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Abstract

As artificial neural networks grow in com-
plexity, understanding their inner workings
becomes increasingly challenging, which is
particularly important in healthcare applica-
tions. The intrinsic evaluation metrics of au-
toregressive neural language models (NLMs),
perplexity (PPL), can reflect how “surprised”
an NLM model is at novel input. PPL has
been widely used to understand the behavior
of NLMs. Previous findings show that changes
in PPL when masking attention layers in pre-
trained transformer-based NLMs reflect linguis-
tic anomalies associated with Alzheimer’s dis-
ease dementia. Building upon this, we explore
a novel bidirectional attention head ablation
method that exhibits properties attributed to the
concepts of cognitive and brain reserve in hu-
man brain studies, which postulate that people
with more neurons in the brain and more effi-
cient processing are more resilient to neurode-
generation. Our results show that larger GPT-
2 models require a disproportionately larger
share of attention heads to be masked/ablated
to display degradation of similar magnitude
to masking in smaller models. These results
suggest that the attention mechanism in trans-
former models may present an analogue to the
notions of cognitive and brain reserve and could
potentially be used to model certain aspects of
the progression of neurodegenerative disorders
and aging.

1 Introduction

Alzheimer’s disease (AD) dementia is a currently
incurable neurodegenerative condition that leads
to a progressive and irreversible decline in cog-
nitive function. Due to the challenging nature of
early diagnosis of this condition, there is a pressing
need for efficient and cost-effective screening tools
(Bradford et al., 2009) to mitigate the negative con-
sequences of delayed or absent diagnosis (Stokes
et al., 2015). Previous studies have demonstrated
that changes in cognitive status can be reflected in

spoken language and spontaneous speech (Giles
et al., 1996; Almor et al., 1999; Hier et al., 1985).
Automated analysis of such speech, employing su-
pervised machine learning models, shows its poten-
tial as an early screening tool. These models can
be trained to identify subtle linguistic anomalies
associated with dementia from transcripts of both
healthy individuals and those with dementia. Re-
cent advances in machine learning, such as deep
learning models and the transformer with attention
architecture (Vaswani et al., 2017), have mediated
remarkable performance on this downstream task
(for a review, see Shi et al. (2023)). Deep learning
models, inspired by the human brain, are artificial
neural networks (ANNs) that process vast amounts
of data and learn complicated patterns, making
them well-suited for analyzing subtle linguistic pat-
terns. The transformer architecture, in particular,
has advanced performance on natural language pro-
cessing (NLP) tasks by enabling models to capture
long-range dependencies more effectively via the
attention mechanism (Vaswani et al., 2017).

As ANNs get larger and more complicated, it
becomes even harder to interpret their inner work-
ings. The performance of autoregressive neural
language models (NLMs) (e.g., predicting the next
word given the context) is frequently estimated
with a single somewhat interpretable feature, per-
plexity (PPL), which has shown to be a suitable
measurement for evaluating cognitive impairment
from spontaneous speech (Fritsch et al., 2019; Co-
hen and Pakhomov, 2020). As the name “perplex-
ity” suggests, it can be considered as an indicator
of how “surprised” a model is by novel (i.e., not
used in model’s training) input. The more different
the input is from a particular model’s training data,
the “harder” it is for the model to predict, result-
ing in higher PPL. Therefore, it is reasonable to
hypothesize that PPL may have some degree of
diagnostic utility, as an indicator of patterns of lan-
guage use that fall outside the scope of the typical
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language used to train a model. In the context of
AD, changes in language and cognitive function of-
ten manifest as differences in language complexity,
with individuals experiencing difficulty in forming
coherent sentences and selecting appropriate words.
As AD progresses, the language used by patients
with dementia becomes more unpredictable and
less coherent, leading to higher PPL with models
trained on language from individuals presumed to
be cognitively healthy.

While training data from cognitively healthy in-
dividuals is plentiful, language data produced by
patients with dementia is much more impractical to
obtain in sufficient quantity to train a large NLM.
In hyperdimensional computing (Kanerva, 2009),
high-dimensional vector representations are ma-
nipulated using operators that alter their distance
from other learned representations. A prior work
inspired by this concept (Li et al., 2022) demon-
strates that masking the attention sub-modules of
pre-trained transformer-based NLMs and thereby
artificially increasing PPL on text from cognitively
healthy individuals, can provide an effective solu-
tion to the challenge of limited data availability.
By strategically altering these sub-modules and in-
troducing controlled perturbations in the NLMs’
attention layers, the degraded NLMs induce the lin-
guistic anomalies and unpredictability associated
with dementia.

Recent work in neuroscience using functional
magnetic resonance imaging (fMRI) and electrocor-
ticography (ECoG) has demonstrated that NLM’s
PPL is associated with predicting neural activation
patterns during language comprehension tasks in
the human brain (Schrimpf et al., 2021; Hosseini
et al., 2024). This suggests a potential connection
between the predictive capabilities of these mod-
els and understanding human information process-
ing. In particular, one of the less well-understood
phenomena in how neurodegeneration affects the
human brain is the notion of cognitive and brain re-
serve. This notion is hypothesized to be responsible
for findings that indicate individuals with higher in-
nate abilities and/or aspects of life experience, such
as educational and professional attainment, are able
to mask the effects of dementia longer than those
without these characteristics (Stern, 2002, 2009,
2012; Scarmeas and Stern, 2004, 2003; Snowdon
et al., 1996). In some cases, the notion of cognitive
and brain reserve may even allow individuals to
revert from initial signs of cognitive impairment to
normal function (Iraniparast et al., 2022).

Building upon these findings, our study seeks to
further explore the potential of probing pre-trained
GPT-2 family models (Radford et al., 2019) to sim-
ulate cognitive impairment observed in patients
with dementia with a specific focus on the cogni-
tive reserve hypothesis. Using a set of transcripts
from a widely-used “Cookie Theft” picture descrip-
tion cognitive task, we propose that the impaired
information processing as the disease progresses
can be simulated by masking a certain share of at-
tention heads in a pre-trained GPT-2 model. Specif-
ically, we follow the previously established paired-
perplexity paradigm (Li et al., 2022) using a pair
of unmasked (“control”) and masked (“dementia”)
NLMs. In this approach, the difference between
PPLs produced by these two NLMs is used to dis-
criminate between picture descriptions by patients
with dementia and healthy controls. We hypothe-
size that larger GPT-2 models with more attention
heads will exhibit greater resilience to masking
(i.e., a proxy for neural degeneration), necessitat-
ing a larger share of attention heads to be masked
to achieve comparable classification performance
to smaller models. We evaluate this hypothesis by
targeting two subsets of attention heads that are a)
most important, and b) least important to represen-
tation of the content of the “Cookie Theft” task, in
which the degree of importance is ranked by the
gradient changes in each attention head during fine-
tuning of a pre-trained GPT-2 model to the content
of the “Cookie Theft” transcripts.

The contributions of this work can be summa-
rized as follows: a) we provide preliminary evi-
dence suggesting that the concept of cognitive re-
serve observed in human cognition appears to have
an analog in ANNs; and b) our attention masking
approach achieves comparable classification per-
formance to another approach developed in prior
work that directly artificially degrades NLM pa-
rameters (Li et al., 2022), and the state-of-the-art
(SOTA) model trained from scratch (TaghiBeyglou
and Rudzicz, 2024) with significantly fewer train-
able parameter masking/fitting.1

2 Background

2.1 Cognitive Reserve
The notions of brain plasticity in the human brain
and “graceful degradation” in ANNs have been

1The code to reproduce the results presented in this paper
is available at GitHub. The data are also publicly available
but cannot be redistributed and must be obtained directly from
Dementia Bank.
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extensively investigated in the neuroscientific liter-
ature demonstrating, for example, that a large pro-
portion (over 80%) of the connections in an ANN
trained to simulate the motor cortex to generate sig-
nals directing body movement have to be ablated
before the model’s performance begins to collapse
(Lukashin et al., 1994; Lukashin and Georgopoulos,
1994). The concepts of cognitive and brain reserves
are closely related to brain plasticity applied to ob-
servations in neurodegenerative diseases as illus-
trated in Figure 1. One of the earlier observations
of this phenomenon comes from the Nun Study
which found that low linguistic ability early in life
(possibly due to innate abilities or educational at-
tainment) is predictive of poor cognitive function
and AD later in life (Snowdon et al., 1996). The
concept of cognitive reserve was further developed
based on observations of the individual differences
in effects of brain damage or pathology on clinical
manifestations of cognitive function (Stern, 2002,
2009, 2012). A multi-site study (Esiri et al., 2001)
reported that up to 25% older adults without signs
of cognitive impairment during neuropsychological
testing meet all the histopathological criteria for
AD (amyloid plaques and tau protein tangles) prior
to their death. While this study did not assess brain
volume, another similar study did find that a sub-
group of 10 study participants who had both AD
pathology and preserved mental status had greater
brain weights and number of neurons in their brains
(Katzman et al., 1988).

A distinction can be made between the closely
related notions of cognitive reserve and brain re-
serve. Cognitive reserve refers to the efficiency of
brain networks, which manifests as greater educa-
tional and professional attainment. Brain reserve,
on the other hand, refers to the physical properties
of the brain, such as a larger number of neurons in
biological neural network(s). This can manifest, for
example, as a higher intelligence quotient. These
two notions are difficult to disentangle due to their
significant interdependence (Steffener and Stern,
2012). The properties of these notions have also
been described using passive or active models that
correspond to the notions of brain and cognitive
reserves, respectively. Passive models (Katzman,
1993; Satz, 1993) measure the cognitive reserve
by the size of the brain or the count of neurons in
the brain. Passive models hypothesize that there
is a threshold for brain reserve capacity - once
an individual passes the “point of no return”, the
manifestation of neurodegenerative disease, such

as AD, will occur regardless. Contrary to passive
models, active models (Stern, 2002) hypothesize
that there is a neural compensatory effect for brain
damage. This effect consists of the brain compen-
sating for the damage by activating other biological
neural network(s) to perform cognitive task-related
activities. In this case, patients of similar brain im-
pairment but with more cognitive reserve may be
more resilient to the disease’s progression before
the clinical manifestations of neurodegeneration
become apparent. Quantitatively, there is no clear
difference between the passive and active models
of cognitive reserve, as both of them rely on the
physiologic basis of biological neural networks in
the brain. This provides an opportunity to evaluate
the underlying mechanisms that contribute to cogni-
tive reserve across various neurological conditions
computationally.

To avoid any potential confusion between these
terms referring to different types of resilience and
to avoid any inadvertent conflation between arti-
ficial and human brain networks, in the remain-
der of this paper we will refer to the phenomenon
of resilience to damage that we observe in ANNs
specifically as “artificial neural reserve” and use the
terms “cognitive/brain reserve” to refer exclusively
to human brain networks.

Figure 1: A theoretical illustration of cognitive reserve
and its mediation effect between AD neuropathology (x-
axis) and clinical outcome (y-axis). Illustration derived
from Stern (2002, 2009). As the disease progresses
(i.e., with more impairment), individuals with higher
cognitive/brain reserve would be more resilient to the
effects, resulting in a lower level of clinical severity.

2.2 Probing the Neural Network
The ablation of connections in ANNs is also re-
ferred to as probing in NLMs. This is a growing
field aimed at understanding the inner workings
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of large-scale transformer-based NLMs by prob-
ing the mechanism (i.e., attention weights, hid-
den states) to better understand the linguistic struc-
ture and representations encoded by such models.
Similarly to the early findings of Lukashin et al.
(1994) and Lukashin and Georgopoulos (1994),
more recent work on transformers (i.e., Michel et al.
(2019); Prasanna et al. (2020); Sanh et al. (2020))
demonstrates that a large percentage of attention
heads or sub-modules can be removed at inference
time without significantly impacting performance.

2.3 Linguistic Anomalies in AD
AD is a neurodegerative disease, and progressively
worsening linguistic deficits often accompany its
progression (Kempler and Goral, 2008; Altmann
and McClung, 2008). A widely-used diagnostic
task to capture such linguistic anomalies is the
“Cookie Theft” picture description task from the
Boston Diagnostic Aphasia Examination (Good-
glass and Kaplan, 1983). In this task, participants
are asked to describe everything they see going on
in Figure 2. Previous studies have demonstrated
that dementia patients tend to overuse pronouns
(Almor et al., 1999) and tend to perseverate (Hier
et al., 1985) when describing the “Cookie Theft”
picture.

Figure 2: The “Cookie Theft” picture description stim-
uli.

There is a rich body of evidence that supervised
machine learning and deep learning methods can
learn to distinguish the subtle linguistic charac-
teristics between healthy individuals and people
with dementia. However, such models present a
danger of overfitting, and hinder interpretability
of model predictions, which are both critical con-
cerns for clinical artificial intelligence (AI) appli-
cations (Graham et al., 2020). Alternatively, PPL
is an easily interpretable measure used to evaluate
model performance. With dementia, the difference
of the paired-perplexity paradigm from a “healthy

control” NLM and a “dementia” NLM provides
a diagnostically useful summary value that distin-
guishes language samples produced by dementia
patients (Fritsch et al., 2019; Cohen and Pakhomov,
2020). Prior work (Li et al., 2022) has shown that
the difference of PPLs from a pre-trained GPT-2
paired with an artificially degraded version of it-
self approximates SOTA classification performance
without requiring a data set from dementia patients
of comparable size to its comprehensive training
data. However, this approach requires evaluating
thousands of masking patterns in order to investi-
gate the effects of masking various combinations
of attention heads exhaustively. In the current work
we obviate this requirement for extensive experi-
mentation by using targeted masking (guided by
the changes in gradients during training) of two
subsets of attention heads that are a) most “impor-
tant”, and least “important” with respect to the
content of the “Cookie Theft” picture. We show
that the resulting masked models can effectively
identify transcripts from dementia patients with
significantly fewer trainable parameters while ex-
hibiting comparable classification performance to
previous studies (Li et al., 2022; TaghiBeyglou and
Rudzicz, 2024).

3 Methods

3.1 Data

We use two publicly available datasets that contain
responses to the “Cookie Theft” picture descrip-
tion task: a) AD Recognition through Spontaneous
Speech (ADReSS) Challenge2 (Luz et al., 2020),
and b) the Wisconsin Longitudinal Study (WLS)3

(Herd et al., 2014). Table 1 shows basic characteris-
tics of datasets used in this study. ADReSS is a sub-
set of the Pitt corpus (Becker et al., 1994) designed
to address the absence of a standardized train/test
split in prior work. It is specifically matched on
age and gender to reduce potential confounding
effects. The WLS is a longitudinal study of 694
men and 675 women who graduated from Wiscon-
sin high schools in 1957. The participants were
interviewed up to 6 times between 1957 and 2011.
The “Cookie Theft” picture description task was
administered in the later round of interviews. In
particular, we restricted the original WLS dataset to
a total of 102 participants who a) agreed to partici-

2https://dementia.talkbank.org/ADReSS-2020/
3https://dementia.talkbank.org/access/English/

WLS.html
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pate in the “Cookie Theft” picture description task,
and b) had either a clinical diagnosis of dementia
or were deemed healthy in follow-up interviews
conducted in 2020. This information was obtained
through phone interviews and assessments by ad-
vanced practice providers. Subsequently, the col-
lected data was presented to a panel of clinicians
to obtain the diagnosis.

Dataset Dementia Healthy Controls

# of participants (n)

ADReSS
Train 54 54

Test 24 24

Total 78 78

WLS 29 73

Table 1: The characteristics of ADReSS and WLS.

We perform verbatim transcripts pre-processing
using TRESTLE (Toolkit for Reproducible
Execution of Speech Text and Language
Experiments) (Li et al., 2023) by removing
utterances that do not belong to the participants,
unintelligible words, and speech and non-speech
artifacts event descriptions (i.e., “laughs”, “clear
throat”).

3.2 Modeling and Evaluation

We follow a similar masking strategy to that pro-
posed by Michel et al. (2019) to mask attention
heads of the GPT-2 small, medium, large, and XL
models via the rank of their importance to the task.
We focus on the GPT-2 family models to mini-
mize the variability that would result from multiple
modeling architectures. The task-importance of
attention heads in each model is determined by the
gradient changes during the fine-tuning for sub-
sequent word prediction task using transcripts of
“Cookie Theft” picture descriptions in the training
portion of the ADReSS dataset. Intuitively, if the
gradient change of an attention head is large, this
attention head is likely important with respect to
predicting the language to which the model is being
fine-tuned, and vice versa.

In contrast to the approach by Michel et al.
(2019), which prunes the least important atten-
tion heads during testing, we anticipate that the
most important attention heads are those relevant
for predicting the text of the “Cookie Theft” task.
This idea is supported by Yorkston and Beukel-

man (1980) and Berube et al. (2019), who found
that the number of content units represented – a
measure of how much relevant information is con-
veyed in the description – is sensitive to linguistic
deficits often observed in individuals with neurode-
generative disease. However, we also reason that
the least important attention heads may represent
subtle differences in linguistic structure and repre-
sentations that may distinguish between dementia
patients and healthy controls. We also test the pos-
sibility that the semantic impairment observed in
AD (Huff et al., 1986; Giffard et al., 2001; Hodges
and Patterson, 1995) could be potentially simulated
by masking a certain share of the columns in the
pre-trained NLMs’ token embedding matrix, where
each column contributes to the representation of the
meaning of each token in the model’s vocabulary.
Thus, masking columns in the embedding matrix
leads to degrading the representation of all vocabu-
lary items vs. degrading or deleting specific tokens
from the otherwise intact vocabulary by operating
on the rows of the embedding matrix.

Following these considerations, we design the
masking strategies as follows: a) we fine-tune each
of the GPT-2 models with a language model head
layer as the top layer on the ADReSS training set
to get the corresponding ranking of importance for
each of the attention heads; b) we iteratively mask a
small share (n%) of ranked attention heads bidirec-
tionally, which consists of the n

2% most important
attention heads and the n

2% least important atten-
tion heads, then gradually increase the percentage
of attention heads for masking, and c) we iteratively
mask columns of the word embedding matrix in
reverse order, moving from right to left, and grad-
ually increase the percentage of word embedding
columns for masking4.

We examine the artificial neural reserve hypoth-
esis using two evaluation approaches. The first ap-
proach consists of simply estimating the PPL of the
progressively degraded NLMs based on healthy in-
dividuals’ transcripts from an independent dataset
containing the same type of picture descriptions as
the dataset that was used to rank attention heads
by their importance to the dementia classification
task. We use the WLS dataset and select only those
WLS participants that remained cognitively healthy
over the entire study period as the independently
collected dataset for log PPL estimation. Using this

4All experiments in this study are done with Hugging-
Face’s transformers package (Wolf et al., 2020) on one A100
GPU.
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approach, in addition to masking attention heads,
we also experiment with masking model weights in
the token embedding matrix to see if any observed
effects are specific to the attention mechanism.

The second approach consists of evaluating
the classification performance of ablated/degraded
models paired with the original versions of the
same GPT-2 model using the paired-perplexity
paradigm (Fritsch et al., 2019; Cohen and Pakho-
mov, 2020; Li et al., 2022). These evaluations are
conducted on the testing portion of the ADReSS
dataset, with accuracy (ACC) and area under
the receiver-operator characteristic (ROC) curve
(AUC) as the evaluation metrics. Specifically, for
the paired-perplexity paradigm, we estimate the ra-
tio of PPLs PPLcontrol

PPLdementia
of each transcript from the

test set. The ACC measure is calculated as accu-
racy at the equal error rate (EER), where the false
acceptance rate is equal to false rejection rate on
the ROC curve. The intuition behind this approach
is based on the expectation that successful masking
of a portion of attention heads in a pre-trained NLM
will result in the NLM exhibiting dementia-like be-
havior, which would in turn result in high AUC and
ACC values of the paired-perplexity classification.

4 Results

4.1 Effects of Masking on Perplexity

As illustrated in Figure 3a, the predictive ability of
smaller GPT-2 models degrades linearly with the
degree of damage inflicted on the attention mech-
anism by masking progressively larger proportion
of attention heads. The predictive ability of the
larger GPT-2 models, on the other hand, degraded
in a non-linear fashion where increases in log PPL
were relatively flat up to 40-50% of the attention
heads being masked and then began to increase
exponentially. Fitting the GPT-2 small, medium,
large and XL model log PPL to a linear regres-
sion line resulted in r2 goodness-of-fit values of
0.99, 0.89, 0.91 and 0.83, respectively, whereas
fitting to an exponential regression line failed to
converge for the small and medium models and
yielded r2 values of 0.97 and 0.99 for the large and
XL models, respectively. The results of Dunn’s
test further confirmed our observations, showing
that the differences between log PPLs estimated by
GPT-2 small and GPT-2 XL (adjusted p-value <
0.01), and GPT-2 medium and GPT-2 XL (adjusted
p-value < 0.05) when masking attention heads are
statistically significant. In contrast, all combina-

tions of log PPLs were not significantly different
from each other for all GPT-2 models when mask-
ing the word embedding matrix (adjusted p-value
> 0.05).

Compared to masking attention heads, with GPT-
2 small, medium, large and XL model we needed
to mask 93% (714 out of 768), 66% (675 out of
1024), 87% (1113 out of 1280), and 66% (1050 out
of 1600) columns in the word embedding matrix
to achieve ACCs of 0.75, 0.85, 0.79, and 0.81 re-
spectively, on the ADReSS test set. Figure 3b can
further support this claim, as estimated log PPLs of
masking word embedding matrix show no signif-
icant statistical differences across various GPT-2
models.

4.2 Effects of Masking on Dementia
Classification

As shown in Table 2, impairing 9% of attention
heads (n=12) of the GPT-2 small model (the “de-
mentia” model) achieved an ACC of 0.83 and AUC
of 0.86 when paired with the original unmasked ver-
sion of itself (the “control” model) on the ADReSS
test set. This is comparable to the prior work (Li
et al., 2022) (ACC = 0.85, AUC = 0.89) but the
masking approach uses significantly fewer masked
parameters. Our results also show that a larger
share of attention heads in the larger models must
be masked to approximate a “dementia” model
with the same level of performance in the paired-
perplexity classification than with smaller models.
Notably, masking of the word embedding matrix
did not result in comparable observations. As an-
ticipated by the results shown in Figure 3b, with
GPT-2 models we needed to mask a majority por-
tion (e.g., > 50%) of the word embedding matrix
to obtain similar level of classification performance
regardless of model size.5

As illustrated in Figure 4, we observed that once
the best-performing masking pattern, marked by
the highest ACC, was reached, the classification
performance of all GPT-2 models started to fluctu-
ate. However, this observation did not occur with
the word embedding matrix masking. As illustrated
in Figure 5 in Appendix A, the classification perfor-
mance exhibited fluctuations prior to the emergence
of the best-performing masking pattern, indicating
that masking the columns of the word embedding
matrix has less impact on identifying the signs of

5The importance of attention heads for each model can
be found in Table 3, Table 4, Table 5, and Table 6 in the
Appendix A.
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(b) GPT-2s with masked word embedding matrix.

Figure 3: Changes in model log PPL as a function of the proportion of masked attention heads across GPT-2
models of various sizes. Note: the curves in panel (a) show that GPT-2 XL model has the most non-linear/concave
shape indicating that the model starts to degrade rapidly only after masking of about 50% of its attention heads,
followed by the curve for the GPT-2 large model. The smaller GPT-2 models begin to degrade with proportionally
less masking, and exhibit a monotonic relationship between the magnitude of attention heads masking and model
performance. The curves in panel (b) show almost completely preserved model performance without differences
between models up to the point at which 40% - 50% of the columns in their embedding matrices have been masked.
After that point, the performance of all models collapses “catastrophically”

Model GPT-2 small GPT-2 medium GPT-2 large GPT-2 XL

# of parameters 124M 355M 774M 1.5B

# of masked
attention heads

12 92 388 1080

% of masked
attention heads

9 24 54 90

ACC 0.83 0.83 0.81 0.81

AUC 0.86 0.85 0.80 0.82

Table 2: Classification performance of the paired-perplexity approach based on pre-trained and masked GPT-2
models on the ADReSS test set.

cognitive impairment from text as it probably does
not result in a good dementia-like model for the
paired-perplexity classification task.

5 Discussion

The results of experiments presented in this paper
suggest that the notion of cognitive reserve in the
brain may have an analogue in transformer-based
ANNs that is localized to the attention mechanism.
Recent neuroscientific evidence shows that NLMs’
PPL is predictive of human behavioral responses
and and neural responses in functional MRI stud-
ies (Schrimpf et al., 2021; Hosseini et al., 2024).
Based on this evidence, we interpret our findings
of the differences in log PPL changes as a result of
masking attention heads in NLMs of variable size

as at least suggestive that the resilience to damage
is non-linear to the number of attention heads in
NLMs. In other words, it takes disproportionately
more masking to damage larger NLMs to elicit
the same level of degradation in performance, as
compared with smaller NLMs. Furthermore, the
dissociation in performance as a result of damaging
attention heads vs. the token embedding weights
suggests that the NLM’s artificial neural reserve
effects are localized to the attention mechanism.

Our results also suggest that masking attention
heads within the paired-perplexity paradigm us-
ing the ratio of unmasked (“control”) and masked
(“dementia”) pre-trained GPT-2 models results in
good classification performance without requiring
a corresponding large dataset produced by demen-
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(a) GPT-2 small
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(b) GPT-2 medium
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(c) GPT-2 large
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(d) GPT-2 XL

Figure 4: Comparison of GPT-2 models with masked attention heads on paired-perplexity classification performance.
The left y-axis denotes classification performance using both masked and unmasked GPT-2 models on the ADReSS
test set. The right y-axis indicates log PPL estimated from transcripts of WLS healthy individuals. The x-axis
represents the percentage of attention heads getting masked. The vertical dashed line indicates the best-performing
masking pattern, achieving the highest ACC.

tia patients and extensive parameter tuning. This
can be achieved with as little as masking only 9%
of attention heads of a pre-trained GPT-2 small
model.

In contrast to previous studies, which typically
involved purging attention heads determined to
be the least important, our bidirectional masking
method adds supporting evidence of content units
(Yorkston and Beukelman, 1980; Berube et al.,
2019), suggesting the importance of these contex-
tual features in addition to the predominant em-
phasis on linguistic structure and representation
modeling in previous research (e.g., Orimaye et al.
(2014), Fraser et al. (2016)). The results of bidi-
rectional masking also offers an interpretable ex-
planation for transfer learning’s remarkable perfor-
mance using pre-trained NLMs. It suggests that
during fine-tuning, pre-trained NLMs use a com-
bination of both task-specific (the most important)
and task-agnostic (the least important) heads to
achieve remarkable performance on various down-
stream tasks. Those task-agnostic attention heads

may play an important role in transfer learning.
This also may explain why distilled NLMs in which
the “nonvolitional cues” that fall outside of com-
mon NLP benchmarks are purged during the dis-
tillation, generalize less-than-ideally to other types
of data produced by individuals with dementia (Li
et al., 2022). With larger models, there are consid-
erably more attention heads that can serve as those
“nonvolitional cues,” helping a larger NLM perform
better (Agbavor and Liang, 2022).

As the columns of the token embedding matrix in
a pre-trained NLMs represent the global semantics
of tokens in the vocabulary, the observations that
the best-performing masking pattern appears in the
later stage of the token embedding matrix masking
are consistent with previously published findings
that semantic impairment often occurs in the later
stage (i.e., moderate) of the disease (Huff et al.,
1986; Giffard et al., 2001; Hodges and Patterson,
1995). As illustrated in Figure 5, when masking
the later 66% columns (675 out of 1024) of the
word embedding matrix, the paired unmasked and
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masked GPT-2 medium achieves an ACC of 0.85
on the ADReSS test set. This finding is consis-
tent with a previous work (Hewitt and Manning,
2019), suggesting that some syntactic information
is embedded implicitly in the word embedding ma-
trix. This also provide an empirical support of
our findings that masking word embedding matrix
of a pre-trained NLM can provide some degree
of discriminating effect on this downstream task.
However, masking the word embedding matrix is
far less effective than masking attention heads to
simulate dementia-related cognitive impairment.

Our results suggest that similar mechanisms of
resilience may exist in both human cognition and
computational models. This could lead to more nu-
anced strategies in response to develop early screen-
ing tools for the delayed onset of cognitive impair-
ment in the population with high risk. Our study
holds promise for deploying such early-screening
method in resource-constrained clinical settings to
improve early intervention and patient management
for AD.

6 Conclusion

We presented experimental findings suggesting the
presence of artificial neural reserve in transformer-
based NLMs, analogous to the concepts of
brain/cognitive reserve in studies of human cog-
nition. In addition, we introduced a novel bidirec-
tional attention head ablation method that enables
using unmasked and masked GPT-2 models in the
paired-perplexity paradigm for detecting linguistic
anomalies with significantly less parameter mask-
ing or fitting.
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Limitations

The work presented here has several limitations.
First, the size of datasets used in this study is rel-
atively small compared to datasets typically ana-
lyzed in the open-domain NLP tasks, therefore the
results may not be readily generalizable. Second,
all datasets used in our study are in American En-
glish, and many participants of these two studies

are representative of White, non-Hispanic Ameri-
can men and women located at the north part of the
United States, which certainly limit their applica-
bility to other languages. Third, while we propose
that the findings presented in this paper may be
interpreted as an analogue of the notions of cogni-
tive or brain reserve, we do not suggest that GPT-2
models are accurate models of the human brain.
Rather, our interpretation of these findings is that
experimenting with masking of attention heads in
models of various sizes and architectures may be
useful in helping us understand cognitive processes
that take place in the human brain. The observed
effects of attention masking on the model’s perfor-
mance and behavior, while suggestive of an analog
to cognitive reserve in the human brain, should not
establish a direct causal link to human cognitive
processes. Additionally, the ranking of attention
heads by their relative importance is specific to the
ADReSS dataset as it was derived in the training
portion of the dataset and may not readily gener-
alize to other datasets and types of data. Lastly,
in this paper we did not address the distinction be-
tween the notions of cognitive and brain reserves. It
would be important to investigate in future work if
NLMs of the same size and architecture but differ-
ent quantities and quality of the training data (i.e.,
as a simulation of educational attainment) exhibit
differential resilience to damage independently of
the effects observed in models of variable size.
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Figure 5: Comparison of GPT-2 models with masked columns of word embedding matrix on classification
performance and cognitive reserve manifestation. The left y-axis denotes classification performance using both
masked and unmasked GPT-2 models on the ADReSS test set. The right y-axis indicates log PPL estimated from
transcripts of WLS healthy individuals. The x-axis represents the percentage of attention heads getting masked. The
vertical dashed line indicates the best-performing masking pattern, achieving the highest ACC.

0 1 2 3 4 5 6 7 8 9 10 11
121 5 7 65 19 46 58 56 9 1 0 60
16 34 94 71 13 90 42 4 113 86 47 14
74 106 107 32 89 18 17 87 75 11 8 128
48 15 82 78 93 68 129 79 77 72 54 23
40 67 22 115 36 131 100 83 140 61 141 135
41 29 134 137 119 12 92 21 31 3 69 28
76 95 101 125 91 130 37 99 80 98 10 122

117 45 124 81 116 49 25 26 62 97 143 136
64 123 30 43 88 38 27 55 73 114 118 142

111 53 102 70 50 57 105 84 120 138 139 20
132 110 66 103 44 52 126 108 109 59 96 85

6 24 127 39 33 133 104 51 2 112 63 35

Table 3: The rank of importance for each attention head in the GPT-2 small model. The rows represent the layer of
attention blocks in the model whereas the columns represent attention heads per layer.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
139 115 36 376 354 132 355 357 109 70 148 84 217 156 309 363
77 5 28 126 41 95 266 57 286 316 61 258 59 13 138 202

268 131 21 209 367 46 86 228 45 29 22 63 48 76 155 18
170 222 346 235 38 12 257 301 172 112 193 121 188 26 238 103
294 47 198 102 315 64 291 40 246 375 66 151 292 293 264 165
199 272 250 364 285 226 192 343 17 114 119 260 237 166 62 68
50 16 360 185 20 368 359 130 350 72 8 289 267 251 310 7

279 88 216 79 141 256 85 83 101 82 204 232 243 142 107 55
53 284 195 129 253 133 97 154 137 262 281 60 203 177 31 248
58 261 366 25 135 227 320 333 197 94 242 125 65 15 273 117

255 271 160 54 49 269 303 140 176 296 167 311 110 92 290 239
143 241 158 325 74 299 56 342 287 225 214 6 372 98 150 100
183 182 52 370 19 11 186 113 240 353 184 34 312 297 179 259
32 210 358 212 331 67 371 230 330 116 304 263 159 278 163 149
87 324 208 334 356 220 319 162 136 236 69 108 327 190 337 27

383 14 4 106 300 275 96 71 207 75 352 10 221 178 307 180
339 174 336 340 44 191 99 317 39 244 361 249 274 73 206 377
362 341 201 345 231 219 35 111 205 80 93 23 347 168 229 30
378 146 171 145 3 181 321 196 124 164 152 120 224 276 382 24
33 302 128 78 252 298 189 144 344 42 105 349 329 288 104 283

369 37 90 247 295 305 81 314 318 215 173 123 313 254 365 306
277 43 381 118 373 280 233 380 234 270 374 211 335 282 323 332
157 322 2 51 326 161 147 200 218 338 348 213 379 89 153 122
187 194 265 175 134 1 0 351 169 127 328 91 308 223 245 9

Table 4: The rank of importance for each attention head in the GPT-2 medium model. The rows represent the layer
of attention blocks in the model whereas the columns represent attention heads per layer.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
39 79 318 53 587 121 273 390 84 125 433 510 653 548 379 255 193 132 555 622

567 285 553 403 481 670 375 398 399 354 298 424 502 624 665 544 709 473 620 268
219 181 585 683 621 463 326 506 434 615 339 651 100 312 497 332 412 428 14 634
12 22 633 391 436 658 94 563 614 386 355 104 174 40 90 172 78 407 328 673

149 302 105 322 474 264 469 184 35 319 177 185 295 203 296 438 666 489 543 87
606 323 209 195 579 204 51 584 267 569 590 662 395 55 93 290 552 159 508 186
163 425 225 25 448 107 531 325 58 27 503 612 92 559 287 118 352 275 251 546
681 592 523 77 494 56 549 342 368 611 528 320 558 47 308 575 248 383 671 314
134 250 340 272 712 396 171 137 610 430 238 269 26 604 211 630 261 133 532 111
34 240 388 408 337 44 568 247 359 411 672 215 258 198 410 547 472 525 581 702

617 500 566 468 365 311 692 533 422 699 660 645 265 131 643 526 657 36 189 632
116 146 81 413 625 284 161 62 460 588 627 545 330 88 293 527 650 71 303 245
372 299 357 524 640 685 11 31 674 346 565 599 194 564 439 145 196 97 260 167
688 175 224 263 41 239 114 294 331 609 202 249 373 120 550 119 454 246 98 220
173 310 179 381 377 103 479 135 516 475 148 205 401 443 169 560 218 556 654 600
637 432 301 394 65 156 123 329 66 70 214 574 2 10 307 153 46 112 613 237
166 542 50 155 217 117 435 305 417 43 138 102 367 327 253 570 414 343 143 207
243 647 7 191 698 109 141 423 598 126 182 0 421 17 24 52 110 80 59 91
234 488 351 256 649 113 551 668 164 400 501 128 83 282 210 317 45 511 222 68
513 274 199 594 519 348 140 168 151 157 664 188 244 449 144 347 515 324 522 619
23 122 82 656 447 358 642 1 16 42 589 646 233 466 304 361 37 32 96 30
28 216 397 364 562 29 101 356 471 695 270 276 162 283 170 306 277 5 573 486

300 493 74 517 678 402 130 576 165 459 418 4 426 442 583 190 6 291 208 38
221 69 370 85 60 178 641 491 577 682 154 106 703 392 362 54 603 99 315 371
13 349 415 313 124 427 281 338 580 420 416 380 499 644 20 384 530 183 192 72

297 286 440 648 75 201 57 561 136 152 33 242 95 108 369 697 716 229 266 534
206 477 687 538 707 127 706 280 64 409 669 19 496 200 376 490 150 498 514 616
482 158 487 444 9 160 197 231 406 76 21 187 180 437 693 257 139 467 321 504
223 462 485 419 572 591 142 288 363 350 719 536 704 718 677 334 675 680 445 623
686 405 701 539 8 596 278 582 230 456 341 529 710 241 344 86 458 652 635 541
63 89 366 382 476 232 638 271 453 235 227 404 262 73 67 717 374 228 512 212

605 601 15 484 389 3 176 483 509 667 495 345 393 289 309 259 115 387 446 129
48 465 557 385 18 535 628 705 554 602 478 492 316 360 236 521 254 684 252 586

689 571 464 607 691 292 450 696 49 520 333 626 505 713 700 631 452 593 694 335
636 578 147 61 714 279 455 708 378 655 595 480 461 679 518 597 451 659 661 507
608 540 226 639 431 336 676 213 470 715 618 441 711 690 353 457 629 537 429 663

Table 5: The rank of importance for each attention head in the GPT-2 large model. The rows represent the layer of
attention blocks in the model whereas the columns represent attention heads per layer.
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