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Abstract

Medical Visual Question Answering (Med-
VQA) seeks to accurately respond to queries
regarding medical images, a task particularly
challenging for open-ended questions. This
study unveils the Multi-modal Concept Align-
ment Pre-training (MMCAP) approach for gen-
erative Med-VQA, leveraging a knowledge
graph sourced from medical image-caption
datasets and the Unified Medical Language Sys-
tem. MMCAP advances the fusion of visual
and textual medical knowledge via a graph at-
tention network and a transformer decoder. Ad-
ditionally, it incorporates a Type Conditional
Prompt in the fine-tuning phase, markedly
boosting the accuracy and relevance of answers
to open-ended questions. Our tests on bench-
mark datasets illustrate MMCAP’s superiority
over existing methods, demonstrating its high
efficiency in data-limited settings and effective
knowledge-image alignment capability.

1 Introduction

Medical Visual Question Answering (Med-VQA)
aims to provide accurate answers to questions about
medical images, playing a crucial role in enhanc-
ing intelligent clinical services (Lin et al., 2023).
Despite the growth in datasets spanning various
medical conditions and anatomical areas (Lau et al.,
2018; Liu et al., 2021b), Med-VQA encounters sig-
nificant challenges with open-ended questions due
to their complexity and the deep medical knowl-
edge required.

Traditional approaches (Nguyen et al., 2019;
Zhan et al., 2020; Gong et al., 2022) to Med-VQA
have largely treated it as a classification task, draw-
ing on predefined set of answers from training
datasets, and focus on addressing data scarcity and
improving cross-modal reasoning. However, these
approaches struggle with the complexity of open-
ended questions, which necessitate comprehension
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Question Does the picture contain kidney?
Answer No
Type Closed-ended
Knowledge Not Required
Question | Which part of the body does this image belong to?
Answer Chest
Type Open-ended
= Knowledge Not Required
Question | How to treat the most severe disease in this image?
Answer Pharmacotherapy, rehabilitation
Type Open-ended
Knowledge Required

Figure 1: Illustrations of Med-VQA examples, showcas-
ing the necessity for external medical knowledge. The
third example queries about the treatment of a disease,
which is difficult to address without knowledge.

of medical knowledge, covering areas such as the
treatment of a particular disease (see Figure 1) and
overlook the importance of integrating external
medical knowledge, a gap evident when models
fail to address deeper, more nuanced questions.

Recent developments in language models have
shown promise in processing and generating com-
plex text, highlighting a new direction for tackling
Med-VQA challenges (Radford et al., 2019; Pa-
panikolaou and Pierleoni, 2020; Luo et al., 2022).
The key challenge now is to effectively combine
these advanced language models with medical im-
ages, particularly for questions that require medical
knowledge. Structuring medical concepts and their
interrelations through knowledge graphs emerges
as a potent strategy to enhance question answering
capabilities (Fensel et al., 2020).

To address these challenges, this study regards
Med-VQA as a generative task, introducing a
novel approach known as Multi-modal Concept
Alignment Pre-training (MMCAP). By utilizing a
knowledge graph, derived from extensive medical
image-caption datasets (Pelka et al., 2018; Sub-
ramanian et al., 2020) and the Unified Medical
Language System(Bodenreider, 2004), MMCAP
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achieves the alignment of images with the knowl-
edge embedded in language model and endows
the model with comprehensive image understand-
ing capabilities. Specifically, this approach is fur-
ther refined using a graph attention network (Wang
et al., 2021) and a transformer decoder (Vaswani
et al., 2017), facilitating the encoding of medical
knowledge and its interaction with visual features.
A crucial aspect of MMCAP’s fine-tuning phase is
the Type Conditional Prompt, which adjusts model
responsiveness to the question’s nature, enhancing
accuracy and contextual relevance in responses.

Experimental results on two benchmark Med-
VQA datasets (Liu et al., 2021b; Lau et al., 2018)
demonstrate the superior performance of MMCAP.
It surpasses advanced methods and achieve sig-
nificant improvements in addressing open-ended
questions. Further analysis demonstrates its high
efficiency in utilizing limited data resources and
effective knowledge-image alignment capability.

2 Related Work

2.1 Traditional Med-VQA Approaches

Initial research in Medical Visual Question An-
swering (Med-VQA) primarily focused on three
areas: enhancing the extraction of visual features
from medical images, facilitating effective cross-
modal interactions between textual questions and
visual data, and addressing the challenges arising
from limited data availability. For instance, the
MEVF framework (Nguyen et al., 2019) combines
unsupervised denoising autoencoders with meta-
learning strategies to significantly improve the
learning of visual features. BAN-CR (Zhan et al.,
2020) advances the field by incorporating bilinear
attention mechanisms (Kim et al., 2018), which
enable the model to differentiate and better address
the demands of closed-ended and open-ended ques-
tions, resulting in improved performance on open-
ended questions. Additionally, transformer-based
architectures (Liu et al., 2022b, 2023c) have be-
come increasingly popular for their ability to ele-
vate Med-VQA performance. To tackle the issue
of data scarcity, methods such as knowledge distil-
lation (Wang et al., 2022) and data augmentation
techniques (Gong et al., 2022; Li et al., 2023d)
have been developed, showing promise in enhanc-
ing model robustness and performance.

2.2 Pre-training for Med-VQA

With the rapid development of pre-trained mod-
els, the Med-VQA domain has witnessed advance-
ments through the adoption of visual-language
pre-training. Image-text contrastive learning tech-
niques (Eslami et al., 2023; Liu et al., 2021a,
2022a) have emerged as effective methods for im-
proving feature extraction capabilities, enabling
models to better understand the intricate relation-
ship between visual and textual data in medical
contexts. Furthermore, the introduction of diverse
pre-training objectives (Li et al., 2023b,c; Shu et al.,
2024; Chen et al., 2024) specifically designed for
medical scenarios has furthered enhancements in
cross-modal comprehension, thereby bolstering
performance in downstream VQA tasks. Recently,
with the emergence of large-scale language mod-
els (LLMs), there has been works (Zhang et al.,
2023; Van Sonsbeek et al., 2023; Li et al., 2024)
that utilize LLMs to improve generative question
answering and extends it to Med-VQA tasks. De-
spite these advancements, a notable limitation of
current methods is lack of emphasis on incorporat-
ing external medical knowledge. This limitation
often hinders the ability of models to accurately
address complex open-ended questions.

3 Method

Our methodology consists of two main phases:
pre-training and fine-tuning. Initially, we focus
on aligning images and external medical knowl-
edge with textual information through generative
pre-training. This phase enhances the model’s un-
derstanding of medical contexts. The fine-tuning
phase then adapts the pre-trained model to the Med-
VQA task, leveraging the learned capability to an-
swer medical questions accurately.

3.1 Problem Definition

Pre-training: In the pre-training phase (detailed
in Section 3.2), our goal is to align the model with
the rich context of medical imagery and textual
information. For an input image I and its asso-
ciated caption C = {c¢o,cy,...,c,} comprising
n tokens, alongside a pre-constructed knowledge
graph G (containing entities £ and relations R), the
model learns to predict the next token in the cap-
tion based on the image and preceding tokens. The
optimal model parameters §* are determined by
maximizing the probability of correctly predicting

5379



(a) Knowledge Encoder

Entity Recognition and Linking

Entities from input caption

Graph Attention Network

(c) Med-VQA Fine-tuning & 3 -
t 1

4
Generative Language Model (e.g., GPT-2)

ks T 11
Qo O - Oy¢— TCP 4— Question

Entity Information .. T Entity Information T Transe Vision Prefix
] .
Concept Unique Identifer (CUI): C0000726 ‘1 Entity Set (€) Knowledge Graph (G) Knowledge Adapter (Transformer Decoder)
Description: Abdominal structure \ €0000201 ® QT TK v
Semantic Type: Body Location or Region | .
e v & gggzs;gg @-.. Learnable Vision Tokens Vision Patch Features
...... == o
Concept Unique Identifer (CUI): C3163960 1829429 RO D IR
Description: Mass of abdominal cavity structure €4920117 O ) ) L G ¢ - C
Semantic Type: Finding g ...... (b) Multi-modal Alignment Pre-training + 1 Py
T ScispaCy g [—TYEntity Filtering Generative Language Model (e.g., GPT-2)
@ - 1
Caption & | Pre-training UMLS Knowledge Base Knowledge-Vision Prefix OR Vision Prefix

CT scan of the abdomen with contrast media
reveals a large-size intra-abdominal mass
displacing the adjacent structures. In the same |
scan a suspicious lesion is identified in the right 1
adrena drenal. In some rare cases ... v

Knowledge Adapter (Transformer Decoder)

af TK&V TQ

Knowledge Embeddings Learnable Vision Tokens

Vision Patch Features

A I

Figure 2: An overview of the proposed Multi-modal Concept Alignment Pre-training approach.

each token, as shown in Eq 1:

0" = arg maXZlngg(Ci ’ 877?'7]:7 Ci—l) (1)
o =

Fine-tuning: In the fine-tuning phase (detailed in
Section 3.3), the model applies its learned align-
ments to answer specific medical questions. Given
a medical image I, a question Q, and the correct
answer A = {ag, a1, ...,a,} with n tokens, the
model learns to predict each token of the answer
based on the image and the question. The fine-
tuning process optimizes the model parameters 6*
to maximize the likelihood of the model generating
the correct answer tokens, as shown in Eq 2:

n
0" = argénaleogpe(ai ILQ, A1) (2
=1

3.2 Multi-modal Concept Alignment
Pre-training

The Multi-modal Concept Alignment Pre-training
(MMCAP) approach integrates medical knowledge
to enhance the understanding of medical contexts.
As illustrated in Figure 2, MMCAP consists of
three main components: (a) Knowledge Encoder,
which employs a graph attention network to en-
code the UMLS knowledge graph, capturing exter-
nal medical knowledge. (b) Knowledge Adapter,
designed to transform vision features under the
guidance of encoded knowledge, utilizing a vision
encoder, learnable vision tokens, and a transformer
decoder. (c¢) Multi-modal Alignment Module,
leveraging a generative language model to align vi-
sion and knowledge features with texts, facilitating
a coherent understanding across modalities.

3.2.1 Knowledge Graph Construction

To model external medical knowledge for multi-
modal concept alignment, we construct a knowl-
edge graph G from large-scale medical image-
caption datasets (Pelka et al., 2018; Subramanian
et al., 2020) and the unified medical language sys-
tem (UMLS) (Bodenreider, 2004). As shown in
Figure 2 (a), a named entity recognition, and link-
ing tool ScispaCy! (Neumann et al., 2019) was ap-
plied to pre-process the captions in the pre-training
corpus to link entities in the captions to the con-
cepts (The Concept Unique Identifier, CUI) in
UMLS knowledge base for entity disambiguation.

We filtered the concepts that occurred more than
10 times in the pre-training corpus. Based on the
semantic types of the filtered concepts, we retained
20 semantic types most relevant to radiology, such
as “Disease or Syndrome”, “Body Location or Re-
gion”, etc. Finally, a total of 15,635 medical con-
cept entities are obtained. Based on these filtered
concepts, the inter-concept relations from UMLS
are introduced, such as “has finding site”, “has as-
sociated finding”, etc. These concepts and relations
constitute the entity set £ = {ej, ea,...,e,, } and
relation set R = {r1,72,...,7y, } in the knowl-
edge graph, where n. and n, are the numbers of
entities and relations. More details of the knowl-
edge graph are shown in Appendix A.

3.2.2 Knowledge Encoder

The Knowledge Encoder is designed to encode en-
tity information in the knowledge graph. Given the
entity set &, the relation set R, and the correspond-
ing descriptions and semantic types for each entity,
the knowledge encoding process is formulated into

The model of ScispaCy used in this study is scibert-base.
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four steps: (i) A knowledge embedding learning
algorithm (e.g., TransE (Bordes et al., 2013)) is
applied to £ and R to obtain the entity embed-
dings fENT ¢ R™e*d and relation embeddings
fREL ¢ Rnrxde wwhere dj, is the TransE embed-
ding size. (ii) A transformer-based text encoder
(e.g., BERT (Gu et al., 2021)) is applied to extract
the description embedding fPFS ¢ R™e*d and
semantic type embedding £57Y € R"*4 where
dy is the text embedding size. Entity descriptions
and semantic types are specialized interpretations
of medical concepts, and such information helps to
integrate medical knowledge. (iii) The nodes rep-
resentation fYOPF of the knowledge graph is ob-
tained via fusing the TransE embedding and the two
types of text embeddings, as illustrated in Eq. 3,

fNODE — NO’r’m([fENTH(fDES—l—fSTY)]) (3)

where Norm(-) and || represent the layer normal-
ization and concatenate operator. (iv) Finally, an
Edge-featured Graph Attention Network (Wang
etal., 2021) (EGAT) is applied to take into account
the whole structure of the graph by aggregating
local information for each node. EGAT incorpo-
rates edge features into node interaction, which
helps obtain fine-grained graph representation via
the multiple relations between nodes. The message
propagation of EGAT is illustrated in Eq. 4- 5,

W = 3w ORY @
JEN(1)

;. j = softmax; (LeakyReLU(A[h;||e;;||h;]))

(&)
where hl(l) and W () are the features of the i-th node
and the weight matrix at the [-th layer, e;; € f REL
and «;; are the edge features and attention weight
between the i-th and the j-th node, N (i) is the
neighbor node set of the ¢-th node. After the mes-
sage propagation of EGAT, the enriched knowledge
embeddings £ € R"*? are obtained and then
used as the input of the Knowledge Adapter.

3.2.3 Knowledge Adapter

The Knowledge Adapter serves two primary func-
tions: transforming vision features into the lan-
guage model’s embedding space and adapting these
features with knowledge embeddings to inject med-
ical knowledge. Following the approach of pre-
vious studies (Liu et al., 2023a; Li et al., 2023a),
we utilize a 12-layer transformer decoder as the
mechanism for adjusting vision features.

Initially, for each image-caption pair in the pre-
training datasets, a vision encoder like CLIP (Rad-
ford et al., 2021) extracts vision patch features
f! ¢ Rl=*4 from the image, where [, represents
the length of the vision features. Concurrently,
ScispaCy identifies entities within the caption, se-
lecting corresponding embeddings fsfgl ect € Rk xd
from the knowledge embeddings, with [; indicating
the number of entities identified.

As shown in Figure 2 (b), the Knowledge
Adapter incorporates two pathways to achieve its
goals. For the vision feature transformation, sev-
eral learnable tokens fV € R!»*< are set as the
query input to adjust vision features, where [, is
the length of learnable tokens. Through the ad-
justment of learnable tokens, vision features are
transformed into vision prefix ¥ € R»*4. For
the knowledge injection, the selected knowledge
embeddings fX,_ . are as the query input to adjust
vision features. In this way, vision features are ad-
justed into knowledge-vision prefix £ ¢ Rixxd
under the guidance of knowledge. Subsequently,
vision and knowledge-vision prefix can be used
as inputs of the language model, respectively, and
aligned with the corresponding text.

3.24

In order to align the images and knowledge with the
language model, the two output prefixes from the
Knowledge Adapter will be linearly transformed
as the inputs to the language model, which is
an auto-regressive generation model, in this case
GPT-2-PubMed (Radford et al., 2019). Specifi-
cally, fV and X are used as prefix inputs to in-
dependently generate corresponding caption C =
{co,c1,...,cn}. At each time step 7, the output
is the logits parametrizing categorical distribution
py(C) and pj(C) over the vocabulary tokens, as
illustrated in eq. 6- 7.

log py(C) = Zlogpz(cz‘ 1 £Y,Cic1) (6

Multi-modal Alignment

logpy(C) = logpj(ci | £5,Cica)  (7)

After pre-training, the language model possesses
the ability to generate corresponding text based
on images and knowledge and possesses a deep
comprehension of images and knowledge.

3.3 Fine-tuning on Med-VQA Datasets

Upon completion of the pre-training, we retain the
vision encoder for vision feature extraction, the

5381



knowledge adapter for vision feature transforma-
tion, and the language model for generative VQA.
These components, collectively developed during
pre-training are integrated into the subsequent fine-
tuning for the downstream Med-VQA task.

3.3.1 Type Conditional Prompt

In related work (Zhan et al., 2020; Liu et al., 2022a),
it has been demonstrated that incorporating reason-
ing conditioned on the question type can enhance
Med-VQA. In this paper, we introduce a novel ap-
proach known as Type Conditional Prompt (TCP),
designed to emphasize the question type through a
specific prompt. Specifically, when presented with
an input question Q, a classifier is employed to
discern the answer type (Closed-ended or Open-
ended) and content type (Organ, Modality, Abnor-
mality, etc.) associated with Q. Subsequently, the
identified type information is integrated into a pre-
defined template, as exemplified by: “Open-ended
question about Organ: What is the function of
the organ on the top of this image? The answer
is:”. The resulting filled prompts are denoted as
Q = {qg), q’l, e q;n} and are utilized as the in-
put of the language model. More details of type
conditional prompt are available in Appendix B.

3.3.2 Generative Med-VQA

For the generative Med-VQA, as illustrated in Fig-
ure 2 (c), given an input image I and a question Q,
the visual encoder and knowledge adapter are em-
ployed to obtain the vision prefix £V, and the ques-
tion classifier is used to build the prompt Q'. Subse-
quently, the vision prefix and the embedded prompt
are concatenated as the input of the language model
to generate the answer A = {ag,ay,...,a,} to-
ken by token. This process is expressed in Eq. 8.

logpg(A) = logpj(ai | £, Q, Aiq) (®)

4 Experiment

4.1 Datasets and Metrics

We perform the Multi-modal Concept Alignment
Pre-training across the following two datasets.

* ROCO (Pelka et al., 2018) contains over
81,000 radiology images with multiple medi-
cal imaging modalities. All images in ROCO
have corresponding captions.

¢ MedICaT (Subramanian et al., 2020) is a
medical image dataset in context, which con-
sists of 217,000 images with captions from
131,000 open-access biomedical papers.

For fine-tuning and evaluation, we utilize:

* VQA-RAD (Lau et al., 2018) contains 315
radiology images and 3,515 question-answer
pairs, with 3,064 pairs for training and 451
pairs for testing. There may be multiple ques-
tion types of questions regarding a radiology
image such as “modality”, “abnormality”, etc.

* SLAKE (Liu et al., 2021b) is a bi-lingual
Med-VQA dataset. In this paper, we use the
English version of SLAKE, which contains
642 radiology images, 7,033 question-answer
pairs. Following the original splitting, where
4,919 pairs are used for training, 1,053 pairs
for validation, and 1,061 pairs for testing.

Evaluation metrics align with previous work,

which reflect the model’s ability to handle both
the breadth of medical knowledge (open-ended ac-
curacy) and specificity (closed-ended accuracy),
along with an overall Q&A accuracy metric that
provides a holistic view of performance.

4.2 Implementation Details

The architecture of our Multi-modal Concept Align-
ment Pre-training (MMCAP) model integrates a
ResNet-based CLIP encoder (Radford et al., 2021)
for visual encoding and BioMedBERT (Gu et al.,
2021) for textual encoding. The incorporation of
GPT-2-PubMed as the language model (Papaniko-
laou and Pierleoni, 2020), pre-trained on extensive
medical literature corpus, is intended to augment
the model’s comprehension of medical context.
For the Knowledge Encoder, we employ TransE
embeddings of size 256, coupled with a dual-layer
EGAT to enhance the relational knowledge integra-
tion. The Knowledge Adapter is designed with 16
vision tokens and a stacked transformer decoder
with 1,024 feature size dimensions and 12 layers.
During pre-training, we filter non-radiology sam-
ples in the ROCO and MedICaT datasets, retaining
about 200,000 image-caption pairs. The whole
model is optimized using a batch size of 8, which
is accumulated over two batches for efficiency, and
employ an initial learning rate of 1e-4, which under-
goes a cosine decay after 5,000 batches warm-up,
spanning across 125,000 optimization steps.
During fine-tuning, we freeze the parameters of
visual feature extractor to retain the image under-
standing capabilities acquired during pre-training.
The batch size is adjusted to 16. The learning rate
maintains the value of 1e-4, decaying according to
a cosine curve over 30,000 steps for the SLAKE
dataset and 18,000 steps for the VQA-RAD dataset.
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Table 1: Comparison of the proposed MMCAP with state-of-the-art methods. The Q&A accuracy of closed-ended
questions, open-ended questions, and all questions are reported respectively.

SLAKE VQA-RAD
Method Open Closed Overall Open Closed Overall
MEVF+BAN+CR (Zhan et al., 2020) - - - 60.0 793 71.6
CPRD+BAN (Liu et al., 2021a) 81.2 83.4 82.1 61.1 80.4 72.7
CP+BAN+CR (Liu et al., 2022a) 80.5 84.1 81.9 60.5 80.4 72.5
MQAT (Liu et al., 2022b) 79.7 87.7 82.8 49.8 76.3 65.7
VQAMix (Gong et al., 2022) - - - 56.6  79.6 70.4
MHKD-MVQA (Wang et al., 2022) - - - 63.1 80.5 73.6
MPR (Ossowski and Hu, 2023) 78.3 84.9 80.9 60.5 81.6 73.2
PubMedCLIP (Eslami et al., 2023) 78.4 82.5 80.1 60.1 80.0 72.1
ACMA-MAM (Li et al., 2023d) 80.8 86.7 83.1 63.6 84.4 76.1
VQA-Adapter (Liu et al., 2023b) 79.2 83.7 81.0 66.1 82.3 75.8
MITER (Shu et al., 2024) 79.2 84.4 81.2 59.4 80.5 72.1
M3AE (Chen et al., 2024) 80.3 87.8 83.2 67.2 83.5 77.0
MMCAP (Ours) 82.8 88.0 84.8 70.0 83.1 77.8

This approach is meticulously designed to tailor
the pre-trained model to the Med-VQA tasks.

The complete two-stage experiment costs about
36 hours on an NVIDIA GeForce RTX3090 GPU.

4.3 Comparison with Advanced Methods

Before comparing MMCAP with the most ad-
vanced methods, we will succinctly introduce these
methods for comparison:

Methods without pre-training:

* MEVF+BAN+CR (Zhan et al., 2020) is a
framework containing a question-conditioned
and a type-conditioned reasoning module.

¢ CPRD+BAN (Liu et al., 2021a) is a frame-
work by transfer learning and distilling a
lightweight visual feature extractor.

* CP+BAN+CR (Liu et al., 2022a) applies a vi-
sual feature extractor via contrastive learning
and a conditional reasoning framework.

* MQAT (Liu et al., 2022b) is an improved
transformer-based model for Med-VQA.

* VQAMix (Gong et al., 2022) is a data aug-
mentation method, which generates training
samples by linearly combining VQA samples.

* MHKD-MVQA (Wang et al., 2022) applies
multi-modal hierarchical knowledge distilla-
tion for Med-VQA.

* MPR (Ossowski and Hu, 2023) is a generative
model that integrates retrieved prompts and
multi-modal features to generate answers.

Methods with visual-language pre-training:

¢ PubMedCLIP (Eslami et al., 2023) is a fine-
tuned version of CLIP for the medical domain
based on PubMed articles.

e ACMA-MAM (Li et al., 2023d) constructs an
image-guided attention and a question-guided
attention to improve multi-modal interactions.

* VQA-Adapter (Liu et al., 2023b) is a parame-
ter efficient adapter component, in which only
the light-weight adapter needs to be tuned.

* MITER (Shu et al., 2024) is a joint adap-
tive pre-training framework for Med-VQA via
multi-level contrastive learning.

o MPAE (Chen et al., 2024) is a self-supervised
learning paradigm, which learns to map medi-
cal images and texts to a joint space by recon-
structing pixels and tokens.

The experimental results of the proposed MM-
CAP on SLAKE and VQA-RAD datasets are pre-
sented in Table 1. Compared with strong com-
petitors, MMCAP achieves better performance on
both datasets. Notably, MMCAP exhibits sub-
stantial improvements in the accuracy of open-
ended questions, outperforming the best competi-
tor M3AE (Chen et al., 2024) by 3.1% and 4.2%,
respectively. These results serve as compelling
evidence for the efficacy of the introduced method.

4.4 Further Analysis

4.4.1 Performance with Limited Data

This experiment aims to evaluate MMCAP’s adapt-
ability in scenarios with varying amounts of do-
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Table 2: Ablation experimental results for each proposed module. The BLEU-1 metric measuring the similarity of
generated and reference answers is additionally reported.

D Setting SLAKE VQA-RAD

Img-Cap K-Adp EGAT TCP|BLEU-1 Open Closed Overall| BLEU-1 Open Closed Overall
1 b 4 X b 4 X 774 77.8 83.1 799 504 497 750 65.0
2 b 4 b 4 b 4 4 79.2 802 829 812 549 559 757 679
3 4 X X 4 79.1 797 873 827 709 676 772 734
4 4 4 X 4 80.1 80.8 87.7 835 73.6 665 820 758
5 4 4 v 4 81.7 828 88.0 848 75.6 700 831 77.8

main data. By systematically reducing the data
volume and observing the impact on model perfor-
mance, we can assess the robustness of MMCAP.
The settings include: without pre-training, without
knowledge, and MMCAP. Figure 3 presents the
experimental results on the SLAKE dataset.

w/0 Pre-training w/o Knowledge MMCAP
85.0
80.0
>
g 75.0
g
70.0
2
65.0

60.0
10% 30% 50% 100%

Data Volumn

Figure 3: Results of fine-tuning experiments on the
SLAKE dataset with limited data. Overall accuracy is
reported and the horizontal coordinates represent the
percentage of data volume used.

Without pre-training, the model exhibits a no-
ticeable decrease in performance with the reduced
data volume. However, following image-text gener-
ation pre-training (without knowledge), the model
demonstrates improved learning capabilities for
limited data, owing to enhanced image compre-
hension. Introducing the proposed Knowledge En-
coder and Adapter further enhances the model’s
performance with limited data. Notably, the accu-
racy achieved is comparable to the best competitor
M3AE (Chen et al., 2024) when utilizing only 50%
of the training data (83.0 vs. 83.2).

These results validate the model’s capability to
leverage limited training data, showcasing its po-
tential in scenarios with reduced data availability.

4.4.2 Performance with Different LMs

Exploring different language models allows us to
pinpoint the importance of domain-specific pre-
training. In this section, we evaluate the perfor-

mance of various fine-tuned language models on
the Med-VQA task, including four language mod-
els: BioGPT (Luo et al., 2022), GPT-2 (Radford
et al., 2019), GPT-2-Medium, and GPT-2-PubMed-
Medium (Gu et al., 2021). As shown in Figure 4,
the results reveal that GPT-2 outperforms BioGPT
on the Med-VQA task. Notably, GPT-2-PubMed,
pre-trained on medical corpus, exhibits the high-
est performance. This observation suggests that
MMCAP’s ability to enhance the Med-VQA task
is particularly pronounced when the underlying
language model possesses richer medical domain
knowledge. The incorporation of medical domain-
specific pre-training, as demonstrated by GPT-2-
PubMed, contributes significantly to the overall
improvement in Med-VQA performance.

BioGPT ~ GPT-2 = GPT-2-Medium = GPT-2-PubMed-Medium
84.8
158 818 823
700 721 754 778
>
Q
<
$—
=]
Q
Q
<
SLAKE VQA-RAD

Figure 4: Results of the experiments on different lan-
guage models, with overall accuracy reported.

4.4.3 Ablation Study

To assess the individual contributions of the mod-
ules proposed in this study, we conducted ablation
studies on four key components: image-caption
generation (Img-Cap), knowledge adapter (K-Adp),
graph attention network (EGAT), and type condi-
tional prompt (TCP). The results of the ablation
experiments are presented in Table 2.

The comparison between the first and second
rows demonstrates the effectiveness of the pro-
posed TCP, showcasing its ability to enhance Q&A
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Question

What abnormality is present?

g Answer Bleeding in right posteroinferior cerebellum
n
1} w/o Knowledge Right posteroinferior cerebellum
@)
S MMCAP Bleeding in right posteroinferior cerebellum
(5]
8 Question What is the effect of the organ on the upper left of this image?
-
o Answer Biotransformation detoxification
§ w/o Knowledge Improve body's immunity
MMCAP Biotransformation detoxification
Question What diseases are included in the picture?
D
72} Answer Brain edema brain non enhancing tumor
343
Lu)) MMCAP Brain edema brain enhancing tumor brain non enhancing tumor
S
O . e . _ _
8 3 \ Question Where is/are the abnormality located?
o =
t - s ‘ Answer Right lung left
Ll %
MMCAP Right lung upper left

Figure 5: Two case studies of medical visual question answering, demonstrate the improvements and limitations of

MMCAP on open-ended questions, respectively.

accuracy by emphasizing question types.

Subsequently, comparing the second and third
rows reveals that the pre-training of image-caption
generation positively impacts model performance.
This objective aligns the images with the corre-
sponding captions, enhancing the model’s image
comprehension. However, without the injection of
knowledge, the accuracy remains suboptimal.

In the experimental settings of the third, fourth,
and fifth rows, we incrementally introduced the
knowledge adapter and the graph attention network.
Notably, in the absence of EGAT, the improve-
ment of the model on open-ended questions is still
limited, resulting in unsatisfactory overall accu-
racy. However, the addition of EGAT integrates the
information of relevant medical concepts beyond
captions through graph aggregation. In this way,
the knowledge adapter can receive richer medical
knowledge and brings more significant improve-
ments on open-ended questions.

4.44 Case Study

To comprehensively assess the strengths and limita-
tions of MMCAP in the domain of medical visual
question answering, we present two sets of test
cases illustrated in Figure 5.

In the improved cases, the first case involves
a typical open-ended question concerning abnor-

malities. Without medical knowledge injection,
the model struggles to recognize the most critical
symptoms of bleeding. The second case involves
an open-ended question requiring medical knowl-
edge, pertaining to the effects of specific organs,
demanding intricate reasoning capabilities, pose a
challenge without knowledge intervention. How-
ever, when MMCAP is augmented with external
medical knowledge, it adeptly answers these ques-
tions correctly.

In the erroneous cases, which focus on disease
presence and location, the first case reveals that
while MMCAP identified the diseases mentioned
in the reference answer, it additionally generated
an non-existent disease “brain enhancing tumor”.
In the second case, MMCAP failed to provide the
most accurate location, stating “right lung left”.

The above cases prove that the proposed method
helps to address open questions that require med-
ical knowledge, but still has limitations in multi-
disease detection and disease location recognition.

4.4.5 Visualization

To validate the effectiveness of the proposed
Knowledge Adapter, i.e., its ability to align images
with knowledge, we presents a set of visualization
results related to the pre-training process. The at-
tention heatmap between knowledge embeddings
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Caption
Angiography of the internal carotid artery,
late arterial phase.

A. venous drainage of the AVM,
B. main arierial supplying vessel.

e 1 4

Image Arterial
(C0221464)

Venous drainage Image
(C5703496)

Caption
Axial T2 gradient echo sequence shows no
signal abnormality within right striatum but
some scattered blooming artifaas within left
thalami consis{eﬂt\with petechial hemorrhages.

Right striatum
(C2326039)

Caption

Computed tomography showed a 5.6 x4.7 cm
mass in the left pelvis along the posterior dome
of the bladder, which was consistent with a

Bladder
(C0005682)

Pheochromocytoma
(C0031511)

Scattered Image
(C0439742)

Figure 6: Visualization of attention heatmap between knowledge embeddings and image features.

and visual features is visualized to verify whether
the knowledge embeddings focus on the image re-
gions relevant to medical entities when adjusting vi-
sual features. As shown in Figure 6, the upper side
displays caption corresponding to the image, where
the parts marked in red represent medical concepts,
corresponding to the attention heatmap visualiza-
tion below. For instance, in Case 1, the embeddings
of “venous drainage” and “artery” can focus on
the respective vessel positions marked in the image;
in Case 2, the embedding of “scattered” can focus
on the location of the bleeding point on the right
side of the image; and in Case 3, the embeddings
of “bladder” and “pheochromocytoma’ can also
focus on the corresponding positions in the image.
Such visualization analysis vividly demonstrates
the effectiveness of the knowledge adapter in pro-
moting the correspondence between entities in the
knowledge graph and images, thereby achieving
more precise concept alignment.

5 Conclusion

In this work, we redefined Med-VQA as a gen-
erative task and design a Multi-modal Concept
Alignment Pre-training (MMCAP) method based
on the specifics and shortcomings of current meth-
ods. With a constructed medical knowledge graph
and a knowledge alignment pre-training method,
MMCAP surpasses existing methods and achieves
significant improvements on open-ended questions.
Further analysis demonstrates its high efficiency
in utilizing limited data resources and effective
knowledge-image alignment capability.

Limitations

The proposed approach has several limitations: (i)
MMCAP is based on knowledge-enhanced genera-
tive vision-language pre-training, and although it
achieves significant improvements in medical vi-

sual question answering, however, its potential for
other cross-modal tasks in medicine, such as radiol-
ogy report generation, image-text retrieval, etc., has
yet to be explored. (ii) Despite the improvements
achieved in addressing open-ended questions that
require medical knowledge, the sensitivity of the
current approach to the local position of medical
images is still limited, leading to subtle biases in
individual questions about position.
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A Details of Knowledge Graph

To ensure the reproducibility of MMCAP, we pro-
vide the compositional structure of the knowledge
graph constructed in this section. Our knowledge
graph constructed includes 15,635 medical entity
nodes covering 20 semantic types, where there are
130,196 edges between entities covering a total of
50 relation types from UMLS. Table 3 shows the
details of the semantic types and relation types.

B Details of Type Conditional Prompt

This section supplements the details of the pro-
posed type conditional prompt. Figure 7 illus-
trates the distribution of question content types in
SLAKE and VQA-RAD datasets, where the ques-
tion classifiers are pre-trained based on dataset-
specific content types. Table 4 demonstrates an
example of prompt construction. In this case, the
question classifier will recognize the answer type
“Open-ended” and the content type “Position” of
the input question Q, and fills in the template T to
obtain the type-conditional prompt Q.
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Table 3: The compositional structure of the constructed knowledge graph, covering 20 semantic types of entities,
and 50 relations.

1.Body Part, Organ, or Organ Component, 2.Disease or Syndrome, 3.Finding,
4.Gene or Genome, 5.Therapeutic or Preventive Procedure, 6.Neoplastic Process,
7.Pharmacologic Substance, 8.Diagnostic Procedure, 9.Body Location or Region,

Semantic Types 10.Spatial Concept, 11.Pathologic Function, 12.Medical Device, 13.Qualitative
Concept, 14.Body Space or Junction, 15.Congenital Abnormality, 16.Quantitative
Concept, 17.Cell Component, 18.Injury or Poisoning, 19.Functional Concept,
20.Sign or Symptom.

l.inverse isa, 2.isa, 3.has finding site, 4.finding site of, 5.associated morphology
of, 6.has associated morphology, 7.same as, 8.possibly equivalent to, 9.method
of, 10.has method, 11.has manifestation, 12.manifestation of, 13.part of, 14.has
part, 15.disease has associated anatomic site, 16.is associated anatomic site of,
17 laterality of, 18.has laterality, 19.has direct procedure site, 20.direct procedure
site of, 21.pathological process of, 22.has pathological process, 23.use, 24.used
for, 25.anatomic structure is physical part of, 26.has physical part of anatomic
structure, 27.prev symbol of, 28.has prev symbol, 29.related to, 30.clinically
similar, 31.regional part of, 32.has regional part, 33.is primary anatomic site of
disease, 34.disease has primary anatomic site, 35.disease may have finding, 36.may
be finding of disease, 37.is finding of disease, 38.disease has finding, 39.is not
primary anatomic site of disease, 40.disease excludes primary anatomic site, 41.has
location, 42.location of, 43.associated finding of, 44.has associated finding, 45.is
location of anatomic structure, 46.anatomic structure has location, 47.disease may
have associated disease, 48.disease excludes finding, 49.may be associated disease
of disease, 50.is not finding of disease.

Relations

SLAKE VQA-RAD
Attribute Other,
Modality, 752 199 Color, 94
Other, 223
Count, 51
Plane, 146

Knowledge, 88!

Color, 202
Shape, 60

Plane, 369 Position, 1216 Object/Condition

Size, 362 Presence, 1592
Quantity, 328 3

Abnormality,
998

Positional
Reasoning, 638

Organ, 1776

Size, 447 Organ system, 69

Abnormality, 434
Modality, 220 v

Figure 7: Distribution of question content types in SLAKE and VQA-RAD datasets.

Table 4: Example of type conditional prompt construction.

Input Question Q Where is the abnormality in this image?
Answer Type Open-ended
Content Type Position
Template T {Answer Type} qlfestlon about {antent Type}:
{Question}, the answer is:
Prompt Q Open-ended question about Position:

Where is the abnormality in this image? The answer is:
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