (Team, 2023b) and DeepSeekMath-
7B (Shao et al., 2024)). Note that WizardMath-
13B, MetaMath-13B, and MAmmoTH-13B are
specialized math language models fine-tuned from
LLaMA2. InternLM?2-Math and DeepSeekMath
are specialized math language models fine-tuned
from corresponding language models. More de-
tails of these models can be seen in Appendix B.

Evaluation Settings. We employ three distinct
evaluation settings: zero-shot, zero-shot with
chain-of-thought (CoT), and few-shot promptings.
The zero-shot prompting assesses the models’ in-
trinsic problem-solving abilities without any prior
examples. The zero-shot with CoT prompting
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M | Elementary-EN Middle-EN Elementary-ZH Middle-ZH |
odel Avg.

| ZS ZS-COT FS 7S ZS-COT FS 7S ZS-COT FS ZS ZS-COT FS |
Yi-6B 67.94 6756 59.03 6555 6459 56.05 3433 3191 3786 3646 36.19  36.46 | 49.49
ChatGLM3-6B 60.69 63.10 53.18 5125 60.17 5134 4623  43.63 4074 4477 4332 4043 | 49.90
DeepSeekMath-7B | 66.92  77.35 7392 5653 69.87 6631 6047 6233 64.19 5650 5695  56.86 | 64.02
InternLM2-Math-7B | 71.12  72.01  69.59 63.44 6296 63.05 5730 5823 5860 53.79 53.16 53.88 | 61.43
InternLM2-7B 68.83 6997 66.67 37.04 6583 5547 47.63  49.02 53.02 4522 4540  44.86 | 54.08
LLaMA2-7B 3651 4262 3868 3426 39.16 33.69 1572 17.67 17.58 30.87 3222  27.80 | 30.57
MAmmoTH-13B | 61.32 5242 5649 5393 4520 48.08 2233 3330 23.81 2798 43.05 29.15 | 41.42
WizardMath-13B | 41.73 4478 3499 3685 37.72 4511 1051 1126 1870 1236 1552 2292 | 27.70
MetaMath-13B 5445 51778 4796 4424 4347 4750 1144 1730 2753 2121 2608  29.60 | 35.21
Baichuan2-13B 68.83  68.58 5407 67.66 69.67 4040 57.02 5823 2205 5505 5532 2690 | 53.65
LLaMA2-13B 44.02 49775 4707 4472 4645 4309 20.19 2419 2214 3330 3538 2617 | 36.37
Qwen-14B 46.95 6578 7265 3848 59.60 67.85 28.09 65.12 6447 2292 5830  62.09 | 54.36
InternLM2-Math-20B | 74.05 7532 7341 6411 7121 7083 6298 6195 61.77 5514 5578  56.86 | 65.28
InternLM2-20B 5331 7252 7328 4511 6747 5672 48.19 5553  59.81 4513  50.63  56.68 | 57.03
Yi-34B 7468  73.66 5636 7226 7466 6583 50.05 51.16 3879 4540 4395 4097 | 57.31
LLaMA2-70B 56.11 6031  30.53 5806 6094 31.67 28.65 2670 2437 37.64 3430 28.43 | 39.81
Qwen-72B 7710 75.06 7723 7466 69.87 7399 71.16 68.65 61.86 71.30 6543  62.45 | 70.73
GPT-3.5 8575 9237 8435 83.88 90.12 8273 5647 5321 5693 5190 5352  55.69 | 70.58
GPT-4 86.77 9020 89.57 8426 89.83 88.68 6791 7228 7200 6381 6426 66.61 | 78.02
Avg. | 63.00 6659 61.00 5665 6257 5728 4193 4535 4349 4267 4572 4341|5247

Table 2: Results of different models on our constructed ConceptMath benchmark dataset. Note that “ZS”, “ZS-
COT”, “FS” represents “zero-shot”, “zero-shot w/ chain-of-thought” and “few-shot”, repsectively. Models are

grouped roughly according to their model sizes.
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Figure 4: Mean accuracies for English, Chinese, and
overall educational systems.

evaluates the models’ ability to employ a logi-
cal chain of thought. In the few-shot prompting
setting, the model is provided with fixed 5-shot
prompts for different systems (See Appendix E),
which includes five newly created examples with
concise ground truth targets. This approach is
designed to measure the in-context learning abil-
ities. Besides, following MATH (Hendrycks et al.,
2021c), all questions and answers in ConceptMath
have been carefully curated, and each problem
is evaluated based on exact matches. Moreover,
greedy decoding with a temperature of O is used.

3.2 Results

Overall Accuracy. We present the overall ac-
curacies of different LLMs on our ConceptMath

benchmark under various prompt settings in Ta-
ble 2. Subsequently, we analyzed the mathe-
matical abilities of these LLMs in both English
and Chinese in Fig. 4. Our analysis led to
the following key findings: (1) GPT-3.5/4 show-
cases the most advanced mathematical reasoning
abilities among LLMs in both English and Chi-
nese systems, and the leading open-source Qwen-
72B model archives comparable performance com-
pared with GPT-3.5. (2) The scores on Chinese
systems of most existing LL.Ms are lower than En-
glish systems a lot. For example, accuracies on
Middle-ZH and Middle-EN for GPT-4 are 63.81
and 84.26. (3) Several models (e.g., WizardMath-
13B or MetaMath-13B) fine-tuned from LLaMA?2-
13B achieve slight improvements on English sys-
tems, but the performance results are lower than
LLaMA2-13B on Chinese systems a lot, which in-
dicates that domain-specific fine-tuning may de-
grade the generalization abilities of LLMs. (4).
The mathematical models (i.e., InternLM2-Math-
7B/20B and DeepSeekMath-7B) by continuing
pretraining on the large-scale math-related dataset
(>=100B tokens) show sufficient improvements
when compared to models with similar size, which
indicates that large-scale pertaining is effective to
improve the mathematical reasoning abilities.

Mean Concept-wised Accuracy. We show the
mean accuracy for each concept on the tested mod-
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els using zero-shot prompting on Middle-ZH in
Fig. 5 (See Appendix A for results on other con-
cept systems). It shows that the accuracies across
concepts vary a lot for existing LLMs. For ex-
ample, around 18% of concepts of Middle-ZH ex-
hibit an accuracy lower than 30%. These concepts
with significant potential for improvement should
be prioritized to effectively enhance the mathemat-
ical abilities of LLMs.

Concept-wised Accuracy. Fig. 6 shows that
most existing LLMs, whether open-sourced,
closed-sourced, general-purpose, or math-
specialized, exhibit notable differences in their
concept accuracies in the zero-shot prompt setting.
These disparities may stem from variations in
training datasets, strategies, and model sizes,
which suggests that apart from common weak-
nesses, each model possesses its unique areas
of deficiency or shortcomings. The concept
accuracies of other concept systems and results of
all models can be found in the Appendix A.

3.3 Analysis

Contamination. To determine whether a text is
in the pretraining data of a LLM, we provide two
different contamination detection methods (i.e.,
Rouge-based and Prob-based methods) to analyze
our ConceptMath in Table 3. Specifically, for
the Rouge-based method, we just input the first
50% of the question as the input and compute the
Rouge-L score between the generation results and
the ground-truth label of the last 50% of the text,
where a lower Rouge-L score means a lower con-
tamination rate. For the Prob-based method, we
follow (Shi et al., 2023) to use the MIN-K% prob-
ability metric, which first gets the probability for
each token in the test, and selects the K% tokens
with minimum probabilities and calculate their av-

—— MetaMath-13B LLaMA2-70B —— GPT-4

)
S

%
S

Accuracy
P (=)
=] (=]

)
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Figure 6: Concept accuracies on Middle-EN.

erage log-likelihood. If the average log-likelihood
is high, the text is likely in the pretraining data.
Note that we choose K as 10 in our setting. In Ta-
ble 3, we observe that the contaminate rates on our
ConceptMath are very low, which means that our
ConceptMath can provide a reasonable evaluation
for existing LLMs.

Unmastered Concepts. We also highlight the
several unmastered concepts of the LLaMA2-13B
in Table 4, which shows ConceptMath is effective
in guiding further refinement of existing LLMs.

Evaluation Prompting. Different from the few-
shot or cot prompting evaluation that can boost
closed-source models, we find that zero-shot
prompting is more effective for certain open-
source LL.Ms in Table 2. This disparity may arise
either because the models are not sufficiently pow-
erful to own mathematical CoT capabilities (Yu
et al., 2023; Wei et al., 2022) or because these
models have already incorporated CoT data dur-
ing training (Longpre et al., 2023). Consequently,
to ensure a comprehensive analysis, we have em-
ployed all three prompting methods for evaluation.

Efficient Fine-tuning. To show the effect of effi-
cient fine-tuning, we take the LLLaMA2-13B as an
example in Table 5. Specifically, we first select 10
concepts with the lowest accuracies in Elementary-
EN. Then, we crawl 495 samples (about 50 sam-
ples per concept) using the trained classifier as the
Concept-Specific (CS) training data from Open-
WebMath (Paster et al., 2023). Meanwhile, to
avoid overfitting, we introduce the MetaMathQA
(MMQA (Yu et al., 2023) ) data to preserve gen-
eral mathematical abilities. After that, we can fine-
tune LLaMA2-13B by only using MMQA (.e.,
LLaMA2 (w/ MMQA)), or using both MMQA
and CS data (i.e., LLaMA2 (w/ MMQA & CS)). In
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Model \ Elementary-EN Middle-EN Elementary-ZH Middle-ZH \ Avg. |
Yi-6B 5.30/1.73 5.21/1.37 0.04/0.20 0.36/0.35 2.73/0.91
ChatGLM3-6B 7.42/0.22 7.55/0.23 0.11/0.02 0.35/0.05 3.86/0.13
InternLM2-Math-7B 7.42/70.22 7.55170.23 0.11/0.02 0.35/0.05 3.86/0.13
InternLM2-7B 5.36/1.03 5.27/0.84 0.01/0.37 0.33/0.49 2.7410.68
MAmmoTH-13B 7.67/0.47 7.97/0.46 0.00/0.03 0.35/70.03 4.00/0.25
WizardMath-13B 8.41/0.35 8.23/0.34 0.00/0.02 0.55/0.02 4.30/0.18
MetaMath-13B 7.67/0.47 7.97/0.46 0.00/0.03 0.35/70.03 4.00/0.25
Baichuan2-13B 7.20/1.43 6.58/1.18 0.05/0.54 0.41/0.65 3.56/0.95
LLaMA2-13B 6.80/0.73 6.36/0.64 0.01/0.15 0.56/0.16 3.43/0.42
Qwen-14B 11.04/1.58 9.73/1.08 1.43/1.27 0.70/0.93 5.73/1.22
InternL M2-Math-20B 5.58/1.30 5.51/0.99 0.03/0.47 0.34/0.47 2.86/0.81
InternLM2-20B 7.20/1.43 6.58/1.18 0.05/0.54 0.41/0.65 3.56/0.95

GPT-3.5 948/ - 9.21/- 0.00/ - 0.31/- 475/ -

GPT-4 8.68/- 8.24/- 0.15/- 0.68 / - 4447/ -

Table 3: Data contamination rate of LLMs. We provide two different contamination detection methods. The values
in the table represent “Rouge / Prob”. Note that the second method based on output probability distributions can

only be applied to the open-source models.

Concept Concept Acc Error Type |

Example

Calculation Error

Q: Find the perimeter of a 16 by 18 feet rectangle.
A: The perimeter is 16 + 18 + 16 + 18 = 72 feet.

Perimeter 26.32

Knowledge Error

Q: The perimeter of a rectangular sticker is 14 centimeters.
The sticker is 2 centimeters wide. How tall is it?

A: The height equals the perimeter subtracts the width.
The height of the rectangle is 14 — 12 = 12 centimeters.

Polygons 11.11 Knowledge Error

Q: A regular polygon has an interior angle that measures
120 degrees. How many sides does this polygon have?
A: Let n be the number of sides of the polygon. We have
that n x 120 = 360. Hence: n = 3.

Cylinders 11.76 Calculation Error

Q: How much soup can a cylinder-shaped can store, if the
radius of the can is 3 inches and the height is 5 inches?
A: ... The volume of the canis V=7 x 3% x 5 = 30.

Table 4: Error reasons of several unmastered concepts of LLaMA2-13B.

Table 5, we observe that LLaMA2 (w/ MMQA &
CS) archives significant improvements on the low-
est 10 concepts and preserves well on the other 33
concepts, which shows the effect of efficient fine-
tuning and the advantages of our ConceptMath.

Classifying questions by concept. A key con-
sideration for ConceptMath is whether it is appro-
priate to arrange evaluations by concept in LLMs
because it is clear to humans that a question may
involve one or several concepts. We verify if
LLMs have this same level of understanding by
computing the Mean Reciprocal Rank (MRR) *
and accuracy of LLMs in classifying each question
by concept. We use secondary categories of our hi-
erarchical system as an example to show the MRR
and accuracy of each knowledge system. There
are approximately 18 concepts in the secondary

*nttps://en.wikipedia.org/wiki/Mean_
reciprocal_rank

categories for each knowledge system. As shown
in Table 6, open-source and proprietary models
can understand concepts to some degree, and the
ability to understand concepts is positively corre-
lated with the model’s mathematical capabilities.
The calculation method and metrics for each con-
cept system are detailed in the Appendix C.

4 Related Work

Large Language Models for Mathematics.
Large Language Models (LLMs) such as GPT-
3.5 and GPT-4 have exhibited promising capa-
bilities in complex tasks (Du et al., 2024; Guo
et al.,, 2023b; Liu et al., 2024a; Zhang et al.,
2024; Guo et al.,, 2024b; Sun et al., 2024).
However, the proficiency of open-source alterna-
tives like LLaMA (Touvron et al., 2023a) and
LLaMA?2 (Touvron et al., 2023b) remains notably
inferior on these datasets, particularly in handling
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LLaMA2
LLaMA2
Model LLaMA2 (w/ MMQA

(w/ MMQA) &CS)

Cones 0.00 17.65 23.53

Spheres 5.88 29.41 35.29

Polygons 11.11 61.11 66.67

Rational Number 11.76 23.53 52.94

Cylinders 11.76 35.29 47.06

Angles 11.76 47.06 58.82

Probability 18.75 25.00 75.00

Perimeter 26.32 42.11 63.16

Volume 27.78 38.89 66.67

Proportional 27.78 33.33 44.44

Avg Acc. 15.29 36.88 53.36
(over 10 concepts)

Avg Acc. 51.94 58.14 60.67
(over 33 concepts)

Overall Ace. | 44.02 53.94 59.29

Table 5: Results of fine-tuning models. MMQA and
CS denote MetaMathQA and our constructed Concept-
Specific training datasets, respectively. Introducing
CS data specifically for the bottom 10 concepts sig-
nificantly enhances these concepts’ performance, while
slightly improving the performance across the remain-
ing 33 concepts.

non-English problems. In contrast, models like
Baichuan2 (Baichuan, 2023) and Qwen (Bai et al.,
2023b) pretrained on multilingual datasets (i.e.,
Chinese and English) have achieved remarkable
performance. Recently, many domain-specialized
math language models have been proposed. For
example, MetaMath (Yu et al., 2023) leverages
the LLaMA2 models and finetunes on the con-
structed MetaMathQA dataset. MAmmoTH (Yue
et al., 2023) synergizes Chain-of-Thought (CoT)
and Program-of-Thought (PoT) rationales.

Mathmatical Reasoning Benchmarks. Re-
cently, many mathematical datasets (Roy and
Roth, 2015; Koncel-Kedziorski et al., 2015; Lu
et al., 2023; Huang et al., 2016; Miao et al.,
2020; Patel et al., 2021) have been proposed. For
example, SingleOp (Roy et al., 2015), expands
the scope to include more complex operations
like multiplication and division. GSM8K (Cobbe
et al., 2021) is a widely used dataset, which
requires a sequence of elementary calculations
with basic arithmetic operations.

Fine-Grained Benchmarks. Traditional bench-
marks focus on assessing certain abilities of mod-
els on one task (Guo et al., 2023b; Wang et al.,
2023a; Liu et al., 2020; Guo et al., 2022; Chai
et al., 2024; Liu et al., 2024a; Guo et al., 2024a,

Model | MRR Accuracy
LLaMA2-7B 3291 18.41
LLaMA2-13B 44.35 28.63
DeepSeekMath-7B 57.73 43.52
Qwenl.5-7B 56.58 42.32
Qwenl.5-14B 64.69 51.58
GPT-3.5 69.11 56.86
GPT-4 78.17 68.36

Table 6: The average MRR and accuracy of LLMs for
classifying each question by concept.

2023c; Bai et al., 2023a; Liu et al., 2022; Guo
et al., 2023a; Bai et al., 2024; Li et al., 2024).
For example, the GLUE benchmark (Wang et al.,
2019) combines a collection of tasks, and has wit-
nessed superhuman model performance for pre-
training models (Radford et al., 2019). Hendrycks
et al. (2021b) introduced MMLU, a benchmark
with multiple-choice questions across 57 subjects
including STEM, humanities, and social sciences,
for assessing performance and identifying weak-
nesses. Srivastava et al. (2022) proposed BIG-
bench with over 200 tasks.

5 Conclusion

We introduce a new bilingual concept-wise math
reasoning dataset called ConceptMath to assess
models across a diverse set of concepts. First, Con-
ceptMath covers more than 200 concepts across el-
ementary and middle schools for mainstream En-
glish and Chinese systems. Second, we exten-
sively evaluate existing LLMs by three prompting
methods, which can guide further improvements
for these LLMs on mathematical abilities. Third,
we analyze the contamination rates, error cases
and provide a simple and efficient fine-tuning strat-
egy to enhance the weaknesses.

Limitations

Mathematical concepts may form a network,
where failure to understand a complex concept can
result from deficiencies in simpler foundational
concepts or issues within the complex concept it-
self. Thus, the current hierarchical arrangement
may be insufficient, and introducing an interrelat-
edness network of concepts could provide more
insightful explanations of the mathematical abili-
ties of language models. Building an accurate and
interpretable interrelatedness network within our
hierarchical system is a promising direction for fu-
ture research.
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Ethics Statement

ConceptMath consists of math problems, thus very
few samples contain offensive content or sensitive
personal information. All annotators were fully in-
formed about the entire annotation process.
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A Concept Accuracy

We provide the mean concept accuracies of
Middle-EN, Elementary-EN and Elementary-ZH
of the evaluated models across different concepts
in Fig. 7, Fig. 8 and Fig. 9.

We illustrate the concept accuracies on Middle-
ZH, Elementary-EN and Elementary-ZH for some
selected models in Fig. 10, Fig. 11 and Fig. 12. For
the results of all models, please refer to Fig. 13,
Fig. 14, Fig. 15 and Fig. 16.
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Figure 7: Mean concept accuracies of Middle-EN.
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B Details on the Evaluated Models

In this section, we offer a detailed overview of
the Large Language Models (LLMs) and present
the corresponding model links in Table 7. For en-
hanced safety and better conversational abilities,
most LLMs undergo alignment techniques (Zhang
et al., 2023; Shen et al., 2023; Zhou et al., 2023,
2024; Liu et al., 2024b) to align with human in-
tents. We include instruction-finetuned models,
math language models and chat models aligned
with human intents in our evaluation.

®©
IS

=
S

=3
<)

[
S

Mean Accuracy
B
=1

w
S

Figure 9: Mean concept accuracies of Elementary-ZH.
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Figure 10: Concept accuracies on Middle-ZH.

* GPT-3.5/GPT-4 (OpenAl, 2023): The most pow-
erful closed-model from OpenAl. We utilize its
API: gpt-3.5-turbo and gpt-4.

e LLaMa2-7B/13B/70B (Touvron et al., 2023b):
A set of open-source models developed by Meta.

* Qwen-14B/72B (Bai et al., 2023b): This model
pre-trained on multilingual data, concentrates on
Chinese and English languages. We employ
both the Qwen-Base-14B, and the Qwen-Base-
72B.

¢ Baichuan2-13B (Baichuan, 2023): This model
demonstrates impressive performance in both
Chinese and English benchmarks.

e MetaMath-13B (Megill and Wheeler, 2019): A
domain-specific language model for mathemat-
ical reasoning, fine-tuned from the LLaMA-2
model using the MetaMathQA > dataset.

Shttps://huggingface.co/datasets/
meta-math/MetaMathQA
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Figure 11: Concept accuracies on Elementary-EN.
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¢ WizardMath-13B (Luo et al., 2023): Another
domain-specific language model for mathemat-
ical reasoning, fine-tuned from the LLaMA-2
model using reinforcement learning.

e MAmmoTH-13B (Yue et al.,, 2023): This
model is specifically designed for general math
problem-solving and has been fine-tuned from
the LLaMA model using the MathInstruct ©
dataset. This dataset features training data
that includes both chain-of-thought (CoT) and
program-of-thought (PoT) rationales.

* Yi-6B/34B (Team, 2023b): This model released
by 01 shows promising performance results in
both Chinese and English.

e ChatGLM3-6B (Zeng et al., 2022): a
lightweight and high-performance pre-trained
dialogue model released by Zhipu Al in both
Chinese and English.

¢ InternLM-7B/20B (Team, 2023a): A Multilin-

*https://huggingface.co/datasets/
TIGER-Lab/MathInstruct

gual Language Model with Progressively En-
hanced Capabilities released by InternLM team.

¢ InternLM-Math-7B/20B (Team, 2023a): Well-
performed math reasoning language models.

* DeepSeekMath-7B (Shao et al., 2024): One
powerful mathematical language model released
by DeepSeek.

C C(lassifying questions by concept

We compute the accuracy and Mean Reciprocal
Rank’ (MRR) of two closed-source LLMs (i.e.,
GPT-3.5 and GPT-4) and five open-source LLMs
(LLaMAZ2-7B/13B, DeepSeekMath-7B, Qwen1.5-
7B/14B) in classifying each question by concept.

The calculation method is different for closed-
source and open-source methods. Specifically, for
the open-source LLMs, we follow the benchmark
processing on the MMLU dataset in the OpenCom-
pass project (Contributors, 2023) to use options
(i.e., A, B, ...) for labeling each concept and then
calculate the log-likelihood for each option as the
basis for ranking. For the closed-source LLMs
(i.e., GPT-3.5 and GPT-4), as we cannot obtain
the log-likelihood for each option and these closed-
source methods have strong abilities to follow in-
structions, we use a system prompt to make the
model output the relevant concepts the question
belongs to, where the rankings are obtained from
most to least relevant to the corresponding ques-
tion. After getting the ranked concepts using the
above methods, we calculate MRR and accuracy,
which is shown in Table 9 and Table 8.

D Details on the ConceptMath

As shown in Table 10, Table 11, Table 12 and Ta-
ble 13, we have provided the details on the three-
level hierarchical system of our ConceptMath for
better illustration.

E Details on 5-shot Prompts

We provide the 5-shot prompts for our Concept-
Math in Pages 17-20.

"https://en.wikipedia.org/wiki/Mean_
reciprocal_rank
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Figure 14: Concept accuracies on Middle-EN of more models.
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Models HuggingFace Link / OpenAl Model

ChatGLM3 ChatGLM3-6B https://huggingface.co/THUDM/chatglm3-6b
DeepSeekMath DeepSeekMath-7B https://huggingface.co/deepseek-ai/deepseek-math-7b-instruct
Baichuan2 Baichuan2-13B https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat
MetaMath MetaMath-13B https://huggingface.co/meta-math/MetaMath-13B-V1.0
WizardMath WizardMath-13B https://huggingface.co/WizardLM/WizardMath-13B-V1.0
MAmmoTH MAmmoTH-13B https://huggingface.co/TIGER-Lab/MAmmoTH-13B
InternLM-7B https://huggingface.co/internlm/internlm2-chat-7b
Internl.M InternLM-20B https://huggingface.co/internlm/internlm2-chat-20b

InternLM-Math-7B https://huggingface.co/internlm/internlm2-math-7b
InternLM-Math-20B https://huggingface.co/internlm/internlm2-math-20b

. Yi-6B https://huggingface.co/01-ai/Yi-6B-Chat
Yi . . o
Yi-34B https://huggingface.co/0l1-ai/Yi-34B-Chat
LLaMA2-7B https://huggingface.co/meta-1llama/Llama-2-7b-chat-hf
LLaMA2 LLaMA2-13B https://huggingface.co/meta-1llama/Llama-2-13b-chat-hf
LLaMA2-70B https://huggingface.co/meta-llama/Llama—-2-70b-chat
Qwen Qwen-14B https://huggingface.co/Qwen/Qwen-14B-Chat
Qwen-72B https://huggingface.co/Qwen/Qwen-72B-Chat
GPT-3.5 gpt-3.5-turbo
GPT GPT-4 gpt-4

Table 7: Model links.

Model \ Average Elementart-EN  Middle-EN  Elementart-ZH  Middle-ZH
LLaMA2-7B 18.41 29.60 4.76 25.00 14.29
LLaMA2-13B 28.63 41.26 18.05 27.84 27.38
DeepSeekMath-7B 43.52 39.46 46.37 47.16 41.07
Qwenl.5-7B 42.32 47.98 48.12 38.07 35.12
Qwenl.5-14B 51.58 56.05 58.15 52.84 39.29
GPT-3.5 56.86 56.40 58.80 53.02 59.20
GPT-4 68.36 68.60 72.20 66.05 66.60

Table 8: The average accuracy of LLMs for classifying each question by concept.

Model ‘ Average Elementart-EN  Middle-EN  Elementart-ZH  Middle-ZH
LLaMA2-7B 3291 43.81 17.56 41.35 28.90
LLaMA2-13B 44.35 56.99 32.97 46.60 40.82
DeepSeekMath-7B 57.73 55.48 59.98 61.09 54.36
Qwenl.5-7B 56.58 61.43 58.62 56.57 49.68
Qwenl.5-14B 64.69 70.20 69.06 64.83 54.65
GPT-3.5 69.11 73.95 68.82 64.56 69.10
GPT-4 78.17 81.45 80.14 75.80 75.27

Table 9: The average MRR of LLM:s for classifying each question by concept.
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Elementary-EN (5-shot prompts)

Q: For a party, Oscar gets 4 different kinds of soda. He buys a 6-pack of each kind. At home, he
divides the sodas evenly among 3 coolers. How many sodas are in each cooler?

A: Oscar buys 4 different kinds of soda, and he gets a 6-pack of each kind. This means that he
has 4 * 6 = 24 sodas in total. He divides these 24 sodas evenly among 3 coolers. So number of
sodas per cooler is 24 / 3 = 8. Therefore, the answer is 8.

Q: Amazing Animals Zoo is building a new home for its 8 zebras. Each zebra will get 2 acres of
grassy land to roam around in. The zebras will have a pond that covers 1 acre. How big will the
zebras’ new home be?

A: The total required grassland area for the zebras is: 8 zebras * 2 acres per zebra = 16 acres.
Then, we need to add the extra 1 acre for the pond: 16 acres (for the zebras) + 1 acre (for the
pond) = 17 acres. Therefore, the answer is 17.

Q: The state taxes personal income exceeding 3500 yuan (this portion not to exceed 3500 yuan)
at a rate of 3%. If Xiaoming’s father’s monthly salary is 4700 yuan, how much personal income
tax should Xiaoming’s father pay each month?

A: To calculate the amount of personal income tax Xiaoming’s father should pay, we can follow
this simple process: Subtract the tax-free threshold from the monthly salary. Taxable income =
Monthly salary - Tax-free threshold = 4700 - 3500 = 1200 yuan. Apply the tax rate to the amount
that exceeds the threshold. Tax owed = Taxable income * Tax rate = 1200 * 3% = 36 yuan. There-
fore, the answer is 36.

Q: Find the 10th term in the arithmetic sequence where the first term is 3 and the common differ-
ence is 4.

A: To find the nth term in an arithmetic sequence, we can use the formula: a,, = a1 + (n — 1) % d,
where: a,, is the nth term, a7 is the first term, d is the common difference, n is the term number.
Given that the first term (a1) is 3 and the common difference (d) is 4, we can find the 10th term
(a1p) by plugging these values into the formula: a9 = a3+ (10—1)*d = 34+9%4 = 3+36 = 39.
Therefore, the answer is 39.

Q: A regular polygon has an interior angle of 156 degrees. How many sides does the polygon
have?

A: To find the number of sides of a regular polygon with a given interior angle, we can use the
formula: Interior Angle = [(n - 2) * 180] / n, where n is the number of sides. Given that interior
angle is 156: 156 = [(n - 2) * 180] / n. Solve for n, so we get n = 15. Therefore, the answer is 15.
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Middle-EN (5-shot prompts)

Q: g(z) = 22, f(z) = 3(x — 2)2, h(z) = g(x) — f(z), y = h(23), give me the value of y.

A: First, calculate g(23) and f(23): ¢(23) = 232> = 529. Next, calculate f(23):
f(23) = 3% (23 —2)2 = 3% (21)2 = 3 %441 = 1323. Now, we calculate h(23):
h(23) = g(23) — f(23) = 529 — 1323 = —794. Therefore, the answer is -794.

Q: What is the slope of the line segment between the two points: (3,1), (5,2)?

A: The slope of a line between two points (z1, 1) and (x2,y2) can be found using the formula:
slope(m) = (y2 — y1)/(x2 — x1). Given the two points (3, 1) and (5, 2), we can substitute these
values into the formula: slope(m) = (2 —1)/(5—3) = 1/2 = 0.5. Therefore, the answer is 1/2.
Q: In a party, there are 5 cupcakes remaining and 10 children. A mother inserts 10 pieces of
paper into a hat, 5 with a cupcake image and 5 without. The children who draw the cupcake
paper will receive a cupcake. If the first child draws a paper with a cupcake image, what is the
probability that the second child will also draw a cupcake paper?

A: Initially, there are 5 cupcake papers and 5 non-cupcake papers in the hat, making a total of 10
papers. After the first child draws a cupcake paper, there are 4 cupcake papers and 5 non-cupcake
papers left in the hat, with a total of 9 papers. The probability that the second child will draw a
cupcake paper is then the number of cupcake papers left divided by the total number of papers
left: Probability = Number of cupcake papers left / Total number of papers left = 4/9. Therefore,
the answer is 4/9.

Q: What is the total area of an irregular polygon that consists of two squares and two rectangles
where the sides of the squares are 12 cm and 16 cm respectively, and the dimensions of the
rectangles are 13 cm by 20 cm and 10 cm by 7 cm respectively?

A: To find the total area of an irregular polygon consisting of two squares and two rectan-
gles, you would sum up the individual areas of each shape. The area of a square is given
by the formula A = s, where s is the length of a side of the square. For the first square
with a side of 12 cm: A; = 122 = 144cm?. For the second square with a side of 16 cm:
Ay = 162 = 256 cm?. The area of a rectangle is given by the formula ( A = [ * w ), where [
is the length and w is the width of the rectangle. For the first rectangle with dimensions 13 cm
by 20 cm: Az = 13 % 20 = 260 cm?. For the second rectangle with dimensions 10 cm by 7 cm:
Ay =10%7 = 70em?. Total Area = A; + As+ Az + Ay = 144+ 256 + 260+ 70 = 730 cm?.
Therefore, the answer is 730.

Q: Susie is making invitations to her party this coming weekend. It takes her about 5 minutes to
make each invitation. It took her 2 hours to finish all the invitations. How many people is Susie
inviting?

A: First, convert the 2 hours into minutes to match the unit of time used for the invitation-making
process. 2 hours = 120 minutes. Then, divide the total time spent by the time it takes to make one
invitation to find out how many invitations she made: 120 minutes total / 5 minutes per invitation
= 24 invitations. Therefore, the answer is 24.

6833



Elementary-ZH (5-shot prompts)

Q: /NSTH R A7 I — A FA W BRSO, RICAMEZI B L T NB 21 B, B H AR 65°,
az/l*ﬁ%@’rxzﬁ DREE?
A B —IA A B ZIE, NIEZ B R IREHE A 0 2R 180 B, AMEZIE
R AN O BEEI 180 BE. AR/ SCIRIANE ZI A N T NI ZIEE, B4 &
tHE’JﬁaEﬂ%%U\ 180° J A AE gl . Ik, SRV % 180° — 65° = 115°,
I, &EE 115,

Q: /N DABRE/INE 2 FoR B ily, 207 LI5S 57 BRI DA /NI 3 A By B e J ok [
ﬁ‘?/J\EU%LTUJE’\J%@ﬁETE%z/)%%?
A BT EUNH BRI, FRATIRR ZEHIE b AT L B ) B S DA S R T
e, BEEE = BN + FILEEE =d+d=2d T2k, A5, R ERE: LILEE = &
IR/ EI B = d/2 /NiE, R IEHE = RIS IGEREE =d/3 /e, B, SEE
= FIEfE + FIEE =d/2 +d/3 /hEF. Sea, PRSP EE: P = SRR/ A
FsffE] = 2d/(d/2 +d/3) :2d/(5d/6) =12/5=24 FRUNEF. L, LR 2.4 T KN
Q: —/MfL&K 20cm, FE 15cm. & 10ecm, AFFHHAILEHEN—MLE, 2O0FEZKHY
it (Bedab 12 JH2K)
A: %TI#LL#~/%LE, WL RN SWELEW KA &%, Bl
BRI SERIR , 25T ~1”ﬁt<r“ EREEL . B, IR EALENK T SR K
B GRFMKE =GLENK + L& E) *2=020+10)*2=30*2=60cm )5, itH&
WEAEM R S —BKE: S5 hmKE = GLERTE + ALERE) * 2= (15 + 10)*
2=25%2=50cm )5, ITERFEPHFRKE: BRE=SKFNKE + S5 KE +
BELKREFE =60+50+12=122cm ., H, BXE 122 FHK,
Q: TS KM — MIEERR 10 KZ22% 1 384T, 75 91 3% (Wumdlse ), Pieeksk ol =5 (W

U AhEE ), ISR ARLR I ST 2 A B R B R 2 oK Y
A JRoRAERE 10 K223 1 24T, 91 2%, XEREWMN B KEEL T 90 4~ 10 KH[E
B, B DARREY K = 90 [R]FE * 10 K/]FE = 900 >k . FUFERE: 61 s4T (Wumaiss),
R ULRFIX 900 K4k 60 ANAIRE (BF2h 61 AT 608 T Wsm kT, B AR B A LU AT ikt
B—A), FEAAIRR B = 900 K /60 [E]FF = 15 K/EfE. Fib, &% 115K,
Q:aZby3/4, Walkkb/ (), blba® (), b H5amtE (), WH a. b HEHFIZ
210, W a = (), b= (), $E5LnRhE DT
A Hla @b 3/4, WMa=3/4%b, I, alb bz (1-3/4)/1=1/4, b [t.a % (1-3/4)/(3/4)
=1/3, b H5aflthb: (3/4*b) =43, FCH a. b FEIFIZ 210, I a+b =210, Xf
a=(3/4)*bfC AHFEEF]: 3/4*b+b=210, f#f5b=120, a=3/4*b=3/4%*120=90,
I, 224058 14, 1/3, 43, 90, 120,
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Middle-ZH (5-shot prompts)

Q: RALR —22 — 22+ 8 > 0 HfRLE?

A:—z? =2z + 8> 0, WA HMMRERX T, B8 —(z—2)(z+4) >0 Hk, HER (4.2).
Q CHEE y =20+ 3 5K y = —-1/22 + m Xy #iT A A. B, PIREEZRIA A
4 P(n,-2), 3K m Al n ({{E?

A R EEME AL 00 P(n,-2), G XA s [ P 2 R A s B0 R R PR AR AR
(n,-2) RAEE y =32z +3, Bl —2=3n+3, f#15 n = —5/2. R P SAEKR (-5/2,-2) fRA MR
By=—1/2c+m, Bl =2 =—1/2%(=5/2) +m, fi}fs m=-13/4, FI, L2 m H-13/4,
n 4-5/2,

Q: T I PA 2[5 O i<k, A JYIL, PC 5[E O #H%5F B, C Wi, PB=2cm, BC=8cm,
Il PA By K2 2 D RK?

A: 1T PA 2[H O W14k, MREIIHIZoes, FATHEMESb— 5| B PR HEHIL, X
— R AFILR S RN SRR B KBS, Bl PA? = PC « PB, £ PB=2cm,
BC=8cm, ] PC' = PB+ BC = 2cm + 8cm = 10cm, PA?> = PCx PB =102 = 20, f#§
% PA=2v5cm. Ik, £5%5R 2V5 EX.

Q: B REAL B F MR, A6 CGEBILEREY, MEREEH T THRAD
HEg, RUEHPEAETE, ARSI ENECH a, b ALk, H
a+b=3,ab=1, i EAH: a®+b> =7, a®+b3 = 18, a* +b* = 47, HK a®+b° 5L/
A:BH a+b=3Flab=1, A[5: a® +b? = (a+b)2—2ab=3?—2x1=9-2 = Ta3 +b3 =
(a+b)(a®—ab+b%) = 3(7T—1) = 3%x6 = 18a*+b* = (a®+b?)2—2a%* = T2 —2%12 = 492 =
47a% +b° = (a+b)(a*—a3b+a?b? —ab® +b*) = 3(a* +b* —a?b?) = 3(47—1) = 3%46 = 138,
R, &5 138,

Q: FEERAZAETE 1 ZIGERPE, W, ZWARABSI T, Ui, 3. HBEWMERIE, H
MRS 5R: 90 4. 80 4. 854k, 78 4rs LIS 78 4. 824, 854, 88
Ay, NSRRI, . 3. BRRSHE 2 2 3 3 AR RN EY S, B4 P
)RS il 2

A: B 850 (90%24-80%24+-85%3+78+3) /(2+2+3+3) = (180+160+255+234)/10 =
829/10 = 82.9 43, ZIFHISi N (782 +82+2 + 853 +88%3)/(2+2+3+3) =
(156 + 164 + 255 + 264)/10 = 839/10 = 83.9 43, FIk, E %2 T 452 82.9 4},
PP ST 83.9 43
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LEVEL1 LEVEL2 LEVEL3 ‘ # Samples

Add 19

Decimals 20

Division 19

Equations 18

Fractions 16

Mixed Operations 18

Calculation Multiple 18
Numerical Expressions 20

Calculation & Properties Place Value 16
Powers 20

Rational Number 17

Subtraction 19

Variable Expressions 19

Compare 20

Properties Count 18

p Estimation & Rounding 20

Patterns 19

| Angles | Angles | 17
| Coordinate Plane | Coordinate Plane | 18
Cones 17

Cubes 20

Geometry Three-dimensional Shapes Cylinders 17
Spheres 17

Volume of 3D shapes 18

Circles 17

Perimeter 19

Two-dimensional Shapes Polygons 18
Quadrilaterals 17

Triangles 18

Basic Knowledge Tem%)ifr:rrlz;ture 5(9)

Mone Coin Names & Value 17

y Exchanging Money 17

Measurement Percent 17
Ratio Proportion 18

Ratio 19

Area 19

Size Length 20

Volume 20

| Weight | Light & Heavy | 20
|  Classifying & Sorting | Classifying & Sorting | 17
Statistics | Data | Mode/Mean/Median/Range | 19
| Probability | Probability | 16

Table 10: Details of the hierarchical concepts in Elementary-EN.
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LEVEL1 LEVEL2 LEVEL3 \ # Samples
Add & Subtract 20
Decimals 19
Divide 19
Basic Calculation Exponents & Scientific Notation 16
Fractions & Decimals 18
Multiply 18
Square Roots & Cube Roots 20
‘ Consumer Math ‘ Consumer Math ‘ 18
Calculation ‘ Financial Literacy ‘ Financial Literacy ‘ 19
Intesers Absolute Value 18
& Opposite Integers 20
\ Measurement \ Measurement Metric \ 19
Factors 20
Number Theory Prime Factorization 19
Prime or Composite 18
\ Percents \ Percents \ 20
\ Rational & Irrational Numbers \ Rational & Irrational Numbers \ 18
\ Ratios & Rates \ Proportional Relationships \ 18
Sequences Arithmetic Sequences 19
4 ) Geometric Sequences 18
Equations Linear Equations 20
4 Systems of Equations 18
. Equivalent Expressions 20
Expre5§lons, Expressions Radical 17
equations, Variable 18
and functions
Domain & Range of Functions 18
Function Interpret Functions 19
Linear Functions 20
Nonlinear Functions 18
\ Inequalities \ Inequalities \ 19
\ Congruence & Similarity \ Congruence & Similarity \ 19
Axes 17
Coordinate Plane Distance Between Two Points 19
Quadrants 16
\ Scale Drawings \ Scale Drawings \ 16
Geometry \ Slope \ Slope \ 20
. . . Polyhedra 19
‘ Three-dimensional Figures ‘ Surface Area & Volume ‘ 17
‘ Transformations ‘ Transformations \ 18
Circle 20
Lines & Angles 18
Perimeter & Area 20
Two-dimensional Figures Polygons 18
Square 18
Trapezoids 16
Triangle 18
Center & Variability 18
Data Mean, Median, Mode & Range 19
Outlier 20
One-variable Statistics One-variable Statistics 19
Statistic
and Probability Counting Principle 16
Independent & Dependent Events 16
Probabilit Make Predictions 17
y Probability of Compound Events 16
Probability of One Event 17
Probability of Simple and Opposite Events 19
\ Two-variable Statistics \ Two-variable Statistics 18

Table 11: Details of the hierarchical concepts in Middle-EN.
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LEVELI1 LEVEL2 LEVEL3 ‘ # Samples
=¥ (Triangles) 20
(Circle) 20
SEATPUITE (Parallelogram) 20
P EE #H (Trapezium) 20
(Two-dimensional shapes) 1) (Square) 20
JIRC) 1 [ JE 45 & (Synthesis Problem) 20
(Geometry) 1 (Angle) 20
KT (Rectangle) 20
[&#E (Cylinder) 20
SEARETE IEJF7{& (Cube) 20
(Three-dimensional Shapes) STAK IR 454 11/ (Synthesis Problem) 20
KI5 A& (Cuboid) 20
224 1615 (Add & Differential & Multiple) 20
FLhil (Basics) 21
JE7 (Fundamental Problem) 2249 5 (Differential) 20
59— a] # (Normalization) 20
14 %4 5] B (Induction) 20
FEL A3 (Interest) 20
JE 391 1] 5 (Period) 10
XTI (Folding) 20
I35 A28 (Engineering) 20
(Application) AERE ) (Age) 20
22 WA 3 (Classical Problem) Prina) i (Discount) 20
HEB ) 4 (Planting) 20
A ) (Tax) 15
B JE A8 (Reduction) 20
TUHG ] 5T (Pagination) 20
M4 [F) 48 ) 7 (Chickens & Rabbits in the Same Cage) 20
FH18 [\ 51 (Encounter) 20
P& )51 (Distance Problem) FTRE) T (Travel) 20
jB ) (Pursuit) 20
A BT 1 8 (RMB) 9
By [a] 8] (Time) 20
i LB J& 8 (Measurement) e )5 )48 (Concentration) 20
< I R )8 (Temperature) 6
(Measurement TR (Area) 7
and Statistics) AR
HEF4H A (Permutation) 20
%511 (Statistics) ST 4545 (Statistical Metrics) 20
L (Law) 18
505 /N (Praction & Decimal) 20
- . . A 80% ] (Fractional Application) 20
445 (Fractional Operation) 434555 (Fractional Operation) 20
#1543 %% (Simplest Fraction) 16
M%) (Common Multiples) 16
INZy% a8 (Common Divisors) 11
K% 5 f%5%% Factors & Multiples [K %507 8 (Factor) 20
B8 %ﬁllﬁﬁ%ﬂ%/ﬁ )55 (Synthesis Problem) 11
(Number JEE A8 (Prime Number) 9
and algebra) Fe vk ] B (Multiplication) 20
&%) 88 (Reciprocal Problem) 16
- . . Uiz 54 (Four-rule Operation) 20
HAlE5 (Basic Operation) Bz i€ L (New Operation Definition) 20
Jr #2181 (Equation) 20
[$6:32: 1) 481 (Division) 20
FEEA 5T (Multiple) 20
. M 1) 550 (Probability) 20
I (Ratio) F£51) 1A /i (Proportion) 20
H/3 &\ (Percentage) 20

Table 12: Details of the hierarchical concepts in Elementary-ZH.
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LEVEL1 LEVEL2 LEVEL3 ‘ # Samples

42 =1 (Congruent Triangle) 20
— e (T L) EH (Pythagorean Theorem) 20
FBJE (Triangle) L5018 = #4 I (Isosceles Triangle) 20
( g
431 = #8JF (Equilateral Triangle) 20
17% (Ouadrilater: SFATIUIE (Parallelogram) 20
JUff PILJE (Quadrilateral) #4JE (Trapezium) 20
(Geometry) [ J51 £ (Angle of Circumference) 20
[5.L:ff1 (Angle of Center) 20
[f] (Circle) A2 E P (Vertical Path Theorem) 20
” B AN LT FY (Arc length & Sector Area) 20
1EZNIEAIE (Regular Polygons & Circles) 20
MR IRV ZR (Relations of Point, Line & Circle) 20
AUNEDA .
(Three-dimensional Shapes) R4k (Cone) 20
o] -
(Univariate Function & Equation)
P . WS TC YRR
B (Linear Function) (Linear Functions & Univariate Linear Inequalities) 20
e 5 YA %
R (Linear Functions & System of Binary Linear Equations)
(Funlction) IE H Bl R 8K (Proportional Function) 20
— R R 2
(Analytical Formula of Linear Functions )
ZREHOY N 2
PR (Quadratic Function) (Applications of Quadratic Functions)
AR "
(Properties of Parabolas)
— ” 7€ X (Definition) 20
R BRR JE X (Definiti
(Inverse Proportional Function) Wﬁﬁ (Appllcaqons) 20
P JF (Properties) 19
- EL A AR 2 4% (Ordered Pair) 20
(Rectangular Coordinate System) S FR Y 5 (Points of Quadrant) 14
st . . RBERAE (Algebraic Expression Evaluation) 20
%K (Algebra Expression) [R5 (Similar Ttems) %
- -
2N (Fracti %A% (Exponential Power) 20
733X (Fraction) 243 (Fraction Reduction) 19
q- 3 +“FA1 33 (Cross Multiplication) 20
R 5L (Factor) AR AEEL (Common Factor Extraction) 18
(Number . — W7k )8 (Flow Problem) 20
and Expression) I (Application) A% 8.1 5T (Pigeon Nest Problem) 20

Ty A3 (Multiplication) 20
#3{, (Integral Expression)

#C e [ SR A (Multiplication, Division & Mixing) 20
LAY (Addition & Subtraction) 20
FEFHEL (TIrrational Number) JCERHGH 5 (Irrational Number Recognition) 20
TR HIBE (Operation of Quadratic Radicals) 20
- Radics i [7]2¢ YA (Similar Quadratic Radicals) 20
H5X (Radical Expression) SR S AT IR (Square Root & Arithmetic Square Root) 20
37774 (Cube Root) 20
— LK —JL—IRITRERI I (Applications) 20
(Linear Equation in One Variable) fil—IC—1K F7FE (Solutions) 20
— LR —ILIRTTRERI Y (Applications) 20
(Quadratic Equation in One Variable) fif—IC K F7FE (Solutions) 20
By N = Y - - - :
(Equatji{)f; éTn%qfalities) B —IC—IRAEZ Y (Applications of Unary First Order Inequality) 20
AEX G ARG —JIC—IRAZX YLK T (Applications of Unary First Order Groups of Inequalities) 20
(Inequalities & Groups of Inequalities) fft—IC— I A%E3L (Solve the First Inequality of One Variable) 20
filt—IC— IR A% 3041 (Solve Unary First Order Groups of Inequalities) 20
oy . . A EE Y JH (Application of Fractional Equation) 20
yA =}
Sy (Fractional Equation) fi#/y 3\ )5 #% (Solve Fractional Equation) 20

# ot Analvsic KR shla ¥ (Fluctuating Trend of Data) 20

éﬁ:ﬁr%ﬂi%\ ‘ Hifiis A7 (Data Analysis) ‘ Kl 4 a3 (Central Tendency of Data) 20
(S;:é‘;;llfisli?n)d HEZ (%)% H] (Applications of Probability) 20
¥ 15 (Probability) SJH#E (Find Probability) 20
[E#L G4 5 4% (Random Events & Probabilities) 20

Table 13: Details of the hierarchical concepts in Middle-ZH.

6839



