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Abstract

The widespread use of Text-to-Image (T2I)
models in content generation requires careful
examination of their safety, including their ro-
bustness to adversarial attacks. Despite exten-
sive research on adversarial attacks, the reasons
for their effectiveness remain underexplored.
This paper presents an empirical study on ad-
versarial attacks against T2I models, focusing
on analyzing factors associated with attack suc-
cess rates (ASR). We introduce a new attack ob-
jective - entity swapping using adversarial suf-
fixes and two gradient-based attack algorithms.
Human and automatic evaluations reveal the
asymmetric nature of ASRs on entity swap: for
example, it is easier to replace “human” with

“robot” in the prompt “a human dancing in the
rain.” with an adversarial suffix, but the reverse
replacement is significantly harder. We further
propose probing metrics to establish indicative
signals from the model’s beliefs to the adver-
sarial ASR. We identify conditions that result
in a success probability of 60% for adversarial
attacks and others where this likelihood drops
below 5%. 1

1 Introduction

The capabilities of Text-to-Image (T2I) generation
models, such as DALL-E 2 (Ramesh et al., 2022),
DALL-E 3 (Betker et al., 2023), Imagen (Saharia
et al., 2022) and Stable Diffusion (Rombach et al.,
2022), have improved drastically and reached com-
mercial viability. As with any consumer-facing AI
solution, the safety and robustness of these models
remain pressing concerns that require scrutiny.

The majority of research related to T2I safety
is associated with the generation of Not-Safe-For-
Work (NSFW) images with violence or nudity (Qu
et al., 2023; Rando et al., 2022; Tsai et al., 2023).
To counter this, pre-filters that check for NSFW
texts and post-filters that check for NSFW images

1The code and data are available at https://github.
com/Patchwork53/AsymmetricAttack

are used (Safety-checker, 2022). However, these
filters are not infallible (Rando et al., 2022), and
research into bypassing them, termed ‘jailbreaking’
is advancing (Yang et al., 2023b,a; Noever and No-
ever, 2021; Fort, 2023; Galindo and Faria; Maus
et al., 2023; Zhuang et al., 2023). These attacks
typically view the creation of NSFW-triggering ad-
versarial prompts as a singular challenge, without
sufficiently investigating the reasons behind these
attacks’ effectiveness.

On the other hand, explainability studies have
examined the capabilities and shortcomings of text-
to-image (T2I) models. They show that T2I mod-
els often generate content without understanding
the composition (Kong et al., 2023; West et al.,
2023), and reveal compositional distractors (Hsieh
et al., 2023). We identified a specific bias of T2I
models linked to adversarial attack success rates,
bridging the gap between attack and explainability
research. We demonstrate the asymmetric bias of
the T2I models by conducting adversarial attacks
in a novel entity-swapping scenario, in contrast
to the existing setup of removing objects (Zhuang
et al., 2023) or inducing NSFW content (Yang et al.,
2023b,a). This setup enables us to investigate the
attack success rate in a cyclical setting.

To study the underlying reasons for the success
of adversarial attacks, the attack must be powerful
and have a high success rate. This would allow us
to ensure that cases with low success rates arise due
to the model’s internal biases, not simply as a result
of the algorithm’s shortcomings. We propose two
optimizations of existing gradient-based attacks
(Shin et al., 2020; Zou et al., 2023) using efficient
search algorithms to find adversarial suffix tokens
against Stable Diffusion. This approach is based on
the observation that existing algorithms for LLM
attacks are unnecessarily conservative in generating
adversarial perturbations and struggle to efficiently
navigate the larger vocabulary size of the T2I text
encoder.
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a turtle swimming in an aquarium.a fish swimming in an aquarium.

Attack 1: Swap “turtle” with “fish”

Attack 2: Swap “fish” with “turtle”

a fish swimming in an aquarium.a turtle swimming in an aquarium.

Entity Swap Setting - Which Direction Is Easier?

                                                
a fish swimming in an aquarium.                 93.36
a turtle swimming in an aquarium.              242.22

Sentence Perplexity

(a)

a turtle swimming in an aquarium. opi edmonton cumulative valentina coventry

a fish swimming in an aquarium. saxon turtpe entirely partly

Attack 1: Success Rate 1.5%

Attack 2: Success Rate 90%

Perplexity is not indicative of attack success rate

(b)

“a fish swimming in an aquarium.”

“a [PAD] swimming 
in an aquarium.”

High ASR

Low ASR

CLIP Embedding Space

“a turtle swimming in an aquarium.”

We found that the embedding distance from a back-
ground context position is a much stronger determi-
nant of attack success rate (ASR).

T2I Text Encoder’s Bias Given a Context 

(c)

Figure 1: Overview of new attack objective, its asymmetric success rate, and the underlying cause of said asymmetry.

Our novel setup and efficient adversarial attack
have allowed us to observe an asymmetric attack
success rate associated with entity swap. Initially,
we hypothesized that long-tail prompts with high
perplexity would be more vulnerable to attacks.
Surprisingly, we found no strong correlation be-
tween the Attack Success Rate (ASR) and the per-
plexity of the prompt. However, with our proposed
measure that evaluates the internal beliefs of CLIP
models, we detected indicative signals for ASR,
which help identify examples or prompts that are
more susceptible to being attacked. Our contribu-
tions can be summarized as follows.

1. We introduce a new attack objective: replac-
ing entities of the prompt using an adversarial
suffix. This allows us to study the relation be-
tween adversarial attacks and the underlying
biases of the model (Figure 1a).

2. We apply an existing gradient-based attack
algorithm to execute entity-swap attacks and
propose improvements that take advantage of
the bag-of-words nature of T2I models. This
powerful attack method reveals a clear distinc-
tion in the ASR when two entities are swapped
in opposite directions, indicating an asymme-
try in adversarial attacks (Figure 1b).

3. We propose a new metric tied to the asymmet-
ric bias of T2I models. This helps us identify
vulnerable preconditions and estimate ASR
without performing an attack (Figure 1c).

2 Related Works

Adversarial Attacks Adversarial attacks, which
perturb inputs to cause models to behave unpre-
dictably, have been a long-studied area in the field

of adversarial robustness (Szegedy et al., 2013;
Shafahi et al., 2018; Shayegani et al., 2023). Previ-
ous studies on adversarial attacks focused on dis-
criminative models involving convolutional neu-
ral networks (Athalye et al., 2018; Hendrycks and
Dietterich, 2018), while recent work has shifted
towards examining generative models such as large
language models (LLMs) (Shin et al., 2020; Zou
et al., 2023; Liu et al., 2023c; Mo et al., 2023;
Cao et al., 2023), Vision Language models (VLMs)
(Dong et al., 2023; Khare et al., 2023; Shayegani
et al., 2024), and Text-to-Image (T2I) models.

Attacks on T2I Models Zhuang et al. (2023)
were among the first to demonstrate that a mere
five-character perturbation could significantly al-
ter the generated images. Tsai et al. (2023) and
SneakyPrompt (Yang et al., 2023b) proposed ad-
versarial attacks using genetic algorithms and re-
inforcement learning algorithms to perturb safe
prompts to generate NSFW content. VLAt-
tack (Yin et al., 2023), MMA-Diffusion (Yang
et al., 2023a), and INSTRUCTTA (Wang et al.,
2023) demonstrated that cross-modality attacks can
achieve higher success rates than text-only attacks.
For defense, Zhang et al. (2023) proposed Adver-
sarial Prompt Tuning to enhance the adversarial
robustness of VLMs. However, to the best of our
knowledge, no comparable defense against non-
NSFW attacks exists for T2I models.

Vulnerability Analysis Previous studies (Ilyas
et al., 2019; Shafahi et al., 2018; Brown et al., 2017)
have explored the reasons for the vulnerability of
neural networks to adversarial attacks, especially in
image classification. Ilyas et al. (2019) suggested
that adversarial examples stem from non-robust fea-
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tures in models’ representations, which are highly
predictive yet imperceptible to humans. Subhash
et al. (2023) suggested that adversarial attacks on
LLMs may act like optimized embedding vectors,
targeting semantic regions that encode undesirable
behaviors during the generation process.

Distinct from previous research, our study an-
alyzes factors in the model’s beliefs linked to at-
tack success rates. Unlike prior work focusing on
untargeted attacks to trigger NSFW image genera-
tions, we introduce a unique entity-swapping attack
setup and develop a discrete token-searching algo-
rithm for targeted attacks, identifying asymmetric
biases in success rates due to the model’s internal
bias. Our experiments emphasize the relationship
between prompt distributions, model biases, and
attack success rates.

3 Entity Swapping Attack

This section describes the proposed setup of the
entity-swapping attack and the corresponding eval-
uation metric. Designing a new attack scenario
may be straightforward, but developing a suitable
measure is not trivial. Towards this end, we pro-
pose two efficient discrete token search algorithms
for the attack, resulting in improved success rates
in entity-swapping attacks.

3.1 Stable Diffusion
We study entity-swapping attacks using Stable Dif-
fusion (Rombach et al., 2022), an open-source 2

T2I model based on a denoising diffusion proba-
bilistic model with a U-Net architecture. It uses
cross-attention and CLIP (Radford et al., 2021)
for text-image alignment and a variational auto-
encoder (Kingma and Welling, 2013) for latent
space encoding. The model’s dependence on CLIP
text embeddings increases its vulnerability to ad-
versarial attacks. See Appendix E for more details.

3.2 Entity Swapping Dataset
We first constructed datasets with the following
key properties to study model bias through entity-
swapping attacks.

1. Each data point should be a pair of sentences
- input and target - and T2I models should be
able to generate both reliably.

2. The input and target sentences should differ
by exactly one noun (i.e., an entity).

2Licensed under CreativeML Open RAIL++-M License
for intended for research purposes only.

3. The input and target sentences must be visu-
ally distinct.

As an example, the pair (“a person in a park.”,
“a man in a park.”) satisfies requirements 1 and 2
but not 3. As our setup for entity-swapping at-
tacks is targeted, namely adversarial attacks need
to swap the entities in the images without affecting
other parts compared to other attacks that aim to
either generate NSFW images or remove objects,
we created two datasets to study the effects of ad-
versarial attacks. We manually constructed a small
high-quality dataset HQ-Pairs and a larger-scale set
derived from an existing dataset MS-COCO.

HQ-Pairs For the first dataset, we manually
crafted 100 pairs for entity-swapping that satisfy
all the requirements. We refer to this first dataset
as HQ-Pairs (High Quality).

COCO-Pairs To ensure that our results were not
due to selective data selection, we generated a sec-
ond dataset of 1,000 pairs deterministically from
the test split captions of MS-COCO (Lin et al.,
2014). We refer to this dataset as COCO-Pairs 3.
Since COCO-Pairs is automatically generated, we
attempted to ensure that each data pair satisfies all
three requirements. However, generating sentence
pairs through stable diffusion and verifying them
as visually distinct automatically is not always reli-
able. We observed some visually non-distinct pairs,
such as (“Herd of zebras ...”, “Images of zebras
...”) within COCO-Pairs despite automatic checks
and filtering. See Appendix A for details.

3.3 Proposed Attack
We examine how the underlying data distribution
of prompts influences the success rate of entity-
swapping attacks on T2I models. Our approach is
straightforward: rather than manipulating T2I to
produce NSFW images or completely removing an
object, we aim to replace an object in the image
with another targeted one. This approach also al-
lows us to explore the feasibility of reverse attacks
by inserting adversarial tokens. Examples of our
attack setup can be found in Figure 2.

The CLIP text-encoder transforms prompt to-
kens x1:n into n hidden states with dimension D.
Let the operationH represent the combined process
of encoding tokens x1:n and reshaping the hidden
states into a vector of length n×D.

3The code to reproduce COCO-Pairs is provided in our
codebase.
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a doodle of a light bulb on a notebook. im-
pressive " slovakbris terrier

a doodle of a dog on a notebook. light bulb 
bulb surrounding bulb

a backpack in a forest. �oating goldie hut 
shinee edm

a cabin in a forest. mulberry literal bernard 
collateral backpack

a robot dancing in the rain. taeyeon hara 
concession headshot brian

a human dancing in the rain. 2 ': embar-
rassing robot thankfully

a child playing with a toy train. guys sct air-
plane protoairplane

a child playing with a toy airplane. glaston-
bury locomotive cv with amethyst

Forward Attack ASR 20%

Backward Attack ASR 100%

10%

70%

ASR 30%

60%

 0%

ASR 10%

ASR 60%

ASR  0%

ASR 10%

ASR 70%

Figure 2: Targeted replacement of entities (blue or orange text) using adversarial suffixes (red highlight) and their
corresponding Attack Success rate (ASR) over 10 attack attempts using Stable Diffusion. This attack setup allows
us to study the correlation between prompt distribution and ASR. We observe a clear distinction in ASR when
performing entity-swapping with reversed directions. The rest of the paper explores explanations and measures that
can detect and predict ASR without performing the attack itself.

H(x1:n) = Flatten(CLIP(x1:n)) (1)

Our attack targets the CLIP embedding space
and aims to maximize a score function that mea-
sures the shift from the input token embeddings
H(xT1:n) towards the target token embeddings
H(xS1:n) using cosine similarity:

S(x1:n) = wt × cos(H(xT1:n),H(x1:n))−
ws × cos(H(xS1:n),H(x1:n))

(2)

Optimizing S is challenging due to the discrete
token set and the exponential search space (k|V |

for k suffix tokens), making simple greedy search
intractable. Current solutions based on HotFlip
(Ebrahimi et al., 2017) and concurrent work ap-
plied to Stable Diffusion (Yang et al., 2023a), take
gradients w.r.t. one-hot token vectors and replace
tokens for all positions in the suffix simultaneously.
The linearized approximation of replacing the ith

token, xi, is computed by evaluating the following
gradients:

∇exi
L(x1:n) ∈ R|V |, L(x1:n) = −S(x1:n)

(3)
where exi denotes the one-hot vector representing
the current value of the ith token.

3.4 Proposed Optimization Algorithms
Based on existing gradient-based methods (Zou
et al., 2023; Shin et al., 2020), we propose two
efficient algorithms to find adversarial suffix tokens
against Stable Diffusion.

Single Token Perturbation This is a straightfor-
ward modification of the Greedy Coordinate Gra-
dient algorithm (Zou et al., 2023) using our loss
function defined in Eqn. 3. At each optimization
step, our algorithm selects k tokens with the high-
est negative loss as replacement candidates, χi, for
each adversarial suffix position i. It then creates
B new prompts by randomly replacing one token
from the candidates. Each prompt in B differs from
the initial prompt by only one token. The element
of B with the highest S is then assigned to x1:n.
We repeat this process T times.

Multiple Token Perturbation Unlike the LLMs
targeted by Zou et al. (2023), CLIP models oper-
ate more like bag-of-words (Yuksekgonul et al.,
2022) without capturing semantic and syntactical
relations between words. Furthermore, Genetic Al-
gorithms (Sivanandam et al., 2008) have proved
effective on Stable Diffusion (Zhuang et al., 2023;
Yang et al., 2023b) for generating adversarial at-
tacks. Inspired by this apparent weakness in CLIP
models, we hypothesized that replacing multiple
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tokens simultaneously could improve the conver-
gence speed.

In detail, the algorithm selects k tokens and cre-
ates B new prompts by randomly replacing multi-
ple token positions. Drawing inspiration from the
classic exploration versus exploitation strategy in
reinforcement learning (Sutton and Barto, 2018),
we initially replace all tokens and then gradually
decrease the replacement rate to 25%. Figure 2
illustrates some adversarial suffixes generated us-
ing this algorithm. Details of both algorithms are
provided in the Appendix B.

Token Restrictions For finer control over token
search, we can limit the adversarial suffix to a set
of tokens A. By setting the gradients of the V −A
tokens to infinity before the Top-k operation, we
ensure only A tokens are chosen. This method
allows us to mimic QFAttack (Zhuang et al., 2023),
as shown in Figure 3, or generate undetectable
attacks by excluding target synonyms in the attack
suffix.

a red and white picnic blanket with a 
basket m! ( 7 +

a yellow sunflower in a field 9 | 0 + c

a yellow and black bumblebee on a 
flower | 6 s $ 4

a snake and a young man | 5 m? 4

Figure 3: The emulation of restricted token attack (un-
targeted) from Zhuang et al. (2023) using five ASCII
tokens with Stable Diffusion 1.4. The blue text indicates
the part we want to remove. We set wt = 0 in Eqn. 2.

3.5 Proposed Attack Evaluation
To assess the success of a targeted entity-swapping
attack, we use a classifier to verify if the generated
image matches the input or target prompt. Given a
tuple (input text, target text, generated image), we
define a classifier C as follows:

C(input text, target text, generated image)

=





+1 if image matches target text
−1 if image matches input text
0 otherwise.

(4)

When trying to change “A backpack in a forest”
to “A cabin in a forest”, we noticed that some of
the generated images depicted “People in a forest”

or “A cabin and a backpack in a forest” instead.
We define such cases as class 0. Class +1 alone
indicates a successful attack, but this three-class
framework enables a more comprehensive compar-
ison between human judgments and our proposed
classifiers.

Attack Success Rate (ASR) We define an ad-
versarial suffix as successful if the target text is a
suitable caption for the majority of images gen-
erated by an attack prompt using a T2I model.
For example, if we generate 5 images with an ap-
pended adversarial suffix prompt “A backpack in
a forest. titanic tycoon cottages caleb dojo ”, we
will consider the adversarial suffix successful if 3
or more images match the target prompt “A cabin
in a forest”.

Human Evaluations/Labels We gather evalua-
tions from three human evaluators 4 for 200 random
samples by presenting them a WebUI (Appendix
H) with the generated image and two checkboxes
for input text and target text. They are instructed
to select texts that match the image and can se-
lect one, both, or neither, i.e. into three classes
as established in Eqn. 4. The Gwet-AC1 met-
ric (Gwet, 2014) of the three evaluators is 0.765
and the pairwise Cohen’s Kappa κ metrics (Co-
hen, 1960) are 0.659, 0.736, and 0.779, indicating
a high degree of agreement. We consider the ma-
jority vote among evaluators as ground truth.

Choice of the Classifier We generate multiple at-
tack suffixes for each input-target pair to determine
attack success rates. Due to the large volume of im-
ages, we employ human evaluators for a subset and
VLM-based classifiers for the full set evaluation.
We test InstructBLIP (Liu et al., 2023a), LLaVA-
1.5 (Liu et al., 2023b) and CLIP (Radford et al.,
2021), and compare their performance with human
labels.

For InstructBLIP and LLaVA-1.5, we use
the prompt ‘Does the image match the caption
[PROMPT]? Yes or No?’. For CLIP models, an
image is classified as +1 if its target text similarity
is above 1− γ and its input text similarity is below
γ and −1 for the reverse case. All other cases are
classified as 0. Table 1 shows the agreement of dif-
ferent automatic classifiers with ground truths from

4Our evaluations were conducted by three non-author, na-
tive English-speaking volunteers who generously offered their
time without compensation. We sincerely thank them for their
commitment and good faith effort in labeling.
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Figure 4: Comparison of pair-wise attack success rate on HQ-Pairs using Multiple Token Perturbation Algorithm.

Model # Classes Accuracy F1

InstructBLIP 3 0.79 0.75
LLaVA-1.5 3 0.76 0.74
CLIP 3 0.62 0.55
CLIP-336 3 0.60 0.55

InstructBLIP 2 0.86 0.84
LLaVA-1.5 2 0.83 0.81
CLIP 2 0.70 0.69
CLIP-336 2 0.68 0.67

Table 1: Comparison of Automated Evaluation Models.
# Classes = 3 means the model outputs are categorized
into classes {−1, 0 and 1} as defined in Eqn. 4. Since
classes {−1, 0} both correspond to unsuccessful attacks,
we collapse them into a single class 0 and report the
performance of the VLM models with # Classes = 2.

our human evaluators. We use the optimal thresh-
old γ (γCLIP = 0.0034 and γCLIP−336 = 0.0341)
that maximizes the F1 score. Since InstructBLIP
shows the best alignment with human evaluation,
we use InstructBLIP as our sole classifier in subse-
quent sections.

4 Experiments and Results

This section presents the experimental details and
results of adversarial attacks for entity-swapping,
involving the insertion of adversarial suffixes.

4.1 Experimental Setups
We evaluate Stable Diffusion v2-1-base on the HQ-
Pairs dataset of 100 input-target pairs to compare
the effectiveness of Single and Multiple Token
Perturbation. We run each algorithm 10 times
per pair with T = 100 steps with k = 5 and
B = 512, which yields 10 adversarial attacks per
pair, and we generate 5 images per attack. The
two algorithms are evaluated against each other on

100 × 10 × 5 = 5000 generated images. We set
wt = ws = 1 in Eqn. 2 for the experiments. After-
ward, we evaluate COCO-Pairs (1000 pairs) using
the Multiple Token Perturbation algorithm to es-
tablish the asymmetric bias phenomenon with the
same hyperparameters. We used a single Nvidia
RTX 4090 GPU for all experiments, including at-
tack, image generation, and automated evaluation,
totaling around 500 GPU hours.

4.2 Overall Attack Results

Using the same hyperparameters and compute bud-
get, our Multiple Token Perturbation algorithm
outperforms the Single Token Perturbation ( ASR
26.4% vs. 24.4% for 1000 attacks). Zou et al.
(2023) showed that Single Token Perturbation
was an effective adversarial suffix-finding strategy
for LLMs. However, the CLIP text is relatively
lightweight compared to LLMs and behaves more
like a bag-of-words model (Yuksekgonul et al.,
2022). CLIP also has a larger vocabulary compared
to LLMs ( 50K vs. 32K) which leads to a larger
unrestricted search space (∼ 1024 vs. ∼ 1023 for
5 token suffixes). We find that updating multiple
tokens at each time step leads to faster convergence,
likely because CLIP demonstrates a reduced em-
phasis on the semantic and syntactical relationships
between tokens. Our findings corroborate the effec-
tiveness of the Genetic Algorithm in Zhuang et al.
(2023), which resembles multiple token perturba-
tions but operates in an untargeted setting without
a gradient-based algorithm. We employ Multiple
Token Perturbation for all subsequent experiments.

4.3 Forward and Backward Attack Results

One of our key findings is the strong asymmetry of
adversarial attack success rate, as illustrated in Fig-
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ure 4. For instance, attacks from ‘A swan swimming
in a lake.’ to ‘A horse swimming in a lake.’ failed
in all ten attempts, whereas the reverse direction
achieved an ASR of 0.9. In other cases, the forward
and backward ASRs aren’t inversely proportional.
For example, both directions between ‘A man read-
ing a book in a library.’ and ‘A woman reading a
book in a library.’ have moderate ASRs of 0.7 and
0.5, respectively, while pairs like (‘A dragon and
a treasure chest.’, ‘A knight and a treasure chest.’)
fail in both directions. Inspired by these asymmet-
ric observations, we conducted further experiments
to analyze the relationship between prompt distri-
bution and attack success rate.

5 Asymmetric ASR Analysis

This section discusses our experiments to analyze
the asymmetric ASR observed in Section 4.3. We
aim to investigate the model’s internal beliefs that
may lead to these distinct attack success rate (ASR)
differences from opposite directions. We propose
three potential factors for this asymmetry: the dif-
ficulty of generating the target text (BSR, Eqn. 5),
the naturalness of the target text relative to the in-
put text (∆1, Eqn. 6), and the difference in distance
from the target text to the baseline compared to that
from the input text (∆2, Eqn. 7).

5.1 Probe Metrics

We initially speculated that ASR might be related
to the difficulty in generating the target prompt,
leading us to evaluate the Base Success Rate (BSR)
of target generation.

BSR =
Successful Generations
Generation Attempts

(5)

BSR assesses the T2I model’s ability to generate
an image that matches the input prompt without
any adversarial suffixes. Stable Diffusion is often
unable to generate novel compositions not present
in its training data (West et al., 2023) and struggles
with generating co-hyponym entities in the same
scene (Tang et al., 2022). We find that even simple
scenes such as “A dragon guarding a treasure.”
are inconsistently produced (See Appendix F for
examples). Therefore, if the T2I models struggle
with the target alone, adversarial attacks aimed at
generating them are likely to be even more chal-
lenging.

We also speculated that the difference in Per-
plexity ∆1, measuring how natural or plausible

a ! swimming in a lake.

a ! in a forest.

Figure 5: Baseline Distance Difference measures the
inherent biases of T2I models. This can be observed by
prompting Stable Diffusion a PAD token in place of an
entity.

a prompt is, might be associated with asymmet-
ric ASR. For example, “A swan swimming in a
lake” is a more natural scene than “A horse swim-
ming in a lake”. Using text-davinci-003
by OpenAI (Brown et al., 2020), we calculate the
perplexity difference

∆1(x
T
1:n, x

S
1:n) = PPL(xT1:n)− PPL(xS1:n). (6)

where PPL(x1:n) = e−
1
n

∑n
i=1 logP (xi|x1:i−1) is the

perplexity for the sequence x1:n.

Furthermore, we introduce a new metric
termed Baseline Distance Difference, denoted as
∆2. Figure 5 shows that T2I models have inherent
biases towards certain objects. We denote this
phenomenon as the baseline - answering what
would Stable Diffusion generate if prompted with

“A swimming in a lake”. Intuitively, targets
closer to this baseline should be easier to generate.

∆2(x
T
1:n, x

S
1:n) = cos(H(xT1:n),H(xB1:n))
−cos(H(xS1:n),H(xB1:n)).

(7)

5.2 Results

We generated 64 images for each sentence in HQ-
Pairs and COCO-Pairs. We counted the number
of successful generations to determine the BSR as
defined in Eqn. 5.

On the HQ-Pairs dataset, we find that Perplex-
ity Difference ∆1 has a negligible correlation with
ASR (Pearson r = 0.05 and Spearman ρ = −0.06).
This is counterintuitive because we expected that
a target with lower perplexity compared to the in-
put text would be easier to generate through an
adversarial attack. We also observed that ASR
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(a) ASR vs. Baseline Distance Difference (∆2 in Eqn. 7) (b) ASR for Negative and Positive ∆2

Figure 6: Correlation of ASR with Baseline Distance Difference ∆2. Data is reported using the Multiple Token
Perturbation algorithm on HQ-Pairs. ∆2 shows a moderate negative correlation with ASR.

has a weak positive correlation with BSR (Pearson
r = 0.28 and Spearman ρ = 0.38) and a moder-
ate correlation with ∆2 (Pearson r = −0.39 and
Spearman ρ = −0.46. See Figure 6a). In partic-
ular, Figure 6b shows that the mean ASR is 0.40
when ∆2 is negative, while it drops to just 0.12
when ∆2 is positive. Thus, ∆2 allows us to esti-
mate, to some extent, the probability of a success-
ful adversarial attack. We present more correlation
plots of ASR with Perplexity Difference and BSR
in Appendix F.

5.3 Predictor for Successful Attack
Considering the observed correlations of BSR (of
the target text) and ∆2 with attack success rates,
this section explores whether the combination of
these two indicators can predict the probability of
a successful entity-swapping attack.

HQ-Pairs COCO-Pairs
BSR ∆2 Num. Avg. ASR Num. Avg. ASR

Low Neg. 23 0.174 260 0.129
Low Pos. 19 0.047 274 0.087
High Neg. 27 0.6 239 0.349
High Pos. 31 0.171 226 0.213

All All 100 0.264 1000 0.189

Table 2: Average ASR for different combinations of
BSR and ∆2 on COCO-Pairs dataset. We define BSR ≥
0.9 as high. The average BSR of the target text of HQ-
Pairs and COCO-Pairs were 0.82 and 0.698 respectively.

Table 2 shows that our probe metric acts as a
reliable predictor of attack success: when BSR
(of the target text) is high and ∆2 is negative for a

given input-target text pair, adversarial attacks have
a 60% chance of success on the HQ-Pairs dataset,
compared to only 5% when BSR is low and ∆2

is positive. Thus, considering both BSR and ∆2

together enhances the prediction accuracy of an
attack’s success likelihood. We further validate our
findings on the much larger COCO-Pairs dataset.
Although the differences are not as pronounced as
those in the HQ-Pairs, due to limitations explained
in Section 3.2, we still observe that high BSR and
negative ∆2 remain indicative of a higher likeli-
hood of successful adversarial attacks. We also
identified factors akin to existing research on gen-
eral elements associated with attack success rates,
like the length of the adversarial suffix. These fac-
tors, together with our experimental results, are
detailed in Appendix G.

6 Conclusion

This paper presents an empirical study on adversar-
ial attacks targeting text-to-image (T2I) generation
models, with a specific focus on Stable Diffusion.
We define a new attack objective: entity-swapping,
and introduce two gradient-based algorithms to im-
plement the attack. Our research has identified key
factors for successful attacks, revealing the asym-
metric nature of attack success rates for forward
and backward attacks in entity-swapping. Further-
more, we propose probing metrics to associate the
asymmetric attack success rate with the asymmet-
ric bias within the T2I model’s internal beliefs, thus
establishing a link between a model’s bias and its
robustness against adversarial attacks.

8
5786



7 Limitations

Our analysis establishes the asymmetric bias phe-
nomenon for Stable Diffusion but whether all T2I
models have such bias is an open question. Closed-
source T2I models with different architectures such
as Imagen and DALL·E may be immune to the
asymmetric bias phenomenon or their creators may
have mitigated biases through careful data curation.

One of our key findings is that asymmetric bias
is not intuitive. Although humans might consider
“fish” to be a more natural option (and likely more
abundant in the training data) for “A in an
aquarium”, we find that Stable Diffusion is strongly
biased towards “turtle” instead. We leave exploring
the underlying reason for this non-intuitive bias as
future work.

We observed that gradient-based algorithms tend
to include the target word in the adversarial suf-
fix. Concurrent works that aim to generate unde-
tectable NSFW attacks use a dictionary to prevent
this. Since we target benign words and have dif-
ferent targets for every attack, we could not use a
similar approach. We explore explicitly forbidding
tokens corresponding to the target word, but the al-
gorithm still finds synonyms or different tokeniza-
tions of the target word. Forbidding the target word
proved to be a nontrivial and ultimately, we did not
consider generating true adversarial attacks to be
a central focus of our investigation of model bias.
Another technical challenge is the need to compute
BSR which involves generating a statistically sig-
nificant number of images (64 in our experiments)
for the same prompt. Finding ways to approximate
the BSR is an area for future research.
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A Generating COCO-Pairs

Starting from 5000 captions, we filter out long captions and use a Named-Entity-Recognition model
(Nadeau and Sekine, 2007) to identify the first noun in the sentence and use a Fill-Mask model (Devlin
et al., 2018) to replace it with another noun. We use the NLTK (Loper and Bird, 2002) library and several
heuristics to prevent synonyms, hyponym-hypernym, and nonvisualizable nouns from being selected. We
are left with 2093 (base caption, synthetic caption) pairs, from which we sample 500. This yields 1000
sentence pairs in total by considering both directions.

B Algorithms

Algorithm 1 Single Token Perturbation

Require: Initial prompt x1:n, modifiable subset I , iterations T , loss L, score S, batch size B, k
1: for t ∈ T do
2: for i ∈ I do
3: χi ← Top-k(−∇xiL(x1:n)) {Compute top-k promising token substitutions}
4: end for
5: for b = 1, . . . , B do
6: x

(b)
1:n ← x1:n {Initialize element of batch}

7: x
(b)
i ← Uniform(χi), where i← Uniform(I) {Select random replacement token}

8: end for
9: x1:n ← x

(b∗)
1:n , where b∗ = argmaxb S(x(b)1:n) {Compute best replacement}

10: end for
Ensure: Optimized prompt x1:n

Algorithm 2 Multiple Token Perturbation

Require: Input: Initial prompt x1:n, modifiable subset I , iterations T , loss L, score S, batch size B, k,
ϵf , ϵs

1: ϵ← ϵs
2: for t ∈ T do
3: for i ∈ I do
4: χi ← Top-k(−∇xiL(x1:n)) {Compute top-k promising token substitutions}
5: end for
6: for b = 1, . . . , B do
7: x

(b)
1:n ← x1:n {Initialize element of batch}

8: for i ∈ I do
9: if P(ϵ) then

10: x
(b)
i ← Uniform(χi) {Select random replacement token}

11: end if
12: end for
13: end for
14: x1:n ← x

(b∗)
1:n , where b∗ = argmaxb S(x(b)1:n) {Compute best replacement}

15: ϵ← max(ϵf , ϵs − t
T ) {Reduce the replacement probability}

16: end for
Ensure: Output: Optimized prompt x1:n
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C Additional Examples of Asymmetric Bias

Sentence Pair (1 / 2) ∆2 ASR 1→ 2 ASR 2→ 1 Example

a (plane / hot air balloon) in the sky at
sunset.

-0.1 80% 0%

a plane in the sky at sunset. 
picturesque flyer '\" evening balloon

a (cabin / backpack) on a mountain. -0.08 90% 20%

a cabin on a mountain. salutparticle
novo backpack sitting

an owl in a (forest / shopping mall). -0.07 70% 0%

an owl in a forest. vintage mall 
cashier mannetups

a (birdhouse / jack o lantern) on a tree
branch.

-0.06 60% 0%

an a birdhouse on a tree branch. sectional 
grizzly pumpkin micro costume

a (turtle / fish) swimming in an aquarium. +0.05 0% 90%

a fish swimming in an aquarium. 
tortoise're dly applying

a (robot / human) dancing in the rain. +0.1 0% 60%

a human dancing in the rain. 2 ': 
embarrassing robot thankfully

a doodle of a (light bulb / dog) on a
blackboard.

+0.1 0% 80%

a doodle of a dog on a blackboard.
electrical bulb bulb expressing

Table 3: Additional examples of asymmetric bias in Stable Diffusion 2.1. ∆2 shows a consistent negative correlation
with ASR.
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D Changing the Number of Adversarial Tokens

(a) Reducing the number of attack tokens for ”a red panda/car in a forest.”. Displaying only the adversarial
attack suffixes. 2 tokens are sufficient. ”a red panda in a forest. chained porsche ” generates ”a car in a forest”.

(b) Reducing the number of attack tokens ”a guitar/piano in a music store.”. Displaying only the adversarial
attack suffixes. All 5 tokens are necessary. ”a guitar in a music store. serendipity upright three bank piano ”
generates ”a piano in a music store.”

Figure 7: Reducing the number of tokens in adversarial prompts. Highly dependent on the input-target text pair.

E T2I Model Basics

Stable Diffusion (Rombach et al., 2022) is built on a denoising diffusion probabilistic model (DDPM)
(Ho et al., 2020) framework, utilizing a U-Net architecture for its core operations. Key to its text-to-image
capabilities is the cross-attention mechanism, which aligns textual inputs with relevant visual features.
Specifically, the U-Net attends to image-aligned text embeddings produced by a CLIP (Radford et al.,
2021) model. Stable Diffusion also incorporates a Variational Autoencoder (Kingma and Welling, 2013)
to efficiently encode images into a latent space, significantly reducing computational requirements while
maintaining image quality. Since text embedding generation using a CLIP model is the first stage of the
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Stable Diffusion pipeline, it is particularly susceptible to adversarial attacks (Galindo and Faria; Zhuang
et al., 2023). If an adversary can perturb the text embeddings, later stages in the Stable Diffusion pipeline
will reflect the perturbed embeddings.

E.1 Exploiting CLIP’s Embedding Space
The CLIP text-encoder maps the textual prompt tokens x1:n, with xiϵ{1, ..., V } where V denotes the
vocabulary size, namely, the number of tokens to x1:n, where hi is the hidden state corresponding to the
token xi. The U-Net component in Stable Diffusion attends to all h1:n embeddings using cross-attention.
x1:n can be flattened into Φ, a one-dimensional vector of shape n × D, where D is the embedding
dimension (typically 768 for CLIP and its variants). For simplicity, we refer to Φ as the text embedding
of x1:n from here on. LetH represent the combined operation for encoding tokens x1:n and reshaping the
hidden output states.

Φ = H(x1:n) = Flatten(CLIP(x1:n)) (8)

Since input text and target text can vary in the number of tokens and to allow for an arbitrary number
of adversarial tokens, we pad all input and targets to 77 tokens each, the maximum number of tokens
supported by CLIP.

E.2 Score Function
The cosine similarity metric approximates the effectiveness of appending adversarial tokens at some
intermediate optimization step t. Moving away from the input tokens’ embedding and gradually towards
the target tokens’ embeddings through finding better adversarial tokens can be thought of as maximizing
the following score function, similar to the metric in (Zhuang et al., 2023).

S(x1:n) = wt × cos(H(xT1:n),H(x1:n))−
ws × cos(H(xS1:n),H(x1:n))

(9)

Here, wt and ws are weighing scalars and cos denotes the standard cosine similarity metric between
two one-dimensional text embeddings. For simplicity, we set wt = ws = 1 for all experiments.

E.3 Optimization over Discrete Tokens
The main challenge in optimizing S is that we have to optimize over a discrete set of tokens. Furthermore,
since the search space is exponential (k|V | for k suffix tokens), a simple greedy search is intractable.
However, we can leverage gradients with respect to the one-hot tokens to find a set of promising candidates
for replacement at each token position. We use the negated Score Function as the loss function L(x1:n) =
−S(x1:n). Maximizing the score is equivalent to minimizing the loss. Since losses are used for top K token
selection, the absolute value of the loss does not matter. We can compute the linearized approximation of
replacing the ith token i, xi by evaluating the gradient

∇exi
L(x1:n) ∈ R|V | (10)

Here exi denotes the one-hot vector that represents the current value of the ith token. Taking gradient
with respect to one-hot vectors was pioneered by HotFlip (Ebrahimi et al., 2017) and applied on Stable
Diffusion by a concurrent work (Yang et al., 2023a). Based on this heuristic, we presented two algorithms
for finding adversarial suffix tokens against Stable Diffusion.
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F Primary Determinants of Attack Success

(a) “a sofa and a bed in a room.”

(b) “a dragon guarding a treasure.”

Figure 8: Examples of prompts that have low Base Success Rate (BSR) that highlight cases where Stable Diffusion
fails to generate images that match the input prompt.

(a) ASR vs. Perplexity Difference (∆1 in Eqn. 6) (b) ASR vs. BSR (of target text)

(c) ASR vs. Baseline Distance Difference (∆2 in Eqn. 7) (d) ASR for Negative and Positive ∆2

Figure 9: Correlation of ASR on ∆1, ∆2 and BSR. Data is reported using the Multiple Token Perturbation algorithm
on HQ-Pairs. We find that the Perplexity Difference ∆1 does not correlate with ASR. BSR shows a weak positive
correlation and Baseline Distance Difference ∆2 shows a moderate negative correlation with ASR.
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G Additional Determinants of Attack Success

These sections discuss factors beyond the asymmetric properties that are related to the success rate of
the attack. We have found factors like whether target token synonyms are allowed, attack suffix length
and attack POS types are factors indicating the attack’s success. We also found that, unlike LLM attacks,
adversarial suffixes do not transfer across T2I, indicating that these models might be harder to attack than
single-modality models.

G.1 Restricted Token Selection

Emulating QFAttack We can restrict certain tokens to emulate QFAttack (Zhuang et al., 2023) or
prevent the exact target word from being selected. We find that QFAttack can be consistently emulated by
restricting token selection to tokens corresponding to ASCII characters. We find that such adversarial
suffixes can remove concepts (e.g. “a young man” from “a snake and a young man.” or “on a flower”
from “a bee sitting on a flower.”) but fail to perform targeted attacks (e.g. changing “a bee sitting on a
flower.” to “a bee sitting on a leaf.”). We suspect that this is mainly because ASCII tokens can perturb
CLIP’s embedding but are unable to add additional information to it.

Blocking Selection of Target Tokens Another potential use case is preventing the selection of the exact
target word. However, we find that the algorithm simply finds a synonym or subword tokenization for the
target word when the exact target word (token) is restricted. For example, when attempting to attack the
input text “a backpack on a mountain.” to “a castle on a mountain.”, restricting the token corresponding
to “castle” leads to the algorithm including synonyms like “palace”, “chateau”, “fort” or subword
tokenization like “cast le” or “ca st le” in the adversarial suffix. We find that the effectiveness of the
algorithm isn’t affected when the exact target token is restricted and it still finds successful adversarial
suffixes using synonyms (when preconditions are met).

Changing the Number of Adversarial Tokens k We set the number of adversarial tokens to k = 5
for all experiments. However, we observe that not all input text-target text pairs require k = 5. “a red
panda/car in a forest.” can be attacked with a few as k = 2, i.e. “a red panda/car in a forest.” while “a
guitar/piano in a music store.” required all k = 5 (see Appendix D). We leave a comprehensive study on
the effect of changing the number of tokens for future work.

G.2 Certain Adjectives Resist Adversarial Attacks

We observed that adversarial attacks targeting certain adjectives, such as color, had a very low ASR. For
example, swapping out “red” with “blue” in the prompt “a red car on a city road.” failed in all instances.
Further challenging examples include “a red/purple backpack on a mountain.” and “a white/black swan on
a lake.”. However, other adjectives like “a sapling/towering tree in a forest” or “a roaring/sleeping lion
in the Savannah.” had high ASR in at least one direction. We leave further analysis of this phenomenon
for future work.

G.3 Adversarial Suffixes Do Not Transfer across T2I Models

Table 4 shows that different variants of Stable Diffusion were susceptible to entity-swapping attacks and
exhibited similar levels of asymmetric bias on prompt pairs.

Stable Diffusion 1.4 Stable Diffusion 2.1
BSR ∆2 Num. Avg. ASR Num. Avg. ASR

Low Neg. 31 0.119 23 0.174
Low Pos. 26 0.062 19 0.047
High Neg 19 0.553 27 0.6
High Pos. 24 0.25 31 0.171

All All 100 0.218 100 0.264

Table 4: Average ASR of SD 1.4 and SD 2.1 on HQ-Pairs. BSR and ∆2 remain strong predictors in both cases.
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However, the adversarial suffixes generated using SD 2.1-base did not work on SD 1.4 and vice versa.
SD 2.1-base uses OpenCLIP-ViT/H (Cherti et al., 2023) as the text encoder while SD 1.4 uses CLIP ViT-
L/14 (Radford et al., 2021). Although OpenCLIP-ViT/H and CLIP ViT-L/14 have the same architecture
and parameter count, the lack of transferability indicates that training data likely plays the main role in
determining adversarial attack success.

Similarly, the attack suffixes generated by SD 1.4 or SD 2.1-base did not work on DALL·E 3 (Betker
et al., 2023) which likely has a different architecture and training data.

H Human Evaluation WebUI

Figure 10: UI presented to human evaluators.
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https://huggingface.co/stabilityai/stable-diffusion-2-1-base
https://huggingface.co/CompVis/stable-diffusion-v1-4
https://github.com/mlfoundations/open_clip
https://huggingface.co/openai/clip-vit-large-patch14
https://huggingface.co/openai/clip-vit-large-patch14

