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Abstract

Recent developments in natural language pro-
cessing were enabled by deep neural networks,
which excel in various tasks through strong
data fitting and latent feature modeling abilities.
However, certain challenges linked to deep nets
and supervised deep learning deserve consid-
erations, e.g., extensive computing resources,
knowledge forgetting, etc. Previous research
attempted to tackle these challenges individ-
ually through irrelative techniques. However,
they do not instigate fundamental shifts in the
learning paradigm. In this work, we propose
a novel neurosymbolic method for sentiment
analysis to tackle these issues. We also pro-
pose a novel sentiment-pragmatic knowledge
base that places emphasis on human subjec-
tivity within varying domain annotations. We
conducted extensive experiments to show that
our neurosymbolic framework for sentiment
analysis stands out for its lightweight nature,
robustness across domains and languages, effi-
cient few-shot training, and rapid convergence.

1 Introduction

Deep neural networks have demonstrated remark-
able capabilities in the natural language processing
(NLP) domain because of their strong capacity to
capture latent features and fit data. Currently, the
advancement of large language models (LLMs)
shows that when the neural networks become very
large and deep, sufficient pre-training grants them
impressive capability, making them a staple as foun-
dation models for a variety of tasks (Bommasani
et al., 2021). Despite the fascination the academic
community holds for LLMs (Mao et al., 2024a), a
pressing question remains: is the relentless pursuit
of model enlargement truly the paramount focus for
NLP? As models become larger and deeper, many
machine learning problems arise. For instance,
larger models normally require more computing
resources to train, resulting in more carbon emis-
sion (Patterson et al., 2021).

Traditional supervised learning, one of the most
significant deep learning paradigms, suffers from is-
sues including knowledge forgetting (Kemker et al.,
2018), extensive data annotation efforts (Aggarwal
et al., 2018), weak cross-domain (Singhal et al.,
2023) and cross-lingual (Wang et al., 2021a) adap-
tion, and data-centric learning pipelines (Singh,
2023). For NLP, the need for deep neural networks
is usually due to the complexity of modeling lan-
guage, i.e., syntax (Zhang et al., 2023a) and seman-
tics (Mao et al., 2023a) exhibiting different patterns
in different contexts.

As such, the learning of complex word sequence
patterns is achieved by making the model deeper
and adding different learning mechanisms (Hochre-
iter and Schmidhuber, 1997; Vaswani et al., 2017).
Furthermore, models trained with standard anno-
tation sets where labels were aggregated based on
the majority opinion of annotators could potentially
disregard nuanced individual variations (Zhu et al.,
2024). In subjective tasks such as affective comput-
ing, a uniform decision-making mechanism may
struggle to adequately cater to individual subjec-
tive experiences. The judgment of sentiment and
emotional states from different people can vary in
different contexts or domains, necessitating human-
centric systems.

In this research, we investigate whether the
coupling of syntactic and pragmatic features
can alleviate the need for semantic features,
thereby significantly reducing the number of
model parameters needed to retain semantic
knowledge (Yeo et al., 2024). Hence, such
an approach potentially tackles the challenges
prevalent in deep neural networks, including heavy
reliance on extensive downstream training data
and computing resources (Anas et al., 2024), slow
training rates, limited adaptability across domains
and languages, knowledge forgetting, and the
ignorance of humans’ subjectivity.
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Previous sentiment analysis works target to ad-
dress one of these issues with different techniques,
e.g., few-shot learning for eliminating the hungry
of label data (He et al., 2022b); pruning neural
networks or using lightweight encoders to reduce
the number of learning parameters and computing
resources (Ni et al., 2023); using pre-training (De-
vlin et al., 2019; Mao et al., 2024b) to improve
the generalization of a model in different domains
and languages; leveraging continues learning tech-
niques to mitigate the knowledge forgetting (He
et al., 2022a). However, these approaches do not
instigate fundamental shifts in the deep learning
paradigm, nor do they comprehensively resolve all
the previously mentioned issues.

To alleviate the reliance on large neural net-
works and downstream training data while im-
proving model performance in cross-domain and
cross-language tasks, we propose a neurosymbolic
method and a knowledge base for sentiment analy-
sis1. Our hypothesis is that in affective computing,
models can reduce the need for semantic learn-
ing by learning pragmatic knowledge and syntactic
patterns, thereby reducing the number of learning
parameters. and mitigating issues associated with
deep neural networks.

The advantage is threefold: a) The exclusion of
semantic learning substantially reduces the param-
eters of neural networks as it obviates the necessity
for the model to grasp the meaning of an extensive
vocabulary across diverse contexts. b) Incorpo-
rating multi-dimensional symbolic representations
(sentiment-pragmatic knowledge) from our knowl-
edge base enables the construction of a human-
centric system that circumvents the knowledge-
forgetting issue, where different dimensions signify
subjective judgments from different contributors,
offering the flexibility to augment the symbolic rep-
resentations with new dimensions acquired from
new data without changing the existing elements.
c) By leveraging the combination of syntactic and
pragmatic features as input, it is possible to allevi-
ate issues related to learning and inference across
diverse domains and languages, primarily stem-
ming from semantic variations in different linguis-
tic environments. This aligns with our plans to en-
hance current sub-symbolic AI approaches through
task decomposition, panalogy, symbol grounding,
and more (Cambria et al., 2023).

1
https://github.com/senticnet/senticvec

Our neurosymbolic framework for sentiment
analysis consists of two components, a knowledge
base and a neurosymbolic model. The former,
termed SenticVec, consists of sentiment-pragmatic
representations for 388,158 lexical units, i.e., to-
kens. Each representation is in vector form, where
each element is a sentiment score ranging from -1
(negative) to 1 (positive), pre-trained from a public
sentiment dataset. The sentiment score is automat-
ically generated via an explainable encoder (Han
et al., 2022) that signifies the contribution of each
lexical unit to the sentiment prediction.

Lexical units that contribute more will receive
more extreme scores. The sentiment vector of a
lexical unit consists of multiple sentiment scores,
learned and computed using multiple labeled sen-
timent datasets. The intuition is that different
annotators, annotation task instructions, and text
domains can yield different annotation outcomes.
For a human-centric system with cross-domain ro-
bustness, it is essential to acknowledge these sen-
timental variations; therefore, we opt for multi-
dimensional representations, integrating subjectiv-
ity instead of relying on conventional unified senti-
ment scores to depict sentiment-pragmatic features.

Our neurosymbolic model consists of a 3-layer
multi-layer perceptron (MLP) to learn the prag-
matic representations and PoS patterns. We use
an existing PoS tagger to generate PoS tag se-
quences from the inputs. The motivation is that
1) the size of PoS tags is smaller than the vocabu-
lary size of words; 2) different languages can share
the same PoS tag set; 3) SenticVec provides use-
ful sentiment-pragmatic representations and can
be easily mapped to other languages using bilin-
gual dictionaries. Thus, we can use a shallow
neural network by leveraging symbolic represen-
tations (e.g., PoS tags and SenticVec) to process
multilingual sentiment analysis tasks. This is en-
tirely different from previous learning paradigms
that were proposed for addressing the aforemen-
tioned deep learning issues. We performed thor-
ough experiments to demonstrate the superiority of
our approach in conventional supervised learning,
cross-domain inference, and multilingual learning
and inference for sentiment analysis. Our method
achieves comparable performance to RoBERTa-
base (Liu et al., 2019) while requiring 1/7723 of its
training parameters, and enables faster training in
the conventional supervised learning evaluation.
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In cross-domain inference evaluation, the Sen-
ticVec neurosymbolic model demonstrates overall
better performance than RoBERTa. In the few-
shot multilingual learning evaluation, SenticVec
surpasses multilingual Pre-trained Language Mod-
els (PLMs) on three languages. In cross-lingual
inference evaluation, SenticVec obtains compara-
ble performance to PLMs. Furthermore, incorpo-
rating SenticVec knowledge into multilingual PLM
consistently brings accuracy gains in all settings.

The contributions of this work include: (1) We
develop a novel knowledge base, incorporating
sentiment-pragmatic representations that prioritize
human subjectivity in annotating diverse corpora
from varying domains while ensuring retention of
original knowledge with the influx of new labeled
data. (2) Our novel neurosymbolic framework for
sentiment analysis stands out for its lightweight
nature, robustness across domains and languages,
efficient few-shot training, and rapid convergence.

2 Related Work

Deep-learning systems have almost become the
fixture of NLP tasks. Although they achieved im-
pressive accuracy in a variety of applications, they
are not without their vices. Randomly-initialized
neural networks suffer from knowledge forget-
ting (Kemker et al., 2018; Ramasesh et al., 2021).
To resolve this, pre-training is employed to help
with their ability for generalizing and transferring
knowledge. However, prominent PLMs such as
RoBERTa and GPT (Radford et al., 2019; Brown
et al., 2020) consist of a large number of parame-
ters trained with enormous data, which consumes
substantial computational resources (Bender et al.,
2021), and leads to concerns about carbon emis-
sions and environmental impact (Patterson et al.,
2021; Bannour et al., 2021). On the other hand,
lightweight zero-shot and few-shot learning mod-
els still face limitations in cross-domain and cross-
lingual processing, e.g., negative migration, overfit-
ting, and underfitting (Yang, 2021; Nozza, 2021).
Neurosymbolic systems for sentiment analy-
sis leverage both subsymbolic and symbolic ap-
proaches, e.g., coupling neural networks and
knowledge graphs (Cambria et al., 2024; Kocoń
et al., 2022; Zhang et al., 2023b). However, ex-
isting sentiment knowledge bases (Wiebe et al.,
2005; Strapparava and Valitutti, 2004; Baccianella
et al., 2010; Cambria et al., 2024) assign a singular
score to a lexical unit, disregarding the inherently

differing perceptions people have to subjective con-
tents (Pavlick and Kwiatkowski, 2019; Beck et al.,
2020; Troiano et al., 2021), hence failing to capture
the human uncertainty and subjectivity. Addition-
ally, these knowledge bases are not domain-specific
and mostly monolingual, hence less adaptable in
cross-domain and multilingual settings (Hung and
Chen, 2016). Furthermore, existing neurosym-
bolic systems mostly take a knowledge-based ap-
proach (Du et al., 2023), thus still dependent
on heavy neural networks. The PLMs are the
backbone, while the symbolic representations pro-
vide complementary knowledge, e.g., sense polar-
ity (Baccianella et al., 2010), facts (Wang et al.,
2021b), and commonsense (Cambria et al., 2024)
that are not directly learnable from datasets by neu-
ral networks. As a result, these neurosymbolic
methods did not fundamentally address some of
the issues that deep-learning-based methods com-
monly encounter.

3 Methodology

3.1 SenticVec Knowledge Base Development

In this section, we will describe how SenticVec is
constructed. First, we construct a sentiment classi-
fier with explainable attention for determining the
importance of each token to the model’s sentiment
prediction. The intuition is that, the more influence
a token has on the sentiment inference of the input,
the stronger its sentiment intensity is. As a result,
the sentiment score of a token is determined by
the ground truth sentiment of the input sentences
it appears in, and its attention weights in these sen-
tences. Such sentiment scores can be categorized
as pragmatic knowledge, because they embody the
likelihood of a lexical unit influencing the overall
sentiment of a sentence.

Unlike syntactic and semantic knowledge, which
pertain to structural characteristics and meanings
of words respectively, this pragmatic aspect of sen-
timent scores demonstrates their relevance in under-
standing how specific words contribute to the over-
all sentiment conveyed in a given context. Second,
we train the classifier on 19 corpora from different
domains separately to acquire 19 sentiment scores
for each token to form both general and PoS-tagged
vector representations. We apply an averaging tech-
nique to fill in sentiment scores when a token is
not present in one of the corpora. Additionally, we
translate the English SenticVec lexicon into other
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languages using off-the-shelf machine translation
systems to expand SenticVec for multilingual pro-
cessing. The resulting SenticVec knowledge base
contains entries for 388,158 lexical units.

3.1.1 Sentiment Score Computation
To obtain the sentiment score of a word from a
given corpus, we need to measure how salient it is
in terms of sentiment for the sentences it appears
in. Hence, we design a simple attention-based sen-
timent classifier consisting of an embedding layer,
an explainable attention module, and two Feed For-
ward Network (FFN) layers for output. The model
is trained with a given corpus so that the attention
module learns to assign each token with a weight
that reflects its salience to sentence sentiment.

To align with our objective of constructing a
lexicon, we adopt GloVe embeddings (Penning-
ton et al., 2014) for word representations. This is
motivated by the fact that in a static embedding
method, the representation of a word is the same
for all of its occurrences in a corpus. We denote
the GloVe embedding matrix of a given lemma-
tized input sequence w = (w1, w2, . . . , wL) as
G = (g1, g2, . . . , gL).

To acquire attention weights that effectively in-
dicate word salience (Serrano and Smith, 2019),
we employ an explainable attention module called
Hierarchical Attention Network (HAN, Han et al.,
2022), which encodes hidden states with multiple
non-linear projections and ranks the most influen-
tial tokens based on attention weights. The atten-
tion module consists of I HAN layers:

qi, ai = HANi(G), (1)

where vector qi and ai are the yielded hidden state
and attention weights at the i-th HAN layer.

The query qI produced by the last layer HANI

is then fed into two consecutive FFN layers to pro-
duce the sentiment prediction ŷ:

h = ReLU(FFN c
1(qI)), (2)

ŷ = Softmax(FFN c
2(h)). (3)

The model parameters are optimized via cross-
entropy loss

L = CrossEntropy(ŷ, ỹ). (4)

After sufficient training, the sentiment score sl of
a token wl in the context of the input sentence w is
computed as the product of its min-max normalized

attention weight produced by the last attention layer
HANI of the trained classifier, and the ground-
truth sentiment label ỹ of w:

sl =
aI,l −min(aI)

max(aI)−min(aI)
ỹ, (5)

so that the score sl falls within the range of [−1, 1].

3.1.2 Sentiment Vector Construction
To construct vector representations that reflect the
varying sentiment intensities of words in differ-
ent domains from different annotators, we train
the classifier in the previous section on N ∈
{1, 2, . . . , n, . . . , 19} corpora, separately. Our se-
lection of corpora covers different domains includ-
ing Twitter, product reviews, movie reviews, fi-
nance, news, etc., with several corpora for each
domain to accommodate human’s innate disagree-
ment and uncertainty in sentiment annotation. The
full list of the corpora used can be found in Table 7
in Appendix C. On each corpus, the classifier is
trained on the training set until the accuracy of the
validation set no longer improves. To avoid the
influence of negation on the connection between
sentiment and word salience, we prune out all sam-
ples that contain not and never.

Given a token appears in the training set of the
n-th corpus for T times, its general sentiment score
sgn without PoS distinction is computed as

sgn =
sn,1 + sn,2 + · · ·+ sn,T

T
, (6)

where the sentiment score sn,t in the t-th sentence
is computed via Equation 5. As a result, the general
sentiment vector representation sg of the word can
be assembled as

sg = (sg1, s
g
2, . . . , s

g
N ). (7)

We manually set the representations of the above-
mentioned negation words to vectors consisting of
-1s. Alternatively, if the token is not present in the
n-th corpus, we assign a placeholder value N.A. to
sgn. If the token appears M times in the training set
of the n-th corpus with the PoS tag p, its sentiment
score spn under the PoS p is calculated similarly to
Equation 6 by averaging its sentiment scores in all
M instances. Its PoS-p-annotated sentiment score
sp is constructed using the same method as Equa-
tion 7. A sample of SenticVec entries associated
with a token is illustrated in Figure 1.
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Figure 1: A sample SenticVec entries of the word love.
We truncate the float numbers for demonstration.

After constructing vectors for all tokens in the
lexicon, we fill in the N.A. values using an av-
eraging technique. For entries without PoS tags,
assume sc is the SenticVec vector of the token c,
and scn = N.A.. We find an anchor token b in
the lexicon that satisfies three conditions: a) the
cosine similarity of their GloVec embeddings is
the largest, b) the n-th value of the anchor token’s
vector sbn is not N.A., and c) in at least one dimen-
sion, the elements in both sc and sb are not N.A..
Subsequently, we fill in the value of scn as

scn = sbn −
(sbd1 − scd1) + · · ·+ (sbdJ − scdJ )

J
. (8)

J is the number of dimensions, where the values
in both vectors are not N.A., and {d1, d2, . . . , dJ}
is the set of indices of these non-N.A. dimensions.
The motivation for Equation 8 is to consider the
sentiment shift from different corpora. We limit
the value of scn to the range of [-1,1]. A simplified
example is shown in Figure 2. For entries with
PoS tags, we follow the same procedure except
the chosen anchor entry must also have the same
PoS tag. We only update the lexicon after all N.A.
values are filled in.

Figure 2: Simplified example of filling in N.A. value,
where each vector has 5 dimensions. Ai denotes a non-
N.A. value in the i-th position in A. The same goes for
Bi. Red denotes the value to be filled, i.e., A2.

3.1.3 Multilingual Lexicon Acquisition
To acquire a multilingual lexicon, we first employ
Open Multilingual WordNet (OMW) (Bond and
Foster, 2013) to map the lexicon into Spanish,
French, and Italian, using PoS annotations as con-
straints when applicable. We choose the highest
ranking lemma from the top synset. For tokens that
are not present in OMW, we use off-the-shelf ma-
chine translation systems word2word (Choe et al.,

2020) and Googletrans2 for translation. In the case
where more than one tokens are translated into
the same token in the target language, we average
the vectors of the original tokens as the sentiment
vector of the token in the target language. When
translating a PoS-annotated entry, we translate the
token and keep the PoS tag as it is.

3.2 SenticVec-Based Neurosymbolic Model

Utilizing the constructed SenticVec knowledge
base, we propose a lightweight, neurosymbolic
model that relies on the PoS tag sequence of the
input sentence for syntactic features, and the corre-
sponding SenticVec representations for pragmatic
features, as illustrated in Figure 3.

Figure 3: Our SenticVec-based neurosymbolic model.
Blue denotes layers with learnable parameters.

First, given an L-long sentence, we employ an
off-the-shelf PoS tagger to obtain the PoS sequence
p = (p1, . . . , pL). An embedding layer is used to
obtain PoS representations:

V = Embed(p). (9)

The sentence’s general SenticVec representation
Sg and PoS-annotated representation Sp are con-
structed by finding the corresponding SenticVec
entries to each lemmatized token, which are con-
catenated to form S. If a token has no correspond-
ing entry, it is represented by a vector of zeros.

2
https://github.com/ssut/py-googletrans
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We then concatenate (⊕) V with SenticVec rep-
resentation S, and pass it to a 3-layer MLP.

H = ReLu(FFNo(V ⊕ S))×2, (10)

ŷ = Softmax(FFNo
3 (avg(H))), (11)

where avg denotes averaging along the sequence
length dimension. The model is optimized via
cross-entropy loss as in Equation 4.

4 Experiments

4.1 Datasets

The Sentiment140 dataset (Go et al., 2009)
(Senti.140) consists of 1.6M tweets and their cor-
responding sentiment labels (positive or negative).
We split 10% of the original training set as the val-
idation set. We removed the neutral samples in
the original test set, since the training set does not
include neutral samples. The Review dataset orig-
inates from the Generic Sentiment dataset3, cov-
ering reviews from multiple domains. To align
with the other datasets for cross-domain experiment
setting, we remove all samples labeled as neutral
from this dataset. The Microblog dataset (Cortis
et al., 2017) originates from SemEval-2017 Task
5, where each microblog is given a polarity score
ranging between -1 and 1. We repurpose it by
labeling the samples with scores below 0 as neg-
ative, the rest as positive. Since the released test
set does not provide ground truth labels, we split
20% of the original training set as our test set. We
use the original validation set. The Multilingual
Tweet dataset (Barbieri et al., 2021) contains 3,033
tweets per language, each labeled as positive, neg-
ative, and neutral. For a few-shot learning setting,
we re-split each language subset into 5%/5%/90%
for training, validation, and testing.

4.2 Baselines

We include the following baselines. Non-pre-
trained is a 3-layer MLP model using word em-
beddings trained from scratch. The embedding size
is the same as SenticVec. GloVe is a 3-layer MLP
model using GloVe embeddings. RoBERTaEmb
is a 3-layer MLP model using RoBERTa-base em-
beddings. RoBERTa consists of a RoBERTa-
base encoder and a FFN output layer. XLM-
RoBERTa (Conneau et al., 2019) consists of an
XLM-RoBERTa-base encoder and a FFN output

3
https://kaggle.com/datasets/akgeni/

generic-sentiment-multidomain-sentiment-dataset

Dataset Split # Samples # Pos # Neu # Neg

Senti
Trn. 1,440,144 720,098 0 720,046
Val. 159,856 79,902 0 79,954
Tst. 359 182 0 177

Review
Trn. 34,279 22,259 0 12,056
Val. 5,925 3,921 0 2,109
Tst. 7974 5,241 0 2,782

Micro
Trn. 1,360 887 0 473
Val. 10 6 0 4
Tst. 340 231 0 108

English
Trn. 152 52 51 48
Val. 152 49 54 49
Tst. 2,729 910 906 914

French
Trn. 151 52 51 48
Val. 152 49 54 49
Tst. 2,730 910 906 914

Spanish
Trn. 151 52 51 48
Val. 152 49 54 49
Tst. 2,730 910 906 914

Italian
Trn. 152 52 51 48
Val. 152 49 54 49
Tst. 2,730 910 906 914

Table 1: Dataset statistics. Trn., Val. and Tst. denote
training, validation and test sets, respectively. Senti
denotes Sentiment140, and Micro denotes Microblog.

Model # Parameters

Non-pre-trained 1,020,402
Glove 40,402
RoBERTaEmb 87,202
RoBERTa 124,647,170
XLM-RoBERTa & XLM-Twitter 278,045,955
SenticVec 26,102
RoBERTa+SenticVec 124,647,246
XLM-RoBERTa+SenticVec 278,046,069

Table 2: Number of trainable model parameters.

layer. The XLM-RoBERTa is a multilingual PLM.
XLM-Twitter is the same as XLM-RoBERTa but
the encoder is XLM-Twitter-base (Barbieri et al.,
2021) pretrained with a large multilingual Twitter
corpus. To show that SenticVec can also be ef-
fective as a complementary knowledge base, we
further propose the following knowledge-based
systems. RoBERTa+SenticVec concatenates the
pooler outputs of the RoBERTa-base encoder with
SenticVec representation (S) averaged along the
sequence dimension, and feeds them into a FFN
for output. XLM-RoBERTa+SenticVec use the
same architecture as RoBERTa+SenticVec, except
the encoder is XLM-RoBERTa-base.

Table 2 shows the parameter sizes of compared
models, where SenticVec and Non-pre-trained have
the smallest parameter sizes, constituting approxi-
mately 3/5 of the parameter size of the Glove model
and approximately 3/10 of the parameter size of
the RoBERTaEmb model. Conversely, PLMs sig-
nificantly surpass SenticVec in terms of parameter
size by several orders of magnitude.
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4.3 Setup
We use Adam optimizer (Kingma and Ba, 2014).
We set the learning rate to 1e-3 which decays by
0.5 every 10 epochs. The models are trained with a
batch size of 20 for 50 epochs with early stopping
based on validation accuracy. We implement I = 2
layers of HAN for SenticVec construction. We use
spaCy4 for PoS tagging and lemmatization. We use
the 6B GloVe. The hidden dimension for all MLPs
is set to 100. Results are averaged from 5 runs.

5 Results

We evaluate our neurosymobic method in conven-
tional supervised learning and cross-domain infer-
ence (Section 5.1); cross-lingual inference (Sec-
tion 5.2) and multilingual learning (Section 5.3).
Our ablation analysis (Appendix A) verifies that
as the dimensionality of SenticVec increases, our
model can achieve better accuracy. We further com-
pare the convergence curves of our method and the
baselines (Appendix B), demonstrating the training
speed advantage inherent in our method.

5.1 Supervised and Cross-domain Evaluation
For conventional supervised learning evaluation,
we use the training and testing sets from the same
datasets. As seen in Table 3 (gray), SenticVec
achieves comparable performance as RoBERTa
but with much fewer learnable parameters (Ta-
ble 2). When evaluated using F1 score, SenticVec
exceeds RoBERTa on the Senti.140 and Review
datasets. This compelling evidence substantiates
the potential of a shallow neural network to attain
performance comparable to a deep neural network-
based PLM, through the strategic integration of
efficient pragmatic features (the SenticVec knowl-
edge base), alongside syntactic features (PoS tags).
Training the SenticVec model uses much less com-
putational resources, given it is merely a 3-layer
MLP model. Compared to other embedding-based
methods, i.e., non-pre-trained embedding base-
line, Glove-based model, and RoBERTaEmb-based
model, the advantage of SenticVec is even more
prominent. It shows the utility of SenticVec com-
pared to other semantic embeddings, especially
in the context that SenticVec representations have
a lower dimensionality than the pre-trained em-
beddings. Finally, RoBERTa+SenticVec achieves
the best performance, because the in-domain fine-
tuning with deep neural networks together with

4
https://spacy.io/usage/linguistic-features

Trn Model Senti.140 Review Microblog Cr-dm Avg
Acc F1 Acc F1 Acc F1 Acc F1

Se
nt

i.1
40

Non-PT 82.17 83.25 75.48 79.81 65.02 73.66 70.25 76.74
Glove 85.03 85.71 77.55 81.32 65.79 73.47 71.67 77.40
RbtEmb 83.01 83.99 76.98 80.95 64.09 72.90 70.54 76.93
Rbt 86.07 86.56 77.99 81.32 70.90 78.54 74.45 79.93
SenticVec 84.52 86.86 83.32 87.28 73.92 79.01 78.62 83.15
Rbt+SV 88.39 87.90 79.95 82.94 73.92 80.49 76.94 81.72

R
ev

ie
w

Non-PT 67.13 72.04 84.81 88.41 60.06 69.93 63.60 70.99
Glove 78.27 80.20 88.67 91.14 72.79 79.40 75.53 79.80
RbtEmb 78.27 79.58 88.82 91.44 71.52 78.80 74.90 79.19
Rbt 85.74 85.36 90.02 92.92 73.92 78.12 79.83 81.74
SenticVec 84.73 85.16 89.20 94.02 74.95 81.28 79.84 83.22
Rbt+SV 88.50 88.89 93.10 94.71 74.64 79.84 81.57 84.37

M
ic

ro
bl

og

Non-PT 61.56 65.67 62.58 70.85 77.09 83.63 62.07 68.26
Glove 65.18 71.26 69.55 79.57 83.55 88.15 67.35 75.42
RbtEmb 61.28 65.85 66.56 76.75 79.57 85.20 63.92 71.30
Rbt 82.73 84.34 82.51 86.30 85.45 89.55 82.62 85.32
SenticVec 78.04 89.01 83.66 90.26 84.91 89.12 80.85 89.63
Rbt+SV 86.85 87.16 83.70 87.24 90.19 92.83 85.26 87.20

Table 3: Supervised learning and cross-domain infer-
ence results. Trn denotes the used training set. The gray
denotes conventional supervised learning resutls. Cr-
dm Avg denotes the averaged cross-domain inference
scores, excluding the gray.

SenticVec allows the model to learn more com-
plementary domain-specific features. However,
this finding does not hold for cross-domain infer-
ence, because cross-domain inference may prefer
robust general features. Our cross-domain eval-
uation tasks are conducted using Senti.140, Re-
view, and Microblog. A model is trained with
one dataset and evaluated with the rest. Results
are shown in Table 3. When using Senti.140 as
the training set, SenticVec achieves the best cross-
domain performance. Considering that Senti.140
has the biggest training set, we believe that, given
sufficient training samples, SenticVec can achieve
better results than PLM-based methods. Although
RoBERTa+SenticVec is better than SenticVec on
Senti.140 testing set, it performs worse than Sen-
ticVec during cross-domain evaluation.

This suggests that the augmented semantic fea-
tures provided by RoBERTa do not synergize ef-
fectively with the syntactic and pragmatic features
in sentiment analysis tasks when sufficient training
data is available. SenticVec knowledge has a higher
utility in general feature representation, compared
to the features learned by RoBERTa. This can
be explained by the well-known overfitting issue
of deep neural networks (Rice et al., 2020) when
given a large amount of domain-specific training
data. Deep neural networks may overfit in the
data distribution of a specific domain. As a re-
sult, the learned features struggle to generalize to
other domains. Unsurprisingly, SenticVec exceeds
all embedding-based methods with large margins.
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When Review is used as the training data,
SenticVec achieves better average cross-domain
performance than RoBERTa by a small margin.
RoBERTa+SenticVec yields the best average per-
formance, suggesting that the ensemble strategy is
more effective on a middle-sized training set. Sen-
ticVec still has significant advantages over other
embedding-based methods. Lastly, Microblog is
used for training, and Senti.140 and Review for test-
ing. SenticVec obtains the highest F1 scores, and
RoBERTa+SenticVec outperforms RoBERTa on
both metrics, indicating that the SenticVec knowl-
edge helps with model robustness against domain
changes and class imbalance. It also suggests that
with about 1,000 training instances, employing
deep nets with semantic learning can yield overall
superior results compared to our shallow neural
network based on syntactic and pragmatic features.

To sum up, compared to the embedding-based
methods, SenticVec obtains superior performance
across all cross-domain evaluation tasks. It shows
that the combination of syntactic and pragmatic in-
formation achieves better utilities than using seman-
tic information in shallow neural network-based
sentiment analysis. Furthermore, when sufficient
training data is available, SenticVec outperforms
RoBERTa. With relatively small training data, em-
ploying both RoBERTa and SenticVec represen-
tations can yield improved accuracy. The robust-
ness of our proposed SenticVec-based method can
be attributed to its multi-dimensionality. Rather
than combining all pre-training data to compute
a single sentiment score for a lexical unit, we up-
hold the importance of diverse human annotations
across various annotation tasks and domains, form-
ing multi-dimensional representations.

We regard each pre-training dataset as a reposi-
tory of knowledge contributed by a specific group
of annotators with their subjective judgments, po-
tentially tailored to specific domains. Given a test
set from a separate group of annotators, our frame-
work enables models to judiciously select and learn
from the sentiment knowledge aligning best with
the domain preferences of the test set. Thus, Sen-
ticVec can achieve robust inference for data from
other domains. The utility of SenticVec, when
trained on a large dataset, holds practical impor-
tance for cross-domain inference. Since SenticVec
relies exclusively on PoS and pragmatic knowledge
as input, it can alleviate the influence of semantic
variations stemming from different domains.

Model Spanish French Italian Average
Acc F1 Acc F1 Acc F1 Acc F1

XLM-Rbt 44.78 42.17 45.95 45.72 45.09 44.32 45.27 44.07
XLM-Twt 44.05 40.62 46.06 45.83 44.29 43.48 44.80 43.31
SenticVec 47.33 46.05 45.88 44.37 47.07 47.07 46.76 45.83
XLM+SV 45.03 43.18 48.75 48.89 45.28 45.07 46.35 45.71

Table 4: Cross-lingual inference results by training with
the English dataset. XLM-Rbt denotes XLM-RoBERTa;
XLM-Twt denotes XLM-Twitter; XLM+SV denotes
XLM-RoBERTa+SenticVec.

The effectiveness of SenticVec is predominantly
contingent on the PoS patterns it has learned
through training. A large dataset likely encom-
passes a variety of PoS patterns, thereby enabling
effective training of the SenticVec model even
though the samples are from the same domain. This
could potentially provide insight into an effective
approach for fine-tuning neurosymbolic models
across different domains: Annotated data should
be chosen with the objective of enhancing the di-
versity of PoS patterns in the fine-tuning dataset.
Given the relatively limited vocabulary of PoS tags,
a viable strategy involves selecting a subset of data
that exhibits a wide range of PoS patterns. Annota-
tors can then focus their efforts on annotating this
carefully chosen subset of data. Further investiga-
tion into this strategy will be a focal point of our
future research.

5.2 Cross-lingual Evaluation

In this section, we conduct cross-lingual inference
where models trained with few-shot English data,
and tested in Spanish, French, and Italian, using the
datasets, developed by Barbieri et al. (2021). Ta-
ble 4 shows that SenticVec exceeds baselines on av-
erage. The slightly inferior performance in French
compared to the baselines might be because French
is less syntactically similar to English. It indicates
that the syntactic and pragmatic patterns learned
in English can be applied to other languages to
some extent. XLM-RoBERTa+SenticVec outper-
forms the baselines on all languages, suggesting
that sentiment concepts learned from the SenticVec
knowledge base transfer well on cross-lingual tasks,
hence able to bring extra performance gains to
PLMs. To sum up, SenticVec is a strong com-
petitor to fine-tuning-based multilingual PLMs in
few-shot multilingual and cross-lingual evaluation
tasks, albeit being much more lightweight. This is
attributed to the advantage of our novel symbolic
representations and shallow neural networks.
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Dataset XLM-Rbt XLM-Twt SenticVec XLM+SV
Acc F1 Acc F1 Acc F1 Acc F1

English 53.19 53.43 55.05 52.87 57.80 57.63 55.33 54.92
Spanish 35.60 26.16 37.22 32.49 47.44 46.85 41.55 38.85
French 50.37 50.04 37.33 36.71 47.03 47.04 53.12 52.01
Italian 48.86 48.42 48.75 43.37 50.00 49.66 50.90 50.77
Average 47.01 44.52 44.59 41.36 50.57 50.30 50.23 49.14

Table 5: Few-shot multilingual experiment results.

The PoS tags possess a limited vocabulary and
the capability to break language barriers, thus appli-
cable across diverse languages. The shallow neural
networks can be easily trained with few-shot data
and limited computational resources because of the
small PoS tag vocabulary and the limited learnable
parameters. The model only needs to learn the de-
pendency between unified PoS tags rather than that
between words from different languages.

SenticVec knowledge base can provide useful
pragmatic knowledge for sentiment analysis in
other languages. The sentiment polarities of emo-
tional concepts, e.g., “happiness” and “sadness”,
are generally consistent across languages. Hence,
the sentiment-pragmatic knowledge can be easily
broadcasted to other languages via the mappings
of multilingual lexicons, delivering robust perfor-
mance in multilingual sentiment analysis. On the
other hand, researchers also identified nuanced se-
mantic differences in emotional words (Zhang et al.,
2024). Thus, making appropriate SenticVec adjust-
ments for non-English texts is also recommended.

The robust performance observed in cross-
lingual and few-shot sentiment analysis tasks holds
practical significance. Leveraging languages with
rich labeled data such as English to pre-train a
model allows for its subsequent fine-tuning with a
limited set of labeled data in the target language.
Another notable application involves utilizing a
well-trained model for predicting labels in a zero-
shot setting for a language that lacks labeled data
entirely. We will study them in future work.

5.3 Multilingual Evaluation
Table 5 shows the results of training and infer-
ence with the same target languages, i.e., with the
English, Spanish, French, and Italian datasets un-
der a few-shot setup, where 152 samples are used
for training. As shown, the difference between
the baselines’ best and worst F1 scores are ∆ =
27.27% and ∆ = 20.38% for XLM-RoBERTa
and XLM-Twiter, respectively. In contrast, Sen-
ticVec achieves an averaged F1 score 5.78% higher
than the best baseline XLM-RoBERTa, with ∆ =

10.78%. The higher average F1 score and mini-
mal performance disparity observed across the four
languages confirm that our model is more robust
in few-shot and multilingual sentiment analysis.
Introducing additional XLM-RoBERTa features
upon SenticVec knowledge brings extra gains com-
pared to the SenticVec model in some cases, and
propels XLM-RoBERTa+SenticVec to exceed the
PLM baselines in all target languages.

6 Conclusion

We propose a novel neurosymbolic model and a
sentiment-pragmatic knowledge base, SenticVec.
SenticVec consists of multi-dimensional sentiment-
pragmatic representations, making it human-
centric and cross-domain efficient. We propose
to use PoS tags together with SenticVec for sen-
timent analysis. The streamlined PoS vocabu-
lary as input markedly reduces the need for deep
neural networks and overcomes language barri-
ers. Consequently, employing a shallow neural net-
work for sentiment analysis in multilingual learn-
ing and cross-lingual inference scenarios becomes
viable, substantially decreasing computational de-
mands. The proposed framework can be adapted
to other text classification tasks with multiple la-
beled datasets, e.g., emotion detection (Mao et al.,
2023b), depression detection (Han et al., 2022),
and topic classification (Duong et al., 2023), which
will be examined in our future works.

Limitations

The proposed framework have the following limi-
tations. First, the quality of non-English entries in
the knowledge base would be affected by the capa-
bility of the selected machine translation systems.
Second, our proposed model is only tested on Latin
alphabetic languages. It might not work as well on
languages with more complex segmentation.

Ethics Considerations

The SenticVec knowledge base and involved mod-
els are based on public corpora that do not contain
private data nor offensive content.
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A Ablation Analysis

TrnDim. Senti.140 Review Microblog
Acc F1 Acc F1 Acc F1

R
ev

ie
w

1d 75.49 76.22 83.90 87.51 66.87 73.58
5d 79.11 80.52 85.74 88.87 71.83 79.37
10d 78.83 79.57 87.76 90.49 68.11 74.31
15d 83.84 84.57 87.84 90.45 74.61 78.97
full 84.73 85.16 89.20 94.02 74.95 81.28

TrnDim. English Spanish French Italian
Acc F1 Acc F1 Acc F1 Acc F1

E
ng

lis
h

1d 34.69 22.00 33.63 18.39 33.59 19.85 33.14 17.93
5d 46.81 46.30 39.56 34.76 39.01 36.24 39.11 37.57
10d 52.23 51.73 42.71 41.00 37.55 30.13 38.75 34.20
15d 54.84 55.17 45.75 45.02 38.10 38.20 42.85 42.47
full 57.80 57.63 47.33 46.05 45.88 44.37 47.07 47.07

Table 6: Ablation analysis by different dimensionalities
of SenticVec knowledge base, examined via the Sen-
ticVec model.

We conduct ablation analysis to show that the
integration of new knowledge, i.e., more labeled
datasets, can improve model performance on con-
ventional supervised learning, cross-domain infer-
ence, and cross-lingual inference tasks in sentiment
analysis. We used the first n dimension of Sen-
ticVec and the proposed shallow neural network to
examine these tasks, where n ∈ {1, 5, 10, 15, 19}.
n = 19 denotes the full dimension of SenticVec.
Table 6 shows that generally as dimensionality in-
creases, the neurosymbolic model achieves higher
accuracy and F1 scores across all the examined
tasks, among which the full dimensionality setup is
the best. Given our method of integrating new
knowledge into the knowledge base, which in-
volves expanding the dimensionality of vector rep-
resentations instead of modifying existing elements,
we believe that SenticVec has the potential to al-
leviate the problem of knowledge forgetting often
observed in deep neural networks.

B Convergence Curve

As shown in Figure 4, SenticVec demonstrates su-
perior and quicker convergence on Senti.140 com-
pared to both shallow and deep neural network
baselines. Conversely, RoBERTa+SenticVec out-
performs RoBERTa in both rate and extent of con-
vergence. This observation highlights the efficacy
of the sentiment representations derived from the
SenticVec knowledge base, expediting convergence
process in both shallow and deep neural networks.
Consequently, the lightweight SenticVec neurosym-
bolic model can be trained with significantly re-
duced computational resources and subsequent car-
bon emissions in downstream applications.

Figure 4: Convergence curves on Senti.140 training set.

C Datasets for Knowledge Base
Construction

The datasets used for SenticVec knowledge base
construction, their splits, and statistics are shown
in Table 7.

Dataset Origin Domain Split # Samples

sentiment140 Sentiment140
(Go et al., 2009) Tweet Train 1,440,144

Val 159,856

tweet1 Twitter Tweets Sentiment Dataset1 Tweet Train 23,358
Val 4,122

tweet2 Twitter Sentiments Dataset
(Hussein, 2021) Tweet Train 138,523

Val 24,445

tweet3 Sentiment Dataset2 Tweet Train 418,762
Val 73,899

airline_tweet twitter-airline-sentiment3 Tweet Train 12,444
Val 2,196

bagbrand Bag Brands Sentiment Dataset
(Huda, 2023)

Product
Review

Train 2,449
Val 432

sst2 Deeply Moving
(Socher et al., 2013)

Movie
Review

Train 67,349
Val 872

review1 data-reviews-sentiment-analysis4 Review Train 6,373
Val 1,125

review2 Generic Sentiment5 Review Train 42,464
Val 7,395

yelp_review Yelp Reviews Sentiment Dataset6 Review Train 32,298
Val 5,699

imdb_review
IMDB Large Movie Reviews
Sentiment Dataset
(Maas et al., 2011)

Review
Train 21,247
Val 3,750

stock_tweet1 Stock-Market Sentiment
Dataset (Chaudhary, 2020) Stock Train 4,922

Val 869

headline Stock-Market Sentiment Dataset7 Stock Train 4,119
Val 727

stock_news1 Stock News Sentiment Analysis8 Finance Train 92,438
Val 16,313

stock_news2 News Sentiment Analysis for
Stock Data9

Finance Train 13,228
Val 2,334

bct_tweet BTC Tweets Sentiment10 Finance Train 43,197
Val 7,623

economic_times Economic Times Sentiment Data11 Economics Train 2,132
Val 376

finsentiment Financial Sentiment Analysis
(Malo et al., 2014) Finance Train 4,966

Val 876

newsheadline News Popularity in Multiple Social
Media Platforms (Tan et al., 2020) News Train 158,506

Val 27,972

1. kaggle.com/datasets/yasserh/twitter-tweets-sentiment-dataset
2. kaggle.com/datasets/tariqsays/sentiment-dataset-with-1-million-tweets
3. huggingface.co/datasets/osanseviero/twitter-airline-sentiment
4. huggingface.co/datasets/Kaludi/data-reviews-sentiment-analysis
5. kaggle.com/datasets/akgeni/generic-sentiment-multidomain-sentiment-
dataset
6. kaggle.com/datasets/thedevastator/yelp-reviews-sentiment-dataset
7. kaggle.com/datasets/ankurzing/sentiment-analysis-for-financial-news
8. kaggle.com/datasets/avisheksood/stock-news-sentiment-analysismassive-
dataset
9. kaggle.com/datasets/sidarcidiacono/news-sentiment-analysis-for-stock-
data-by-company
10. kaggle.com/datasets/aisolutions353/btc-tweets-sentiment
11. kaggle.com/datasets/rockyjoseph/economic-times-sentiment-data

Table 7: Datasets used for constructing the SenticVec
knowledge base.
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kaggle.com/datasets/yasserh/twitter-tweets-sentiment-dataset
kaggle.com/datasets/tariqsays/sentiment-dataset-with-1-million-tweets
huggingface.co/datasets/osanseviero/twitter-airline-sentiment
huggingface.co/datasets/Kaludi/data-reviews-sentiment-analysis
kaggle.com/datasets/akgeni/generic-sentiment-multidomain-sentiment-
dataset
kaggle.com/datasets/thedevastator/yelp-reviews-sentiment-dataset
kaggle.com/datasets/ankurzing/sentiment-analysis-for-financial-news
kaggle.com/datasets/avisheksood/stock-news-sentiment-analysismassive-
dataset
kaggle.com/datasets/sidarcidiacono/news-sentiment-analysis-for-stock-
data-by-company
kaggle.com/datasets/aisolutions353/btc-tweets-sentiment
kaggle.com/datasets/rockyjoseph/economic-times-sentiment-data

