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Abstract

We design probes trained on the internal rep-
resentations of a transformer language model
to predict its hallucinatory behavior on three
grounded generation tasks. To train the probes,
we annotate for span-level hallucination on
both sampled (organic) and manually edited
(synthetic) reference outputs. Our probes are
narrowly trained and we find that they are sen-
sitive to their training domain: they generalize
poorly from one task to another or from syn-
thetic to organic hallucinations. However, on
in-domain data, they can reliably detect halluci-
nations at many transformer layers, achieving
95% of their peak performance as early as layer
4. Here, probing proves accurate for evaluating
hallucination, outperforming several contem-
porary baselines and even surpassing an expert
human annotator in response-level detection F1.
Similarly, on span-level labeling, probes are on
par or better than the expert annotator on two
out of three generation tasks. Overall, we find
that probing is a feasible and efficient alterna-
tive to language model hallucination evaluation
when model states are available.

1 Introduction

Do language models know when they’re hallucinat-
ing?1 Detecting hallucinations in grounded gen-
eration tasks (such as document summarization)
is commonly framed as a textual entailment prob-
lem (Ji et al., 2023), with prior work largely fo-
cused on creating or applying secondary detection
models trained on and applied to surface text (see
Falke et al. (2019); Huang et al. (2020); Kryscinski
et al. (2020); Goyal and Durrett (2020); Mishra
et al. (2021); and others). In this work, we explore
the degree to which the generation model itself—
a decoder-only transformer—already encodes the
desired diagnostic information in its feed-forward

∗ Work performed as an intern at Microsoft Semantic
Machines. Code and data available at https://github.com/
microsoft/llm_generation_probes.

1That is, do they know their electric sheep are ungrounded?
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Figure 1: Prediction of hallucination in one generated
response by probing the hidden states of a transformer
during decoding. The true annotated span of hallucina-
tion within the response is boxed in white; rows repre-
sent probes trained to detect hallucination from different
transformer layers, with columns representing their pre-
diction for each token in a generated response.

and self-attention output states. We train span-level
probes supervised at the token-level and response-
level probes for hallucination on several grounded
generation tasks and show that hallucination with
respect to grounding data is detectable from an
transformer’s hidden states, in line with similar
results on probing ungrounded (i.e., closed-book
QA) generation (Mielke et al., 2022; Azaria and
Mitchell, 2023).

As a language model generates a response, we
apply our probes to its encoded tokens to deter-
mine whether the current token is likely to be a
hallucination. Related work has argued that these
encodings are full of meta-information about the
model’s generation process. For example, salient
information for generation can be localized to spe-
cific model layers and time steps (Geva et al., 2021;
Meng et al., 2022, 2023), and hidden states can en-
code the model’s confidence about the correctness
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of subsequent response generation (Mielke et al.,
2022). This suggests that a probe on model hidden
states will have access to a rich set of features for
detecting hallucination—features that would not
be directly and efficiently available to a secondary
entailment or classification model seeing only the
input and generated output tokens.

We develop three probes of increasing complex-
ity across three grounded generation tasks: abstrac-
tive summarization, knowledge-grounded dialogue
generation, and data-to-text. For each task, we
collect hallucinations in two ways: (1) from ordi-
nary sampled responses, where we generate outputs
from a large language model (LLM) conditioned
on the inputs, or (2) by editing reference inputs or
outputs to create discrepancies. We refer to these
as organic and synthetic data, respectively. In both
cases, we have human annotators mark hallucina-
tions in the outputs. Method (2) produces halluci-
nation annotations at a higher rate, though we find
that the utility of these synthetic examples is lower
as they do not come from the test distribution.

We summarize our contributions as follows:

• We produce a high-quality dataset of more
than 15k utterances with hallucination anno-
tations for organic and synthetic output texts
across three grounded generation tasks.

• We propose three probe architectures for de-
tecting hallucinations and demonstrate im-
provements over multiple contemporary base-
lines while also surpassing an expert human
annotator on response-level detection F1. On
two out of three tasks, the best probe achieves
over 90% F1.

• We show probe performance on span-level
detection is competitive with an expert human
annotator, performing on par or better on two
out of three generation tasks in our dataset.

• We analyze how probe accuracy is affected by
annotation type (synthetic/organic), hallucina-
tion type (extrinsic/intrinsic), model size, and
which part of the encoding is probed.

2 Related Work

Definitions. We center our study of hallucina-
tions in the setting of in-context generation (Lewis
et al., 2020) where grounding knowledge sources
are provided within the prompt itself. This is in con-
trast to settings where a language model is expected
to generate a response entirely from its parametric

knowledge (i.e., grounded in the model’s training
data, as in Azaria and Mitchell (2023)). Though the
term has often appeared in reference to factuality
(Gabriel et al., 2021), hallucinations—as we use
the term—are not necessarily factually incorrect,
only ungrounded. We follow the taxonomy of Ji
et al. (2023): in their survey, they classify hallucina-
tions as either intrinsic, where generated responses
directly contradict the knowledge sources, or extrin-
sic, where generated responses are neither entailed
nor contradicted by the sources. We follow this
taxonomy. For example, given the following task
prompt for abstractive summarization,

. . . Deckard is now able to buy his wife Iran an
authentic Nubian goat—from Animal Row, in Los
Angeles—with his commission . . . TL;DR:

a generated summary sentence of “Deckard can
now purchase an animal for his wife” is faithful,
“Deckard can purchase a goat in Iran” is an intrin-
sic hallucination, and “A Nubian goat is a British
domestic goat breed” is an extrinsic hallucination.
While models may leverage latent knowledge to
inform their responses, such as recognizing that a
Nubian goat is indeed a British domestic goat breed,
directly stating such knowledge in a response—as
in the last sentence above—is considered an ex-
trinsic hallucination when it is neither entailed nor
contradicted by the knowledge sources. Thus, non-
hallucinatory generation in this setting involves bal-
ancing the language model’s retrieval and manipu-
lation of knowledge, both from the given prompt
context and from its parameters.

Automated Diagnosis. Lexical metrics com-
monly used in the evaluation of NLG fail to
correlate with human judgments of faithfulness
(Kryscinski et al., 2019). More useful are natu-
ral language inference (NLI) approaches that ei-
ther directly measure the degree of entailment be-
tween a generated response and a given source
text (Hanselowski et al., 2018; Kryscinski et al.,
2020; Goyal and Durrett, 2020), or else break down
texts into single-sentence claims that are easily ver-
ifiable (Min et al., 2023; Semnani et al., 2023).
These NLI methods have been successfully used
for hallucination detection (Laban et al., 2022;
Bishop et al., 2024). Similarly, approaches that
leverage question-answer (QA) models to test if
claims made by a response can be supported by the
grounding text have also been applied to measure
hallucination (Wang et al., 2020; Durmus et al.,
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Task History Knowledge Instruction Response

Abs.
Summ.

– ...dialed down that initial forcast
to predict 13 to 19 named storms,
including six to nine hurricanes...

TL;DR: The National Weather Service fore-
cast called for 13 to 19 named storms
including six to 11 hurricanes.

KGDG ...B: ok how can
I get a turkey I
think that may
be hard to get
though

Three consecutive strikes are
known as a “turkey.”

Response that
uses the in-
formation in
knowledge:

A: Indeed, you have to get four con-
secutive strikes to get one.

D2T name[The Wrestlers],
priceRange[high]

Restaurant De-
scription:

Located by the riverside, The
Wrestlers is a restaurant with high
prices, and near Raja Indian Cuisine.

Table 1: From top to bottom, examples of organic hallucinations in model responses for abstractive summarization,
knowledge-grounded dialogue generation (KGDG), and data-to-text tasks. Minimum annotated hallucination
spans are highlighted in cyan for intrinsic hallucinations and green for extrinsic hallucinations.

2020; Scialom et al., 2021). To the extent that mod-
els are less confident when they are hallucinating,
hallucination may also be reflected in metrics that
measure generation uncertainty (Malinin and Gales,
2021; Guerreiro et al., 2023; Ren et al., 2023; Ngu
et al., 2024; Madsen et al., 2023), relative token
contributions to the overall output probability (Xu
et al., 2023), or signatures in the attention matrices
during generation (Lee et al., 2018; Yuksekgonul
et al., 2023). Similarly, conflicts between contex-
tual knowledge provided in a prompt and paramet-
ric knowledge as learned during pre-training can
contribute to this behavior (Xu et al., 2024).

Predicting Transformer Behavior. In small
transformer language models, it is possible to as-
cribe behaviors like in-context learning to specific
layers and modules (Elhage et al., 2021). This
becomes harder in larger models, but Meng et al.
(2022) provide evidence that the feed-forward mod-
ules function as key-value stores of factual associ-
ations and that it is possible to modify weights in
these modules to edit facts associated with entities.
Transformer internal states have also been shown
to be predictive of the likelihood that a model will
answer a question correctly in the setting of closed-
book QA (Mielke et al., 2022) and in the predic-
tion of the truthfulness of a statement (Azaria and
Mitchell, 2023). Interestingly, these internal rep-
resentations of truthfulness can disagree system-
atically with measures of model confidence (Liu
et al., 2023). These works measure hidden states
in the absence of supporting evidence (i.e. no pas-
sages are retrieved for either task), making them
effectively probes of knowledge stored in model

weights and not the manipulation of novel or contin-
gent information provided in a prompt. In contrast,
this work examines related questions specifically in
the context of grounded generation (e.g., retrieval
augmented generation (Lewis et al., 2020)).

Concurrently to this work, Monea et al. (2023)
find that there are separate computational processes
in transformer LLMs devoted to the recall of as-
sociations from memory versus grounding data.
Slobodkin et al. (2023) train a probe to detect the
(un)answerability of a question given a passage,
which is similar in some respects to our task in §4;
however, we detect span-level hallucination during
answer generation, which could happen even in
theoretically answerable questions.2

3 Grounded Generation Tasks

We test hallucination probes for autoregressive
grounded generation in three distinct tasks: ab-
stractive summarization, knowledge-grounded di-
alogue generation, and data-to-text. We use the
same high-level prompt structure across all tasks to
organically generate model responses to tasks and
to probe for hallucination. Each prompt contains
an optional interaction history, a knowledge source,
and an instruction resulting in the conditionally
generated response. Task prompts and examples of
organic hallucinations are shown in Table 1.

3.1 Organic Hallucinations

We use llama-2-13b (Touvron et al., 2023) as the
response model to generate outputs for each task.

2Reviewers asked to distinguish our work from that of
Azaria and Mitchell (2023) and Kadavath et al. (2022). For a
detailed discussion of the differences, see Appendix D.
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Response Original Knowledge Changed Knowledge

Yes, Elvis was also one of Elvis Presley is regarded as one of Elvis Presley is regarded as one
the most famous musicians the most significant cultural icons of the least well-known music-
of the 20th century. of the 20th century. -ians of the 20th century.

Close to The Sorrento you name[Clowns], eatType[pub] name[Clowns],
can find Clowns pub. near[The Sorrento] near[The Sorrento]

Table 2: Examples of changed knowledge statements for our datasets of synthetic hallucinations. Changes made to
Conv-FEVER (top) and E2E (bottom) are shown in bold. The changed knowledge statements make the top response
an intrinsic predicate error and the bottom response an extrinsic entity error (highlighted as in Table 1).

To ensure that a non-negligible number of both hal-
lucinations and grounded responses were present
in the generations, each model response is gen-
erated using top-k random sampling (Fan et al.,
2018) with k = 2 and temperature 1. The number
of few-shot in-context learning examples for each
task (see below) was chosen through a pilot explo-
ration, optimizing for the presence of a balance
of hallucinations and fully grounded responses, as
determined via manual inspection by the authors.
Full prompt templates are shown in Appendix C.

Abstractive Summarization. The CNN / Dai-
lyMail (CDM) dataset (Hermann et al., 2015) is
a standard benchmark in the setting of abstractive
summarization (Lin and Ng, 2019). It consists of
a set of news articles paired with reference sum-
maries in the form of human-written bullet points
that were originally published alongside the articles.
For automatic summarization, we follow Radford
et al. (2019) and prompt our model to generate
summaries of news articles by appending TL;DR:
after the article content (a 0-shot prompt),3 taking
the first three generated sentences as the summary.

Knowledge-Grounded Dialogue Generation.
For a given conversation history and a pro-
vided knowledge sentence obtained via Wizard-
Of-Wikipedia, the Conv-FEVER (Santhanam et al.,
2021) task (CF) asks a respondent to create a next-
turn response to the conversation that is grounded
in the provided knowledge sentence. Here, we
prompt our response model to generate grounded
responses under 2-shot in-context learning with
example grounded responses.

3In Internet posts that appear in LLM pretraining data,
this string often marks the start of a summary immediately
following the main content of the post. Prior work (Radford
et al., 2019) has found that appending this string after texts
in prompts to autoregressive LLMs is capable of producing
abstractive summaries of the former.

Data-to-Text Generation. The E2E task
(Novikova et al., 2017) asks respondents to write
restaurant descriptions that are congruent with a
provided set of attributes. Here, we prompt our
response model to perform this task with 9-shot
in-context learning, with in-context examples
manually validated for groundedness.4

3.2 Synthetic Hallucinations

Recent work (Ma et al., 2023; Monea et al., 2023)
has carefully created synthetic ungrounded datasets
by hand to evaluate metrics used to measure un-
faithfulness and models used to detect it. The
BUMP dataset (Ma et al., 2023) is a version of
CDM in which reference summaries have been
manually edited to be ungrounded. It includes both
freestyle edits and systematic coverage of four spe-
cific types of errors: (1) predicate errors, where
the predicate in a generation is inconsistent with
the source knowledge; (2) entity errors, where the
subject or object of a predicate is inconsistent; (3)
circumstance errors, or errors in the time, duration,
or location of an event of the predicate; and (4)
coreference errors. Types (1)–(3) may be intrinsic
or extrinsic, while (4) may be ambiguous; as such,
we don’t consider coreference errors in our analysis
of intrinsic or extrinsic hallucinations.

We use BUMP in our CDM experiments. For
our Conv-FEVER and E2E experiments, we simi-
larly created errors in a uniformly sampled subset
of these datasets. However, rather than changing
an example’s reference response, we changed its
provided knowledge sentence so that the existing
reference response would be unfaithful to it. This
simulates the common case of hallucination where

4As the original E2E task had omitted or missing informa-
tion in up to 40% of its data, we use the cleaned version by
Dušek et al. (2019). As even the cleaned version had instances
of omitted or missing information, 9 in-context examples were
manually selected and verified for groundedness.
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Task N-o H-o κ-o N-s H-s

CDM 4684 28% 0.39 17786 50%
CF 924 70% 0.50 2846 50%
E2E 4998 54% 0.55 9950 50%

Table 3: Dataset statistics. N-o is the number of
annotated organic generations, H-o is the percentage of
organic generations with at least one hallucination in the
final adjudicated dataset, and κ-o is the response-level
Fleiss’s κ of individual annotations before adjudication.
N-s and H-s refer to the same for synthetic responses.
Note that grounded synthetic responses were not gen-
erated by a model but come from gold reference data.

a large language model generates statements that
may be plausible but are not technically grounded.

For Conv-FEVER, we prompted ChatGPT to
modify a given example’s provided knowledge sen-
tence to introduce intrinsic and extrinsic errors of
types (1)–(4) above; we then manually judged these
attempts and edited the unsuccessful ones.5 In this
way, we created equal numbers of examples with in-
trinsic and extrinsic predicate, entity, circumstance,
and coreference errors, as well as freestyle errors.

For E2E, we modified a random subset of the
provided grounding attributes. Specifically, for an
example with n attributes, we drew k uniformly
from [1, n− 1], uniformly selected one of the sub-
sets of size k, and then flipped a fair coin to de-
cide whether to remove or perturb—by randomly
sampling an alternative attribute from the entire
dataset—these k attributes. Finally, we manually
verified that the reference response was unfaithful
with respect to the modified attributes; if not, we
further edited the attributes. Examples of changed
knowledge statements are shown in Table 2; statis-
tics of our synthetic datasets are shown in Table 3.

3.3 Annotation

We ask annotators to label the minimal hallucina-
tory spans in each response, if any. These are the
smallest text spans that would need modification to
transform an ungrounded response into a grounded
one. A team of 17 annotators completed a pilot an-
notation exercise of 50 annotations per task. These
pilot annotations were checked and verified by the
authors to pinpoint common sources of error and
disagreement. This feedback was integrated into a

5In hindsight, this workflow proved inefficient; significant
human editing and validation were needed.

6Obtained via BUMP (Ma et al., 2023).

revised set of annotation guidelines, shown in Ap-
pendix A, and the full dataset was then re-annotated
fully by three annotators such that each example
was annotated three times (example annotations are
shown in Table 1). Annotations were then recon-
ciled at the token-level into the final gold annota-
tion, such that a token is labeled as a hallucination
if at least two out of three annotators included it in
a hallucination-span annotation.

Annotation statistics are shown in Table 3. Note
that for each dataset, over one-fifth of all annotated
responses were annotated as containing at least one
hallucinated span (columns H-o and H-s), which
we refer to as response-level annotations. Anno-
tators exhibited moderate agreement (Landis and
Koch, 1977), achieving response-level Fleiss’ κ
scores between 0.39 and 0.55 across the three tasks.

4 Probing

Probes (Alain and Bengio, 2017) are tools used to
analyze a neural network’s internal representations.
Often taking the form of linear classifiers, they are
applied to the internal representations of a network
and are trained to discriminate between different
types of inputs or outputs. Here, we are interested
in detecting hallucinatory outputs during an LLM’s
generation steps when conditioned on a prompt that
requires a response grounded in the prompt.

4.1 Design
Let u be a prompt as described at the start of §3. To
determine whether a response x to a prompt u con-
tains hallucinations, we will probe the hidden states
of the transformer language model (i.e., decoder) as
it generates x. Note that these hidden states depend
on u and on the prefix of x that has been generated
so far, and they may be reconstructed from the
string pair (u, x) via forced decoding. A single
transformer layer actually consists of two sublay-
ers (Vaswani et al., 2017): the first transforms a
token’s embedding by adding a vector predicted
by attention, and the second transforms it again
by adding a vector predicted by a feed-forward
network. We train a separate probe for each of the
2L sublayers, where L is the number of layers.

Linear Probe. This probe is a linear classifier
using a single hidden state vector (output by some
sublayer) as input. Let xi be the ith response token
and let hi ∈ Rn be the corresponding LLM hidden
state at a fixed layer and component. We write
yi ∈ {0, 1} to indicate whether xi falls within a
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minimum hallucination span. The linear probe
predicts yi by p(yi = 1 | u, x≤i) = σ(w⊺hi + b),
where w ∈ Rn are learned weights, b ∈ R is a
learned bias, and σ is the logistic function.

Attention-Pooling Probe. In order to directly
consider the previous hidden states of the response
as well, we also experiment with an attention-
pooling probe over all hidden states so far,

p(yi = 1 | u, x≤i) = σ(w⊺h̄i)

h̄i =
i∑

j=1

αi,jhj , αi,j =
exp (q⊺hj)∑i
k=1 exp (q

⊺hk)

where q ∈ Rn is a learned query vector.

Ensemble Probe. Our final approach is a lo-
gistic regression probe, pens(yi | u, x≤i) =

σ
(∑

l,m βl,m · pl,m(yi | u, x≤i)
)

, that combines
the predictions from 2L separately trained probes
indexed by layer l ∈ {1, . . . , L} and module
m ∈ {feed-forward, attention}. The weights βl,m
are learned after training and freezing each pl,m.

4.2 Training Objectives

Token-level. To train a probe to predict token-
level hallucination labels yi, we fit probe pa-
rameters to minimize the negative log-likelihood,
L(θ) ∝ ∑

(u,x,y)∈D
∑|x|

i=1− log p(yi | u, x≤i; θ),
on the token-level annotations in our dataset D.

Response-level. We also try training a classifier
to predict whether x contains any hallucinations at
all; denote this indicator as y =

∨|x|
i=1 yi ∈ {0, 1}.

For this, we simply use an attention-pooling probe
over the entire response x. To fit the probe parame-
ters, θ, we again minimize negative log-likelihood,
L(θ) ∝ ∑

(u,x,y)∈D − log p(y | u, x≤|x|; θ).

4.3 Metrics

Response-level Classification. F1 is the har-
monic mean of recall and precision. We denote
the F1 score of a response-level classifier by F1-R.

Span-level Classification. For span-level clas-
sifiers, it is possible to evaluate the F1 score of
their per-token predictions; however, this would
give more weight to annotated or predicted spans
that are longer in length. Here, we are more in-
terested in span-level F1: specifically, whether
we predicted all of the annotated hallucinations
(recall), and whether all of the predicted spans

were annotated as actual hallucinations (precision).
As requiring an exact match of spans is too se-
vere—Appendix B shows how our human anno-
tators often disagreed on the exact boundaries of
a hallucinatory span—we modify span-level pre-
cision and recall metrics to give partial credit, as
follows.

Define a span to be a set of tokens, where tokens
from different responses are considered distinct.
Let A be the set of all annotated spans in the ref-
erence corpus, and let P be the set of all predicted
spans on the same set of examples. We compute
the recall r as the average coverage of each refer-
ence span, i.e., the fraction of its tokens that are
in some predicted span. Conversely, we compute
the precision p as the average coverage of each

predicted span. So r = 1
|A|

∑
s∈A

|s∩(⋃ŝ∈P ŝ)|
|s| and

p = 1
|P |

∑
ŝ∈P

|ŝ∩(⋃s∈A s)|
|ŝ| where ∪, ∩, and | · |

denote set union, intersection, and cardinality re-
spectively. We define F1-Sp (standing for "span,
partial credit") as the harmonic mean of p and r.
Note that these quantities micro-average over spans,
ignoring the boundaries between examples. Thus,
in contrast to F1-R, examples with more spans have
more influence on the final F1-Sp metric achieved.

5 Experiments

Unless otherwise indicated, all evaluations are per-
formed on organic data only, even if their probes
were trained on synthetic data.

5.1 Probe Hyperparameters and Training

Single-layer hidden state probes, described in
§4, are trained under float32 precision with un-
regularized log loss. Optimal batch sizes be-
tween 20-100 and Adam optimization (Kingma
and Ba, 2014)—with learning rates between 0.1-
0.001—and β1, β2 = (0.9, 0.999) were chosen for
each task after a small grid search on hyperparam-
eters. With 70/10/20% train, validation, and test
splits, each classifier was trained using early stop-
ping with 10-epoch patience. The ensemble classi-
fier was trained with the same hyperparameters as
the single-layer probes.

For CDM, the synthetic training dataset (from
BUMP) is smaller than the organic training dataset,
so the SYNTH results are at a disadvantage. For
CF and E2E, however, we generated a synthetic
training dataset that was matched in size.

When reporting results, SL denotes the best
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single-layer classifier (chosen on the validation set),
E denotes the ensembled classifier, and SYNTH in-
dicates that the classifier was trained on synthetic
data and tested on organic hallucinations.

5.2 Response-Level Baselines

We compare the performance of our probes against
a set of contemporary methods used in faithfulness
evaluation, measuring test set hallucination classifi-
cation F1. Specifically: (1) the model uncertainty-
based metric of length-normalized sequence log-
probability Seq-Logprob (Guerreiro et al., 2023);
(2) off-the-shelf synthetically-trained sentence-
level claim classification FactCC (Kryscinski
et al., 2020); (3) linguistic feature-based depen-
dency arc entailment DAE (Goyal and Durrett,
2020); (4) QA-based metrics FEQA (Durmus
et al., 2020); (5) QuestEval (Scialom et al.,
2021); (6) the NLI-based metric SummaC (La-
ban et al., 2022); ChatGPT classifiers (Luo et al.,
2023) gpt-3.5-turbo-0125 at zero temperature
(7) without and (8) with basic chain-of-thought
prompting (with prompts shown in Appendix C.1),
as well as (9) the automatic claim-breaking and
verification method FActScore (Min et al., 2023)
with gpt-3.5-turbo-instruct.

Metrics (2)–(6) and (9) were not originally in-
tended to evaluate individual responses, but rather
a collection of responses for the sake of system
comparisons. To adapt to our setting, however, we
threshold each of these continuous metrics to clas-
sify the individual responses, setting the threshold
to maximize validation set F1, following Laban
et al. (2022). For sentence-level optimized base-
lines such as FactCC, response-level evaluation is
performed by logical OR-ing sentence-level base-
line predictions (obtained after thresholding the
raw scores). In other words, any hallucination in
any sentence leads to a "hallucinated" label. Note
that, for our abstractive summarization tasks, meth-
ods such as FactCC (Kryscinski et al., 2020) are
explicitly trained in the domain as they use CDM as
the initial dataset for training. For certain baselines
in CF and E2E, dashes are present in the results
due to an inability to directly compare methods in
these domains. For example, for DAE, one cannot
obtain the dependency arcs from a set of restaurant
attributes not expressed in natural language.

As a further reference baseline, we additionally
report the performance achieved by randomly pre-
dicting a hallucination label with some probability

Response-Level Classification, F1-R

Method CDM CF E2E

OC 0.43 0.79 0.71
Seq-Logprob 0.64 0.81 0.72
FactCC 0.51 - -
DAE 0.53 - -
FEQA 0.44 - -
QuestEval 0.61 - -
SummaCZS 0.68 - -
SummaCConv 0.67 - -
ChatGPT 0.63 0.74 0.74
ChatGPT CoT 0.53 0.51 0.47
FActScore 0.61 0.80 0.72

PoolingSL 0.73 0.93 0.89
PoolingE 0.75 0.94 0.90
PoolingSL-SYNTH 0.65 0.80 0.68
PoolingE-SYNTH 0.66 0.83 0.71

Expert Human 0.55 0.89 0.79

Table 4: Response-level probe and baseline organic hal-
lucination detection performance across tasks as mea-
sured via F1 scores (F1-R) achieved on the test set.

p tuned to maximize F1 on the validation set, de-
noted here as Optimized Coin (OC).

5.3 Expert Human Judge

To compare our probe performance to a human per-
forming the equivalent hallucination detection task,
we had a another professional annotator judge the
test set. This annotator (denoted Expert Human)
was distinct from the annotators who produced the
gold labels. They were given access to the training
data (consisting of all three sets of annotations plus
the gold reconciled annotations) and performed a
round of pilot annotations with feedback from the
authors before annotating the test set.

5.4 Results

For performance comparisons, probe results are sta-
tistically significant (p < 0.05) relative to respec-
tive baselines under exact paired-permutation test-
ing (Zmigrod et al., 2022) unless otherwise noted.

Response-level Results. Response-level results
are shown in Table 4. On all three tasks, the probes
were able to surpass the Expert Human annotator
on response-level classification, with the PoolingE
probe outperforming the Expert Human by as much
as 20 points absolute F1-R on the CDM dataset.
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The CDM dataset is likely the most challenging for
a human to judge as it requires checking the gener-
ated statements against the complete (and lengthy)
news article. Both PoolingSL and PoolingE probes
outperformed all baselines across all datasets.
Ensembling generally adds at least one point in ab-
solute F1-R above the best single layer. The probes
trained on synthetic hallucinations generally do not
perform as well as their organic equivalents, though
they are still fairly competitive with the baselines.
Seq-Logprob was surprisingly strong, beating both
the Expert Human and all but one of the baselines
on CDM. This suggests that while model confi-
dence may not be the only feature related to hal-
lucination detection, it is likely an important one.

Span-Level Results. These results appear in
Table 5. The PoolingE probes match or surpass the
Expert Human performance on the CDM and E2E
datasets while falling three points behind in abso-
lute F1-Sp on the Conv-FEVER dataset. Pooling in-
formation across time does help probe performance
with the best single-layer pooling probe matching
or beating the best single-layer linear probe across
all datasets. Interestingly, what the linear probe
lacks in time can be made up in depth—LinearE
matches PoolingSL on CDM and Conv-FEVER,
and beats it by one point absolute F1-Sp on E2E,
though this wasn’t statistically significant.

6 Analysis

Layers. Evaluating the performance of trained
single-layer attention-pooling probes (Figures 2
and 4), in model middle layers during decoding.
Probe performance shows a consistent and gradual
increase from the first layer after token embeddings
up until layers 10 to 20. Hallucination information
is reliably present at all layers ≥ 5, although there
are local optima around layers 5–10 and again at
40. Ensembling across many layers provides only a
small (not stat. sig.) improvement over the best sin-
gle layer (Table 4), so we do not have evidence that
our probes at different layers detect different types
or correlates of hallucination. In general, probe
performance declines for subsequent layers after
their initial peak layer across tasks, though CDM is
an exception in that probe performance gradually
increases again from layers 30 to 40, peaking there.

Hidden State Type. Slight variations in ground-
ing saliency—the strength of the signal of hallu-
cination as able to be detected by a probe, mea-

Span-level Classification, F1-Sp

Method CDM CF E2E

OC 0.31 0.75 0.13
LinearSL 0.52 0.77 0.54
LinearE 0.54 0.79 0.55
PoolingSL 0.54 0.79 0.54
PoolingE 0.55 0.81 0.56

Expert Human 0.40 0.84 0.56

Table 5: Span-level probe performance, as measured by
span-level partial match scores (F1-Sp).
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Figure 2: Grounding behavior saliency as measured by
probe response-level F1 (F1-R) on the CDM test set.
The x-axis corresponds to the layer of the probe. Plots
across all tasks are shown in Appendix D and Figure 4.
Vertical dashed lines denote the layers that respective
probes first surpass 95% of their peak performance.

sured by probe hallucination classification perfor-
mance—are also present among hidden states of
different types during decoding. As shown in Fig-
ure 2, feed-forward probes reach peak performance
at slightly deeper layers than their attention head
out-projection probe counterparts and exceed them
in single-layer hallucination detection. When train-
ing ensemble classifiers on only the hidden states
of the same type at every layer, feed-forward hid-
den states possess a slightly greater & statistically
significant saliency of model grounding behavior.

Model Size. Training probes in the same manner
on the force-decoded hidden states of responses on
our dataset using llama-2-7b and llama-2-70b,
we find no statistically significant difference in hal-
lucination detection across the hidden states from
base models of varying sizes. These results show
that we can still detect a hallucination even when
it was originally generated from a different model,
and that even the lower-dimensional hidden states
of the 7B model still contain enough information
to train a probe.
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Figure 3: Intrinsic and extrinsic hallucination saliency
across layers for synthetic CDM as measured by
response-level MLP probe F1 (F1-R) on hallucination
types; additional plots in Appendix D, Figure 5.

Hallucination Type. Next, we test for the
saliency of different forms of hallucination behav-
ior in model internal states. Here, with annotator-
labeled test set responses according to whether they
contained intrinsic or extrinsic hallucinations,we
evaluate trained probe performance in correctly de-
tecting the presence of hallucinations for instances
of each hallucination type. Intrinsic hallucinations
are rarer and may reflect a misunderstanding of the
grounding data. We observe in Figure 3 that extrin-
sic hallucinations—which are 1.8× more common
at the response level (as labeled by annotators) and
presumably reflect a failure to find desired infor-
mation in the grounding data at all—are easier to
detect at every layer. Both kinds are generally most
salient in probe middle layers, between layers 10 to
20. Overall, extrinsic hallucination remained more
salient in hidden states than intrinsic hallucination.

Synthetic Hallucinations. As Table 6 shows,
probes achieve very high F1 on the detection
of synthetically created hallucinations across all
tasks. However, probe performance is subject to a
drop when trained and tested on different modali-
ties, with probes generally performing better when
trained and tested on the same hallucination modal-
ity. The most severe version of this is on CDM,
which may be caused by differences between our
organic annotation instructions and those of the
BUMP dataset (Ma et al., 2023). Prior work has
shown that synthetic data generation approaches
specifically designed for factuality evaluation (Ma
et al., 2023) do not align with actual errors made
by generation models in their lexical error distribu-
tions (Goyal and Durrett, 2021). Here, our results
show this to extend to their hidden state signals as
well, which are used by the probe to detect unfaith-
fulness in the case of forced decoding on human-
created content, relative to organic instances of

Task Train Test F1-R

CDM Organic Organic 0.75
Synthetic Organic 0.66
Organic Synthetic 0.17
Synthetic Synthetic 0.86

CF Organic Organic 0.94
Synthetic Organic 0.83
Organic Synthetic 0.90
Synthetic Synthetic 0.95

E2E Organic Organic 0.90
Synthetic Organic 0.71
Organic Synthetic 0.94
Synthetic Synthetic 0.99

Table 6: Response-level PoolingE probe performance,
as measured by F1-R, in detecting hallucinations on
organic or synthetic ungrounded responses.

hallucination. This is also related to the idea of
ecological validity (De Vries et al., 2020). Find-
ings from an ecologically valid experiment should
hold outside the context of that study. We do not
find strong evidence that the detection of synthetic
hallucinations generalizes outside that context.

Lack of Task Transfer. To test whether the
probed features persist in similar hidden state
locations across different tasks, we test our probe
on each specific task when trained on the others.
As shown in Table 8 in Appendix D, we find a
lack of generalization in hallucination detection
performance for our probes across different
training and test tasks. This may only mean that
each probe is overfitting to task-or-dataset-specific
confounds. If so, training on a mixture of many
tasks (more than the two we tried in Table 8) might
result in a classifier that identifies the consistent
hallucination signal and thus generalizes well to
new tasks. However, it is also possible that no
consistent hallucination signal exists.

7 Conclusion

We examined how an LLM’s internal representa-
tions reveal its hallucinatory behavior, via a case
study of multiple in-context grounded generation
tasks. In specific domains, we can accurately iden-
tify hallucinatory behavior through trained probes.
Probe accuracy can depend on model layer, hid-
den state type, model size, hallucination type, and
training-test mismatch. 1TL;DR: Yes, they do.
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Limitations

Below, we highlight a few takeaways, broader im-
plications, and limitations that naturally suggest
directions for future work.

Hallucinatory Span Detection. In the context of
use cases such as retrieval-augmented generation
(RAG), span-level results have the potential to be
extremely useful because they allow us to detect
where hallucinations may fall. For example, hallu-
cinatory spans could be (1) highlighted in the UI
for RAG-based applications, (2) detected as soon as
they are generated, triggering the decoder to back-
track and regenerate, or (3) a local hallucination
detection could be used for further mitigation of
hallucination in a reward-shaping setting for RLHF,
in contrast to only having response-level signals
available.

Efficiency and Access. Our work is motivated
by the need for efficient LLM hallucination evalua-
tion. Though computationally efficient, one of the
key limitations of probing is in the need for labeled
in-domain data for probe training. Our results in Ta-
ble 8 suggest poor generalization to out-of-domain
tasks, although perhaps this would be mitigated by
larger and more diverse training sets. Furthermore,
it perhaps goes without saying that probing requires
access to the hidden states themselves. If LLMs
continue to move behind closed-source APIs, such
hidden state probes will not be possible for those
without privileged access.

Annotator Disagreements. Labeling for faith-
fulness errors remains a challenging task for anno-
tators (Ladhak, 2024). Despite asking annotators
to label what they deem to be the minimal spans of
hallucination in a response and providing a consid-
erably detailed annotation schema (Appendix A),
sizable variation still exists between annotators on
judgments of their exact span boundaries. It re-
mains an open question how to reduce or circum-
vent annotator disagreement in this context.

Probe Design. Even if span boundaries were
standardized, they may not align perfectly with
hallucination signals in LLM internal representa-
tions. For instance, while a generation may first
contradict a given knowledge source at a certain
token, the ultimate signal that it will hallucinate
may already be salient in the tokens preceding it.
Alternatively, the signal might be computed only
later, as the decoder encodes previously generated

tokens and recognizes that it is currently pursu-
ing an ungrounded train of thought. Thus, there
may be probe architectures that could improve hal-
lucination detection performance and mitigation.
Nonlinear probes such as feed-forward networks
are also worth considering: the hidden layer(s) of a
feed-forward network could learn to detect differ-
ent types of hallucinations. Furthermore, the lack
of task transfer that we currently observe presents
interesting future challenges in increasing the gen-
eralizability of our approach in search of a more
consistent signal of hallucination, if one exists.

Mitigation. Finally, once we can detect un-
grounded generation behavior, we can try to learn
to avoid it. This has great practical importance
as retrieval-oriented generation becomes popular
across a variety of consumer-facing applications.

We have left this subject for future work. A sim-
ple method is to reject a response or prefix where
hallucinations have been detected with high proba-
bility, and start sampling the response again (Guer-
reiro et al., 2023). Another approach would be
to use the predicted hallucination probabilities to
reweight or filter hypotheses during beam search.
Finally, a detector can also be used as a proxy re-
ward method for fine-tuning the language model,
using a reward-based method such as PPO (Schul-
man et al., 2017). In addition to learning from
response-level negative rewards incurred at the end
of the utterance, PPO can benefit from early token-
level negative rewards, which serve as a more in-
formative signal for reinforcement learning (i.e.,
reward shaping) and thus can reduce sample com-
plexity.
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Ondřej Dušek, David M. Howcroft, and Verena Rieser.
2019. Semantic noise matters for neural natural lan-
guage generation. In Proceedings of the 12th Interna-
tional Conference on Natural Language Generation,
pages 421–426, Tokyo, Japan. Association for Com-
putational Linguistics.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom
Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly, et al.
2021. A mathematical framework for transformer
circuits. Transformer Circuits Thread, 1.

Tobias Falke, Leonardo F. R. Ribeiro, Prasetya Ajie
Utama, Ido Dagan, and Iryna Gurevych. 2019. Rank-
ing generated summaries by correctness: An interest-
ing but challenging application for natural language
inference. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 2214–2220, Florence, Italy. Association for
Computational Linguistics.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018.
Hierarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 889–898, Melbourne, Australia. Association
for Computational Linguistics.

Saadia Gabriel, Asli Celikyilmaz, Rahul Jha, Yejin Choi,
and Jianfeng Gao. 2021. GO FIGURE: A meta eval-
uation of factuality in summarization. In Findings of

the Association for Computational Linguistics: ACL-
IJCNLP 2021, pages 478–487, Online. Association
for Computational Linguistics.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer
Levy. 2021. Transformer feed-forward layers are key-
value memories. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 5484–5495, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Tanya Goyal and Greg Durrett. 2020. Evaluating factu-
ality in generation with dependency-level entailment.
In Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 3592–3603, Online.
Association for Computational Linguistics.

Tanya Goyal and Greg Durrett. 2021. Annotating and
modeling fine-grained factuality in summarization.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1449–1462, Online. Association for Computa-
tional Linguistics.

Nuno M. Guerreiro, Elena Voita, and André Martins.
2023. Looking for a needle in a haystack: A com-
prehensive study of hallucinations in neural machine
translation. In Proceedings of the 17th Conference
of the European Chapter of the Association for Com-
putational Linguistics, pages 1059–1075, Dubrovnik,
Croatia. Association for Computational Linguistics.

Andreas Hanselowski, Hao Zhang, Zile Li, Daniil
Sorokin, Benjamin Schiller, Claudia Schulz, and
Iryna Gurevych. 2018. UKP-athene: Multi-sentence
textual entailment for claim verification. In Proceed-
ings of the First Workshop on Fact Extraction and
VERification (FEVER), pages 103–108, Brussels, Bel-
gium. Association for Computational Linguistics.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. Advances In Neural Information
Processing Systems, 28.

Luyang Huang, Lingfei Wu, and Lu Wang. 2020.
Knowledge graph-augmented abstractive summariza-
tion with semantic-driven cloze reward. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 5094–5107, On-
line. Association for Computational Linguistics.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea
Madotto, and Pascale Fung. 2023. Survey of halluci-
nation in natural language generation. ACM Comput-
ing Surveys, 55(12):1–38.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke
Zettlemoyer. 2017. TriviaQA: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. In Proceedings of the 55th Annual Meeting of

4411

https://openreview.net/forum?id=ryF7rTqgl
https://openreview.net/forum?id=ryF7rTqgl
https://openreview.net/forum?id=ryF7rTqgl
https://doi.org/10.18653/v1/2023.findings-emnlp.68
https://doi.org/10.18653/v1/2023.findings-emnlp.68
https://aclanthology.org/2024.lrec-main.941
https://aclanthology.org/2024.lrec-main.941
https://aclanthology.org/2024.lrec-main.941
https://arxiv.org/abs/2007.14435
https://arxiv.org/abs/2007.14435
https://doi.org/10.18653/v1/2020.acl-main.454
https://doi.org/10.18653/v1/2020.acl-main.454
https://doi.org/10.18653/v1/2020.acl-main.454
https://doi.org/10.18653/v1/W19-8652
https://doi.org/10.18653/v1/W19-8652
https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html
https://doi.org/10.18653/v1/P19-1213
https://doi.org/10.18653/v1/P19-1213
https://doi.org/10.18653/v1/P19-1213
https://doi.org/10.18653/v1/P19-1213
https://doi.org/10.18653/v1/P18-1082
https://doi.org/10.18653/v1/2021.findings-acl.42
https://doi.org/10.18653/v1/2021.findings-acl.42
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://doi.org/10.18653/v1/2020.findings-emnlp.322
https://doi.org/10.18653/v1/2020.findings-emnlp.322
https://doi.org/10.18653/v1/2021.naacl-main.114
https://doi.org/10.18653/v1/2021.naacl-main.114
https://doi.org/10.18653/v1/2023.eacl-main.75
https://doi.org/10.18653/v1/2023.eacl-main.75
https://doi.org/10.18653/v1/2023.eacl-main.75
https://doi.org/10.18653/v1/W18-5516
https://doi.org/10.18653/v1/W18-5516
https://arxiv.org/abs/1506.03340
https://arxiv.org/abs/1506.03340
https://doi.org/10.18653/v1/2020.acl-main.457
https://doi.org/10.18653/v1/2020.acl-main.457
https://arxiv.org/abs/2202.03629
https://arxiv.org/abs/2202.03629
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147


the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1601–1611, Vancouver,
Canada. Association for Computational Linguistics.

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom
Henighan, Dawn Drain, Ethan Perez, Nicholas
Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli
Tran-Johnson, et al. 2022. Language models
(mostly) know what they know. arXiv preprint
arXiv:2207.05221.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. In International
Conference on Learning Representations.

Wojciech Kryscinski, Nitish Shirish Keskar, Bryan Mc-
Cann, Caiming Xiong, and Richard Socher. 2019.
Neural text summarization: A critical evaluation. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 540–551, Hong
Kong, China. Association for Computational Linguis-
tics.

Wojciech Kryscinski, Bryan McCann, Caiming Xiong,
and Richard Socher. 2020. Evaluating the factual
consistency of abstractive text summarization. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 9332–9346, Online. Association for Computa-
tional Linguistics.

Philippe Laban, Tobias Schnabel, Paul N. Bennett, and
Marti A. Hearst. 2022. SummaC: Re-visiting NLI-
based models for inconsistency detection in summa-
rization. Transactions of the Association for Compu-
tational Linguistics, 10:163–177.

Faisal Ladhak. 2024. Faithfulness in Abstractive Sum-
marization: Progress and Challenges. Columbia
University.

J. Richard Landis and Gary G. Koch. 1977. The mea-
surement of observer agreement for categorical data.
Biometrics, pages 159–174.

Katherine Lee, Orhan Firat, Ashish Agarwal, Clara Fan-
njiang, and David Sussillo. 2018. Hallucinations in
neural machine translation.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive NLP tasks. Advances in
Neural Information Processing Systems, 33:9459–
9474.

Hui Lin and Vincent Ng. 2019. Abstractive summariza-
tion: A survey of the state of the art. Proceedings
of the AAAI Conference on Artificial Intelligence,
33(01):9815–9822.

Kevin Liu, Stephen Casper, Dylan Hadfield-Menell, and
Jacob Andreas. 2023. Cognitive dissonance: Why do
language model outputs disagree with internal rep-
resentations of truthfulness? In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 4791–4797, Singapore.
Association for Computational Linguistics.

Zheheng Luo, Qianqian Xie, and Sophia Ananiadou.
2023. ChatGPT as a factual inconsistency evaluator
for abstractive text summarization. arXiv preprint
arXiv:2303.15621.

Liang Ma, Shuyang Cao, Robert L Logan IV, Di Lu,
Shihao Ran, Ke Zhang, Joel Tetreault, and Alejandro
Jaimes. 2023. BUMP: A benchmark of unfaithful
minimal pairs for meta-evaluation of faithfulness met-
rics. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 12788–12812, Toronto,
Canada. Association for Computational Linguistics.

Andreas Madsen, Siva Reddy, and Sarath Chandar. 2023.
Faithfulness measurable masked language models.
arXiv preprint arXiv:2310.07819.

Andrey Malinin and Mark Gales. 2021. Uncertainty
estimation in autoregressive structured prediction. In
International Conference on Learning Representa-
tions.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022. Locating and editing factual asso-
ciations in GPT. Advances in Neural Information
Processing Systems, 36.

Kevin Meng, Arnab Sen Sharma, Alex J Andonian,
Yonatan Belinkov, and David Bau. 2023. Mass-
editing memory in a transformer. In The Eleventh
International Conference on Learning Representa-
tions.

Sabrina J. Mielke, Arthur Szlam, Emily Dinan, and Y-
Lan Boureau. 2022. Reducing conversational agents’
overconfidence through linguistic calibration. Trans-
actions of the Association for Computational Linguis-
tics, 10:857–872.

Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike
Lewis, Wen-tau Yih, Pang Wei Koh, Mohit Iyyer,
Luke Zettlemoyer, and Hannaneh Hajishirzi. 2023.
FActScore: Fine-grained atomic evaluation of factual
precision in long-form text generation. In EMNLP.

Anshuman Mishra, Dhruvesh Patel, Aparna Vijayaku-
mar, Xiang Lorraine Li, Pavan Kapanipathi, and Kar-
tik Talamadupula. 2021. Looking beyond sentence-
level natural language inference for question answer-
ing and text summarization. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 1322–1336, On-
line. Association for Computational Linguistics.

4412

https://arxiv.org/abs/2207.05221
https://arxiv.org/abs/2207.05221
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/D19-1051
https://doi.org/10.18653/v1/2020.emnlp-main.750
https://doi.org/10.18653/v1/2020.emnlp-main.750
https://doi.org/10.1162/tacl_a_00453
https://doi.org/10.1162/tacl_a_00453
https://doi.org/10.1162/tacl_a_00453
https://doi.org/10.7916/4jvc-1c53
https://doi.org/10.7916/4jvc-1c53
https://www.jstor.org/stable/2529310
https://www.jstor.org/stable/2529310
https://openreview.net/forum?id=SkxJ-309FQ
https://openreview.net/forum?id=SkxJ-309FQ
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://doi.org/10.1609/aaai.v33i01.33019815
https://doi.org/10.1609/aaai.v33i01.33019815
https://doi.org/10.18653/v1/2023.emnlp-main.291
https://doi.org/10.18653/v1/2023.emnlp-main.291
https://doi.org/10.18653/v1/2023.emnlp-main.291
https://arxiv.org/abs/2303.15621
https://arxiv.org/abs/2303.15621
https://doi.org/10.18653/v1/2023.acl-long.716
https://doi.org/10.18653/v1/2023.acl-long.716
https://doi.org/10.18653/v1/2023.acl-long.716
https://arxiv.org/abs/2310.07819
https://openreview.net/forum?id=jN5y-zb5Q7m
https://openreview.net/forum?id=jN5y-zb5Q7m
https://arxiv.org/abs/2202.05262
https://arxiv.org/abs/2202.05262
https://arxiv.org/abs/2210.07229
https://arxiv.org/abs/2210.07229
https://doi.org/10.1162/tacl_a_00494
https://doi.org/10.1162/tacl_a_00494
https://arxiv.org/abs/2305.14251
https://arxiv.org/abs/2305.14251
https://doi.org/10.18653/v1/2021.naacl-main.104
https://doi.org/10.18653/v1/2021.naacl-main.104
https://doi.org/10.18653/v1/2021.naacl-main.104


Giovanni Monea, Maxime Peyrard, Martin Josifoski,
Vishrav Chaudhary, Jason Eisner, Emre Kıcıman,
Hamid Palangi, Barun Patra, and Robert West. 2023.
A glitch in the Matrix? Locating and detecting
language model grounding with Fakepedia. arXiv
preprint arXiv:2312.02073.

Noel Ngu, Nathaniel Lee, and Paulo Shakarian. 2024.
Diversity measures: Domain-independent proxies for
failure in language model queries. In 2024 IEEE 18th
International Conference on Semantic Computing
(ICSC), pages 176–182. IEEE.
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Appendix

Here, we provide additional information about an-
notation guidelines, annotator disagreement exam-
ples, prompts used to generate organic responses
to our tasks, ChatGPT baseline comparisons, and
expanded results.

A Annotation Guidelines

The purpose of this annotation task is two-fold: (1)
identify if a generated response is a hallucination
relative to a given knowledge source, and (2) if so,
identify and mark the location(s) of the minimal
spans of text that are ungrounded against the knowl-
edge source. A response is grounded in a knowl-
edge source if that source entails the content of the
response. In other words, the response should (1)
not contradict or (2) draw conclusions that are not
explicitly given in the knowledge source.

A.1 CNN / DailyMail
Provided Information. (1) Original article, (2)
summary of article.

Task. Identify the presence and location of hal-
lucinations in the summary of the article, rela-
tive to the original article text. You are to only
annotate—by copying the text in the summary
and adding characters < and > in specific loca-
tions—around the minimal span(s) of the summary
text relative to the original article; I.e., if changing
an additional token wouldn’t change whether or not
the response was grounded or not, don’t include
it in the span you annotate. Note: You will be
given summaries that contain a variety number of
sentences. You are only to annotate the first three
sentences in the summary, discarding the rest.

Example. (CNN) – The world’s fastest man on
a pair of skis just got faster. On Monday Italian
Simone Origone broke his own speed skiing world
record as he reached 252.4 kilometers per hour
on the Chabrieres slopes in the French Alps – an
achievement confirmed by organizers France Ski
de Vitesse. With a 1,220 m slope that has a max-
imum gradient of 98% and an average of 52.5%,
Chabrieres is not for the faint-hearted. Traveling
at over 250 km/h is a privilege usually reserved
for Formula One drivers, yet speed skier Origone
was equipped with just an aerodynamic helmet to
increase streamlining and a ski suit made from air-
tight latex to reduce wind resistance. Origone’s
one nod to safety was wearing a back protector

in case of a crash as he threw himself down the
one kilometer track. Origone has been the fastest
speed skier on the globe since April 2006, having
set a then-new world record of 251.4 km/h at Les
Arcs. Bastien Montes of France was Origone’s
closest challenger on Monday, but even the Fren-
hcman’s new personal best of 248.105 km/h was
someway short of the Italian’s 2006 world record,
let alone his latest one. "Simone Origone is the
greatest champion of all time, he is the only person
to hold the record for two ski speeds in France –
Les Arcs and Vars Chabrieres. This is a historic
day," technical director of Speed Masters Philippe
Billy told Vars.com. The 34-year-old Origone – a
ski instructor, mountain guide and rescuer by day –
only took up the discipline in 2003, having given
up downhill skiing in 1999. "Now that I have twice
won the world record, I can say that I have made
history," Origone told Vars.com. "It is important
for me and for speed skiing."

Hypothetical Instance 1. The world’s fastest
man on skis just got faster.

• Everything is grounded, no need to mark any-
thing here.

Annotation. The world’s fastest man on skis
just got faster.

Hypothetical Instance 2. The world’s fastest
man on skis just got faster. He has now won the
world record twice. He has excelled at Chabrieres.
He has been the fastest speed skier on the globe
since April 2006. His speed record reached more
than 260 kilometers per hour.

• This summary has more than 3 sentences, so
the first thing to do is to only look at the first
three and discard any sentences beyond that
in your annotation.

• Even though the last sentence is ungrounded
relative to the source text, it is not within the
first three sentences, so we can ignore it here.

• Annotate as such, copying the first three sen-
tences into the annotation box. No need to
highlight anything, as everything in the first
three sentences are grounded:

Annotation. The world’s fastest man on skis
just got faster. He has now won the world record
twice. He has excelled at Chabrieres.
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Hypothetical Instance 3. Simone Origone,
now in his twenties, just got faster. He has now
won the world record more than twice.

• “In his twenties” contradicts with “The 34-
year-old Origone” in the original article.

• “more than twice” contradicts with how he
has now only won it exactly twice. As such,
annotate:

Annotation. Simone Origone, now in his <twen-
ties>, just got faster. He has now won the world
record <more than> twice.

Special Points of Note. Below, we list a few
points of special note to keep in mind during your
annotations.

Concatenation. When finding yourself annotat-
ing something like “The city’s pollution levels have
reached or <exceeded ><“very high”> levels for
the last...,” do concatenate the two labeled spans; if
there are no characters between them (for example,
<exceeded ><“very high”>), concatenating the an-
notation bounds into (<exceeded “very high”>) is
ideal.

“Was”/“Is”. If the article says something like
“Woods insisted he is ready to win the famous
Claret...” and the summary said something like
“said he was ready to win the famous Claret...”,
“was” here would not be considered to be a hallu-
cination, as the summary is recounting what was
said in the article, so the past tense here doesn’t
contradict what was originally said in the article.

When The Article Has “Contradicting” Facts.
Articles may sometimes “correct” themselves; i.e.
the article may have something where it originally
states a claim but then corrects it later in the article.
For example, “The NWS – last May – initially fore-
cast 13 to 20 “named storms,” including seven to
11 hurricanes. Then in August, it dialed down that
initial forecast to predict 13 to 19 named storms,
including six to nine hurricanes.”

In this case, if the summary only states “The
National Weather Service forecast called for 13 to
20 named storms” (and doesn’t mention it was cor-
rected later to 13 to 19), then this is a hallucination
as it is corrected later in the article.

If the summary states “The National Weather
Service forecast initially called for 13 to 20 named
storms” (and doesn’t mention it was corrected later

to 13 to 19) then this is not a hallucination, as it
quantifies the original prediction with “initially.”

If the summary states “The National Weather
Service forecast called for 13 to 19 named storms,”
then this is not a hallucination, as it is the final
corrected fact.

Identifying the Summary. Sometimes the sum-
marization system may produce things that are not
a summary of the article. For example, “Woman
dies while paragliding in Tenerife. Paragliding in
Tenerife. Paragliding in Tenerife. Paragliding in
Tenerife. Paragliding Tenerife Canary Islands.”

Here, only the first sentence is the summary,
and you can discard the rest. This is because the
summarization system tries to mimic how actual
website summaries work, so they might also add
things like topic tags, keywords, and things like
that.

Another example is “InvisiBra, £48, Lavalia,
lavalia.co.uk; Strapless Stick On Adhesive Bra,
£12, Marks and Spencer; Natural Stick On Bra,
£20, Debenhams.” These are all just keyword tags;
no summary of the article is present here. Try to
use your best judgment here, as it might not always
be clear.

In the case where such things are generated that
do not look to be part of a summary of the arti-
cle in terms of format (not content), discarding
them and everything after them is the way to go.
For the former example, you would annotate only
“Woman dies while paragliding in Tenerife.” for
hallucinations.

A.2 Conv-FEVER

Provided Information. (1) Conversational con-
text, (2) Knowledge for next response, (3) Next
response.

Task. Identify the presence and location of hallu-
cinations in “Next response”, relative to “Knowl-
edge for next response”. You are to only an-
notate—by copying the text in “Next Reply”
and adding characters < and > in specific lo-
cations—around the minimal span(s) of an un-
grounded response relative to the knowledge; I.e.,
if changing an additional token wouldn’t change
whether or not the response was grounded or not,
don’t include it in the span you annotate.

Example. Conversational Context: A: lets talk
bowling a game where you throw a bowling ball
towards a target. B: ok I love bowling I would
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like to know more A: for one it is one of the major
forms of throwing sports and I think a lot of people
enjoy it B: yes me too I use to bowl all the time
with my family what about the strike? A: well a
strike is when you knock down all pins on the first
round B: ok how can I get a turkey I think that may
be hard to get though Knowledge for Next Reply:
Three consecutive strikes are known as a "turkey".

Hypothetical Instance 1. Next Reply: A: yea
four consecutive strikes is known as a turkey

• Here, a contradiction is present in the under-
lined portions: four consecutive strikes in the
response goes against what is provided in the
knowledge, which says three.

• To make this reply grounded, one would have
to change “four” to “three”.

• As such, in your annotation, you will highlight
the minimum needed span of text to make this
reply grounded, with chevrons <>. Here, the
minimum needed span of text to change is
“four”, so you would annotate as such:

Annotation. yea <four> consecutive strikes is
known as a turkey

Hypothetical Instance 2. Next Reply: A:
yea it is pretty hard, four consecutive strikes is
known as a turkey

• Here, the contradiction is still present in the
previously underlined portion: four is a con-
tradiction with three.

• However, in addition to this contradiction, you
see an expression of an opinion in this re-
sponse: that getting a turkey is pretty hard
(underlined).

• You are to ignore the expression of personal
opinions during your annotation of minimal
spans for this task, as we won’t consider con-
versational chitchat—if complemented with
grounded information elsewhere in the re-
ply—to be a hallucination for this task. As
such, you would annotate this as:

Annotation. yea it is pretty hard, <four> con-
secutive strikes is known as a turkey

Hypothetical Instance 3. Next Reply: A:
yea it is pretty hard.

• Here, the response is purely an expression of
an opinion and does not use any information
in the provided knowledge.

• As such, you would mark this entire response
to be a hallucination, annotating as:

Annotation. <yea it is pretty hard.>

Hypothetical Instance 4. Next Reply: A: Three
strikes consecutively is a turkey.

• Here, the response is grounded. As such, you
won’t mark anything in the response, annotat-
ing as such:

Annotation. Three strikes consecutively is a
turkey.

Hypothetical Instance 5. Next Reply: A:
four consecutive strikes is known as a turkey,
also known as a strike.

• Two hallucinations are present in this re-
sponse:

• The direct contradiction of four with three in
the knowledge source, and

• The final part of the reply, saying that it’s also
known as a strike, which is information not
provided anywhere in the knowledge source.
As such, you would mark this as:

Annotation. <four> consecutive strikes is
known as a turkey, <also known as a strike>

A.3 E2E

Provided Information. (1) Restaurant attributes,
(2) Generated restaurant description.

Task. Identify the presence and location of
hallucinations in the generated restaurant de-
scription—by copying the text in the summary
and adding characters < and > in specific loca-
tions—around the minimal span(s) of the gen-
erated restaurant description relative to the pro-
vided attributes. i.e., if changing an additional to-
ken wouldn’t change whether the description was
grounded or not, don’t include it in the span you
annotate. Note that numerical ratings should be ren-
dered as numerical ratings and text ratings should
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be rendered as non-numerical expressions. For ex-
ample, “customer rating” can be “low”, “medium”
and “high”, but also “1”, “3”, and “5”. If the cus-
tomer rating is “1”, for instance, and the gener-
ated description says “. . . has a low customer rat-
ing”, that would be considered a hallucination. The
“priceRange” rating also has this attribute, in addi-
tion to “customer rating.” Finally, E2E specifies
the "familyFriendly" attribute as akin to Child-
friendly in gold annotations: if a restaurant is
family-friendly, then it is also child-friendly.

Hypothetical Instance 1. Restaurant At-
tributes: name[The Wrestlers], priceRange[less
than £20], customer rating[low], fami-
lyFriendly[no]. Restaurant Description:
The Wrestlers is an adults only restaurant with a
customer rating of 1 out of 5 and a price range of
less than £20.

• While the familyFriendly[no] attribute says
that the restaurant is not family friendly, this
does not mean that the restaurant is adults
only.

• - Having a low customer rating does not imply
a 1 out of 5 customer rating. As such, annotate
as:

Annotation. The Wrestlers is an <adults only>
restaurant with a customer rating of <1 out of 5>
and a price range of less than £20.

Hypothetical Instance 2. Restaurant At-
tributes: name[The Dumpling Tree], eat-
Type[restaurant], food[Italian], priceRange[high].
Restaurant Description: The Dumpling Tree is
an Italian restaurant with high prices.

• Everything is grounded, no need to mark any-
thing.

Annotation. The Dumpling Tree is an Italian
restaurant with high prices.

Hypothetical Instance 3. Restaurant At-
tributes: name[The Wrestlers], priceRange[less
than £20], customer rating[low], fami-
lyFriendly[no]. Restaurant Description:
Prices will never exceed £20 at The Wrestlers and
they also don’t really rate well. They are not even
family-friendly.

• Having a priceRange attribute of less than 20
does not mean that prices will never exceed
twenty.

• As “will never exceed” is the minimal span
you would need to change to make the de-
scription grounded relative to the provided
attributes, annotate:

Annotation. Prices <will never exceed> £20 at
The Wrestlers and they also don’t really rate well.
They are not even family-friendly.

Hypothetical Instance 4. Restaurant At-
tributes: name[Midsummer House], food[French],
customer rating[5 out of 5], near[Café Rouge].
Restaurant Description: A place for fine dining
French food, Midsummer House is nearby Cafe
Rouge.

• Nowhere in the attributes does it say that it’s
“fine dining.” As such, annotate:

Annotation. A place for <fine dining> French
food, Midsummer House is nearby Cafe Rouge.

Hypothetical Instance 5. Restaurant
Attributes: name[Browns Cambridge],
priceRange[cheap], priceRange[moderate],
customer rating[1 out of 5]. Restaurant Descrip-
tion: The Brown’s chain of food restaurants is
an 1 out of 5 customer rated restaurant, and have
moderate and cheap pricing. They are childfree.

• The attribute does not mention that Browns
Cambridge is a chain of food restaurants.

• Furthermore, it does not say that the restaurant
is childfree. As such, annotate:

Annotation. The Brown’s <chain of food restau-
rants> is an 1 out of 5 customer rated restaurant,
and have moderate and cheap pricing. <They are
childfree.>

Hypothetical Instance 6. Restaurant
Attributes: name[Browns Cambridge],
priceRange[more than £30]. Restaurant
Description: The Browns Cambridge is a
restaurant with high prices.

• More than £30 does not necessarily mean
“high prices.” As such, annotate:

Annotation. The Browns Cambridge is a restau-
rant with <high prices>.
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Taxi driver dropped off a soldier on an unsafe road, and
he was killed by a coach. The taxi driver was not at
fault.

Taxi driver dropped off a soldier on an unsafe road, and
he was killed by a coach. The taxi driver was not at
fault.

Accounting is the language of business, and it mea-
sures the results of an organization’s economic activ-
ities.

Accounting is the language of business, and it mea-
sures the results of an organization’s economic activ-
ities.

Alimentum is a high rated family-unfriendly restaurant
with less than £20 per person.

Alimentum is a high rated family-unfriendly restaurant
with less than £20 per person.

Table 7: Annotator span-level annotation differences
for hallucination, annotated in bold, in organic model
responses for CNN / DailyMail (top), Conv-FEVER
(middle), and E2E (bottom).

B Annotator Disagreements

Examples of annotator disagreements in the exact
spans of hallucination are shown in Table 7. Qual-
itatively, we find that annotators agreed generally
on the specific items of hallucination; i.e. the sub-
ject that was hallucinated (i.e. the taxi driver), the
description of what was mentioned (i.e. the de-
scription of accounting), and the attribute that was
hallucinated (i.e. the specific rating of the restu-
rant). However, where exactly those hallucinated
spans began and ended was a source of reasonable
variation among annotators.

C Prompts and Further Evaluation
Details

Organic Model Responses. CNN / DailyMail
generations take the form of a 0-shot prompt
with [ARTICLE] TL;DR: [SUMMARY], whereafter
the first 3 sentences generated in the summary
are taken to be the summary of the article. For
Conv-FEVER, we use a 2-shot in-context learning
prompt in the form

## CONVERSATION HISTORY

[CONTEXT]

## KNOWLEDGE FOR NEXT RESPONSE

[KNOWLEDGE]

## RESPONSE THAT USES THE
INFORMATION IN KNOWLEDGE

[RESPONSE]

whereafter everything generated in the response
preceding a newline character is taken as the final
generation. For E2E, we use a 10-shot in-context
learning prompt in the form of

Restaurant Attributes:
[RESTAURANT ATTRIBUTES]

Restaurant Description:
[RESTAURANT DESCRIPTION]

with the same newline constraints as Conv-
FEVER.

FActScore Evaluation. As FActScore (Min
et al., 2023) was originally designed for evaluat-
ing the faithfulness of long-form generated texts,
we slightly modify its evaluation for our Data-
to-Text task, E2E. Specifically, instead of evalu-
ating on raw attribute sets (i.e. name[Clowns],
eatType[pub], near[The Sorrento]), we trans-
form these attributes into natural language sen-
tences via simple regular expressions. In this exam-
ple, these attributes would instead be transformed
into:

The name of this restaurant is Clowns.
This restaurant is a pub. This restaurant
is near The Sorrento.

For our other tasks on abstractive summariza-
tion and knowledge-grounded dialogue generation,
we keep evaluations unchanged with the original
implementation of FActScore for our evaluations.

C.1 ChatGPT Prompts

ChatGPT Classic. For the most basic zero-shot
prompt classifier with no reasoning, we use the
following prompt for CNN / DailyMail, making
minimal changes relative to Luo et al. (2023):

Decide if the following summary
(SUMMARY) is consistent with the
corresponding article (ARTICLE).
Note that consistency means all
information in the summary
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(SUMMARY) is supported by the
article (ARTICLE).

Article (ARTICLE): [Article]

Summary (SUMMARY): [Summary]

Answer (yes or no):

For Conv-FEVER, our prompt is structured as
follows:

Decide if the following sentence
(SENTENCE) is consistent with
the corresponding knowledge
statement (KNOWLEDGE). Note that
consistency means all
information in the sentence
(SENTENCE) is supported by the
knowledge statement (KNOWLEDGE).

Knowledge Statement (KNOWLEDGE):
[Knowledge]

Sentence (SENTENCE): [Response]

Answer (yes or no):

Finally, for E2E, our prompt is:

Decide if the following
restaurant description
(DESCRIPTION) is consistent with
the provided restaurant
attributes (ATTRIBUTES). Note
that consistency means all
information in the description
is supported by the provided
attributes.

Restaurant Attributes
(ATTRIBUTES): [Attributes]

Restaurant Description
(DESCRIPTION): [Response]

Answer (yes or no):

ChatGPT CoT. For zero-shot chain-of-thought
reasoning prompts, we simply replace Answer
(yes or no): in all prompts with Explain your
reasoning step by step then answer (yes
or no) the question:, following (Luo et al.,
2023).
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Figure 4: Grounding behavior saliency—as measured
by probe response-level F1 on test set—of single layer
probe classifiers trained on the attention-head out
projections and feed-forward states of llama-2-13b,
stratified across tasks and layers. Vertical dashed lines
denote the layers that respective probes first surpass
95% of their peak performance.

D Expanded Results and Discussions

Grounding Behavior Saliency. Full saliency re-
sults for all tasks and layers are shown in Figure 4;
saliency as stratified across hallucination layers
and types across both MLP and Attention probes is
shown in Figure 5.

Task Transfer. Full results for task transfer using
the response-level PoolingE probe are shown in
Table 8.

Differences from Specific Prior Work. In the re-
view process, reviewers raised uncertainties about
the specific differences between our work and that
of Azaria and Mitchell (2023) and Kadavath et al.
(2022); we note our response here.

Azaria and Mitchell (2023) are interested in de-
tecting the truth or falsehood of factual statements
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Figure 5: Intrinsic and extrinsic hallucination saliency
across layers for synthetic abstractive summarization
(BUMP, for CDM) as measured by response-level MLP
and Attention probe F1 on hallucination types.

(e.g., “H2O is water, which is essential for hu-
mans”). The models they probe are presented with
these statements without any grounding knowledge,
so the probe can only measure if the model’s hid-
den states reveal some discrepancy between the
encoded statement and the training data as encoded
by the learned weights. This cannot work unless
the learned weights really encode the truth, so one
should only test facts that are well-known and un-
changing or slowly changing in time, modality, etc.

In contrast, a RAG chatbot built on a company’s
internal data will be discussing specialized and of-
ten ephemeral retrieved information that is not well
represented in the world knowledge of an LLMs
weights. Here, it is important to ensure that the
model appropriately follows task instructions, and
in particular that it does not hallucinate in the sense
defined by §1 and Ji et al. (2023): its responses
should be appropriately grounded in the retrieved
data.

For emphasis we highlight three important dis-
tinctions. (1) Azaria and Mitchell (2023) examine
the veracity of statements without supporting text,
while we examine hallucination with respect to
grounding text and task instructions. (2) They do
not probe models on text that the models them-
selves generate, but text provided by a secondary
model (ChatGPT) and additional human curation.
This is an important distinction—we evaluate hal-
lucination on both organically generated texts (and
their hidden states) and those generated by a sec-
ondary model + human manual curation (synthetic
grounding errors) and find that the probe perfor-

Test Train F1-R

CDM CF 0.67
E2E 0.65
CF+E2E 0.68
CDM 0.70

CF CDM 0.84
E2E 0.81
CDM+E2E 0.84
CF 0.93

E2E CDM 0.06
CF 0.71
CDM+CF 0.71
E2E 0.86

Table 8: Response-level PoolingE cross-task probe per-
formance, as measured by F1-R. All experiments here
use the same amount of training data (a random subset
of the full training set). The "+" sign indicates an equal
mixture of two training tasks.

mance generally degrades when probing across
these two cases. Finally, (3) they do not study
span or token-level detection, which is one of our
primary contributions.

Kadavath et al. (2022) similarly probe an LLM
in a closed book QA task by training an attention
head to detect when the model does not know the
answer to a trivia question in the TriviaQA dataset
(Joshi et al., 2017). This is different than detecting
hallucination in a grounded generation task, as it
only tests recall of knowledge already stored in
model weights. As for Azaria and Mitchell (2023),
their generation task does not require the model to
draw information from evidence in the prompt that
may disagree with stored knowledge.
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