A Mechanistic Analysis of a Transformer Trained on
a Symbolic Multi-Step Reasoning Task

Jannik Brinkmann'!
Paul Swoboda*

"University of Mannheim

Abstract

Transformers demonstrate impressive perfor-
mance on a range of reasoning benchmarks.
To evaluate the degree to which these abilities
are a result of actual reasoning, existing work
has focused on developing sophisticated bench-
marks for behavioral studies. However, these
studies do not provide insights into the inter-
nal mechanisms driving the observed capabili-
ties. To improve our understanding of the inter-
nal mechanisms of transformers, we present a
comprehensive mechanistic analysis of a trans-
former trained on a synthetic reasoning task.
We identify a set of interpretable mechanisms
the model uses to solve the task, and validate
our findings using correlational and causal evi-
dence. Our results suggest that it implements a
depth-bounded recurrent mechanisms that op-
erates in parallel and stores intermediate results
in selected token positions. We anticipate that
the motifs we identified in our synthetic setting
can provide valuable insights into the broader
operating principles of transformers and thus
provide a basis for understanding more com-
plex models.'

1 Introduction

Transformer-based language models (Vaswani
et al., 2017) demonstrate impressive performance
on reasoning’ tasks (Kojima et al., 2023), mathe-
matical problem-solving (Cobbe et al., 2021), and
planning (Huang et al., 2022). However, despite
strong performance on certain reasoning bench-
marks, it remains unclear to what extent these abili-
ties are a result of actual reasoning or simple pattern
memorization (Huang and Chang, 2023).

YEqual contribution.

!Correspondence to jannik.brinkmann @uni-mannheim.de.
The code is available at github.com/backward-chaining-
circuits.

2In this paper, we consider a form of deductive reasoning
as studied in Saparov and He (2023). For a discussion of
different forms of reasoning, refer to Huang and Chang (2023).

Abhay Sheshadri'

2Georgia Institute of Technology

Victor Levoso'™

Christian Bartelt!

3Independent “Heinrich-Heine University Diisseldorf

3]
E3| = [| Y | | | = N])

(C) Backward

E1| X A 61 =) O mmglf?@l@@
E| S (P13 = | e | | = | N])

(A) Edge Token (B) Goal

e e B) o) B[] [0) [e enon B
!Pﬂ@!bﬂ@@bﬁ@@%ﬂ@l@@

Figure 1: Backward Chaining. Given an input prompt,
the model concatenates edge tokens in a single token
position (A), and copies the goal node into the final
token position (B). The next step is then identified by
applying an iterative algorithm that climbs the tree one
level per layer (C).

To understand the reasoning capabilities of lan-
guage models, existing work has focused on de-
veloping sophisticated benchmarks for behavioral
studies (Tafjord et al., 2021; Saparov and He, 2023;
Valmeekam et al., 2023). However, the conclusions
drawn from these studies do not provide insights
into the internal mechanisms driving the observed
capabilities. In contrast, recent work in the field of
mechanistic interpretability attempts to understand
the algorithms that models implement by reverse-
engineering their internal mechanisms, and describ-
ing them at a certain level of abstraction (Elhage
et al., 2021). For example, Nanda et al. (2023a)
reverse-engineered how a small transformer model
implements modular addition, providing insights
into the specific computations performed by dif-
ferent components of the model. Similarly, Ols-
son et al. (2022) discovered “induction heads” in
transformers which enable a distinct copying mech-
anism that is considered to be crucial for the in-
context learning abilities of language models.

Contributions This paper studies reasoning in
language models by reverse-engineering the inter-

4082

Findings of the Association for Computational Linguistics: ACL 2024, pages 4082—4102
August 11-16, 2024 ©2024 Association for Computational Linguistics

mailto:jannik.brinkmann@uni-mannheim.de
https://github.com/abhay-sheshadri/backward-chaining-circuits
https://github.com/abhay-sheshadri/backward-chaining-circuits

nal mechanisms of a transformer trained on a sym-
bolic multi-step reasoning task. Specifically, we
focus on path finding in a tree, a variation of the
task proposed in Saparov and He (2023). By an-
alyzing the internal representations of the model,
we identify several key mechanisms:

1. A specific type of copying operation imple-
mented in attention heads, which we call de-
duction heads. These are similar to induc-
tion heads as observed in Olsson et al. (2022).
In our task, deduction heads intuitively serve
the purpose of moving one level up the tree.
These heads are implemented in multiple con-
secutive layers which allows the model to
climb the tree multiple layers in a single for-
ward pass.

2. A parallelization motif whereby the early lay-
ers of the model choose to solve several sub-
problems in parallel that may be relevant for
solving many harder instances of the task.

3. A heuristic for tracking the children of the
current node and whether these children are
leaf nodes of the tree. This mechanism is used
when the model is unable to solve the problem
using deduction heads and parallelization.

We validate our findings using correlational and
causal evidence, using techniques such as linear
probing (Alain and Bengio, 2018), activation patch-
ing (Vig and Belinkov, 2019), and causal scrub-
bing (Chan et al., 2022).

2 Related Work

Expressiveness of Transformers To understand
the capabilities of transformers, one line of work
characterizes their theoretical properties (Bhat-
tamishra et al., 2020; Merrill et al., 2021; Pérez
et al., 2021; Merrill et al., 2022; Liu et al., 2023).
These studies answer questions about the expres-
siveness of the transformer architecture by treating
them as approximators of different classes of func-
tions (Yun et al., 2020), or by characterizing the
class of formal languages that a transformer can
recognize (Strobl et al., 2023).

Mechanistic Interpretability In contrast to
these theoretical investigations, a number of stud-
ies have adopted an empirical approach in order to
understand what transformers learn in practice (El-
hage et al., 2021; Delétang et al., 2023; Zhang et al.,

2024). Our analysis is inspired by existing work in
the field of mechanistic interpretability, attempting
to discover and understand the algorithms imple-
mented in a model by reverse-engineering its inter-
nal mechanisms (Riuker et al., 2023). To explore
these internal mechanisms, the field has adopted
techniques such as activation patching (Wang et al.,
2023b), causal scrubbing (Chan et al., 2022), and
circuit discovery (Conmy et al., 2023). In addi-
tion, considerable focus has been placed on the
study of small models trained on specialized tasks,
such as modular addition (Nanda et al., 2023a), or
group operations (Chughtai et al., 2023), providing
a more manageable framework for understanding
complex computational processes. We present an
extended discussion of the related work on mecha-
nistic interpretability in Appendix A.

Evaluating Reasoning Capabilities Existing ap-
proaches to evaluate the reasoning capabilities of
language models focus on their performance on
a range of downstream tasks (Huang and Chang,
2023). To enable a more formal analysis of reason-
ing, a number of studies have developed sophisti-
cated metrics and benchmarks (Han et al., 2022;
Golovneva et al., 2023; Wang et al., 2023a). For
example, Saparov and He (2023) use a synthetic
question-answering dataset based on a world model
expressed in first-order logic to parse the generated
reasoning processes into symbolic proofs for for-
mal analysis. Their results suggest that language
models are capable of making correct individual
deduction steps. However, these approaches stop
short of exploring the internal mechanisms that en-
able these capabilities (Huang and Chang, 2023).
Hou et al. (2023) investigate whether language
models solve reasoning tasks using information
the model memorized from pretraining or using
information provided in context. To investigate
this question, they use linear probes to determine
whether the model encodes a reasoning tree. The
approach that comes closest to our work is Stolfo
et al. (2023), presenting a mechanistic interpreta-
tion of arithmetic reasoning by investigating the
information flow in the model given simple mathe-
matical questions.

3 Background

Transformer Notation Transformers (Vaswani
et al., 2017) represent input text as a se-
quence t1,to,...,tN of tokens, such thatt; € V
where V' is a vocabulary. Each token ¢; is em-

4083

bedded as a vector X? € R? using an embedding
matrix Wg € RIVIX? where d is the dimension of
the hidden state. These embeddings initialize the
residual stream, which is then transformed through
a sequence of L transformer blocks, each consist-
ing of a multi-head attention sublayer and an MLP
sublayer. The representation of token ¢; at layer ¢
is obtained by:

xf = Xfil + af + mf (D)
where af and m! are the outputs of the attention
and MLP sublayers. To predict the next token in the
sequence, it applies an unembedding matrix Wy €
RIVI*4 to the residual stream XZL , translating it into
a probability distribution over the vocabulary.

Linear Probes To investigate whether informa-
tion is encoded in intermediate representations of
the model, we use linear probes (Alain and Bengio,
2018) implemented as a linear projection from the
residual stream. This involves training a logistic
regression model on a dataset of activations xf
to predict an auxiliary classification problem. For
example, we use it to determine whether informa-
tion about an edge is encoded in the activations at
a specific token position. If the performance of the
linear probe is sufficiently high, we can treat this
as evidence for the information being encoded.

Activation Patching To evaluate the importance
of a model component for a given prediction, we in-
tervene by patching in the activations it would have
had on a different input (also called resampling ab-
lations) (Vig et al., 2020; Meng et al., 2022). This
involves using a clean input s with an associated
target prediction r, and a corrupted input s’ with
a different target r’. Then, we cache the activa-
tions of the component on s, and evaluate the effect
of patching in these activations when running the
model on s’. To compute the effect of this interven-
tion, we compute the difference in logits:

LD(r,r") = Logit(r) — Logit(r’) ()

Causal Scrubbing To evaluate specific hypothe-
ses about internal mechanisms, we use causal
scrubbing which evaluates the effect of behavior-
preserving resampling ablations (Chan et al., 2022).
Specifically, given a hypothesis about which com-
ponent of a model implements a specific behav-
ior, we replace the activations of that component
on some input with activations on another input,
where our hypothesis predicts that the activations

represent the same thing. Then, we evaluate the im-
pact of this intervention by computing how much
of the initial performance is recovered:

Lscrubbed - Lrandom
Les = 7 17 3
model — Hrandom

where L,,,04e1 18 the test loss of the trained model,
L andom of a model that outputs uniform logits,
and L ,upbed Of the trained model with the chosen
activations resampled. In contrast to activation
patching, which provides insights about whether a
specific activation is causally linked to the output,
causal scrubbing provides stronger evidence about
the role of the activations in the model. Recovering
the majority of the loss with a given hypothesis
demonstrates that the activation corresponds to a
specific variable in a high-level causal model.

4 Experimental Setup

4.1 Task Description

We focus on path finding in trees as a modified
version of the task proposed by Saparov and He
(2023). Our adaptation shifts the focus from rea-
soning in natural language to abstract symbolic rea-
soning. This allows us to better understand motifs
that the models might be using to solve analogous
problems in natural language. In our experimental
setup, we generate training samples by generating
binary trees 7' = (V, E') uniformly at random from
the set of all trees with 16 nodes, i.e. |[V| = 16.
Then, for each tree, a leaf node is randomly se-
lected as the target node (see Figure 2). The model
is given the edge list [A;1[B1], [A;1[B>1, ... [An]

[Bn] of the tree, a specified goal [G], and the root
node [P¢1], and is trained to predict the path from
the root node to the goal [P,][P3] ... [Pp] such
that [P,] = [G], as depicted in Figure 3. The path
between any two nodes in a tree is unique; there-
fore, the data generation is not affected by the type
of search algorithm used to determine the path. We
emphasize that this task is nontrivial, as the model
has to perform multiple reasoning steps in a single
forward pass to predict the next step. At each step,
the model must determine from which node the
goal is reachable. Thus, the model must perform
multiple steps of reasoning for each next token
prediction without relying on techniques such as
chain-of-thought or scratchpad (Wei et al., 2022),
which would allow the model to roll-out the rea-
soning steps over multiple next token predictions.

4084

1. Generate a Random Tree

PN
ol

e @R?

POP N ®

&

2. Select a Leaf Node as Goal

@)

TOY

3. Generate Path from Root to Goal

&
%5

0
TP R @

©,

® 00 6 06 6 0.

Figure 2: Data Generation. To generate our training set, we (1) generate a binary tree, (2) select a leaf node as the
goal node, and (3) determine the path from the root to the goal node.

Prompt: 10 — 3 10 — 14 3 =7
6 — 13 7 —5 1 — 15 15 —9
0 —11 8 —12 | 9 : 10

Model Qutput: |43 |1 — 15 — 9

3 -1

7 —6 Edge List

14 — 4 14 — 38 4 >0 0 —2
Goal Node : Root Node

Path

Figure 3: Prompt Format. The model receives input in a structured format, with each box representing a token. The

edge list of the tree is denoted as token pairs [A;1[B¢], . ..
the goal [G] and the root node [P;]. The model’s objective is to predict the nodes in the path [P,] ...

[A,1[B,1] followed by the task specification, including
[Pm1]7

culminating in the goal node [P,] = [G]. For simplification, our tokenization distinguishes tokens representing
source and target nodes of each edge, such as [15] and [—15].

4.2 Model Specification and Training Process

In our experiments, we use a 6-layer, decoder-
only transformer with an embedding dimension
of 128, a single attention head per layer, and a feed-
forward dimension of 512, resulting in a total of
1.2 million parameters. The training dataset con-
sists of 150,000 generated trees. The edge lists of
these trees are shuffled to prevent the model from
learning simple heuristics and encourage structural
understanding of trees. To evaluate the perfor-
mance of our model, we compute the accuracy
based on the exact match of complete sequences
using greedy decoding. Our model achieves 99.7 %
accuracy rate on a test set of 15,000 unseen trees,
despite seeing just a small fraction of all possible
trees during training (see Appendix B). This sug-
gests that generalization is required for meaningful
performance and that the model has learned to be
capable of solving pathfinding in trees.

5 Symbolic Reasoning using Backward
Chaining

In this section, we present a mechanistic analysis of
the internal mechanisms of the model and provide

correlational and causal evidence. Our findings
suggest that the model uses an interpretable and
meaningful backward chaining algorithm to per-
form pathfinding in a tree. To help guide the reader,
we present an intuitive explanation before break-
ing down the individual algorithmic steps in the
following sections.

The Backward Chaining Algorithm First, the
model aggregates the source and target nodes of
each edge in the edge list into the target node po-
sition (see Section 5.1). Then, the model starts
at the goal node and moves up the tree one level
with each layer of the model. This mechanism is
implemented using attention heads, which we term
“deduction heads” (see Section 5.2). By the com-
position of multiple attention heads in consecutive
layers, the model can traverse the tree upwards
for L — 1 edges, where L is the number of layers in
the model. We refer to this mechanism as backward
chaining, inspired by the use of the term in the sym-
bolic artificial intelligence literature (Russell and
Norvig, 2009). In more complex scenarios, where
the required path exceeds the depth of the model, it
relies on backward chaining from multiple nodes in

4085

the tree in parallel. This creates multiple subpaths
that can be used to find the correct next step in
cases where the goal node is more than L — 1 edges
away (see Section 5.3). In addition, the model uses
a simple heuristic as a fallback mechanism, where
it identifies child nodes of the current position and
evaluates whether these are leaf nodes of the tree.
This enables the model to make informed guesses
when backward chaining and parallelization are
insufficient to solve the problem (see Section 5.4).

5.1 Edge Token Concatenation

The attention head in the first layer of the model
creates edge embeddings by moving the informa-
tion about the source token onto the target token
for each edge in the context. Specifically, for each
edge [A][B] it copies the information from [A]
into the residual stream at position [B]. This mech-
anism has some similarities with ‘“Previous Token
Heads”, as observed in pre-trained language mod-
els (Olsson et al., 2022; Wang et al., 2023a).

Experiment: Linear Probes To validate that
the model creates edge embeddings, we train a
linear probe to predict the associated edge given
the activations x! at the positions of target nodes.
The probe is trained using 8,000 examples and
evaluated on a test dataset of the same size. For
comparison, we also report the performance of a
linear probe given the activations x° at the positions
of the target nodes and probes given the activations
at the positions of the source node.

Results Table 1 reports the performance of the
linear probe measured using the F1 score. We find
that we can successfully extract the source and
target tokens [AJ[B] from the residual stream acti-
vations x! at the position of the target tokens after
the first layer, providing strong evidence for the
edge token concatenation hypothesis as described
above. Moreover, it does not encode the complete
edge in the position of the source token, attributed
to causal masking in the attention mechanism.

5.2 Backward Chaining

The most important mechanism the model uses
to predict the correct next step is an iterative algo-
rithm, which we refer to as backward chaining. The
algorithm starts at the goal node and climbs the tree
one level per layer. To this end, the model copies
the target node [G] into the final token position
[P;] (see Table 1) and then in each consecutive
layer applies what we term “deduction heads”.

Table 1: F1 score of linear probes trained to predict the
edge [A][B] given the residual stream activations at po-
sition [A] or [B]. In addition, we report the performance
of a linear probe to predict the goal node [G] from the
positions in the path [P;].

0 1

X X
Linear {[A;] — [A;1[B;]} 0.13 0.19
Linear {[B;]1— [A;1[B;1} 0.11 1.00
Linear {[P;] — [G]} 0.03 1.00

Mechanism: Deduction Heads The function of
deduction heads is to search for the edge in the
context in which the current position is the target
node [B], find the corresponding source token
[A], and then copy the source token over to the
current position. Thus, deduction heads complete
the pattern by mapping:

[A] [B]...[B] — [A] “)

In other words, this mechanism enables the model
to go one step up the tree and append [A] after
having seen the last [B] in the sequence. This
mechanism depends on the edge-token concatena-
tion, which previously copied information about
[A] into [B] (see Appendix C). This allows the
deduction head to search for information about [B]
but then copy information about [A] into the final
token position.

By composition of multiple deduction heads in
consecutive layers, the model is capable of climb-
ing several steps up the tree in a single inference
step. This creates a subpath at the final token po-
sition whose lengths is equivalent to the number
of layers involved. In our model, we observe that
the attention heads after the first layers can act as
deduction heads, resulting in a backward chaining
depth of at most L — 1 steps. The role of these
heads depends on the proximity of the current po-
sition to the goal node; for example, if the root
node is just four steps away from the goal node, the
model recognizes this and the attention head in the
sixth layer does not act as a deduction head.

Experiment: Causal Scrubbing To confirm that
the model uses backward chaining to predict the
next step for paths up to a depth of L — 1, we use
causal scrubbing (see Section 3). Specifically, we
hypothesize that the attention head of layer ¢ is
responsible for writing the node that is £ — 1 edges
above the goal into the final token position in the
residual stream. This implies that the output of

4086

L1.H1
L2.H1
L3.H1
L4.H1
L5.H1
L6.H1

(.

6—9,8—1,12—14,5—-11,7 —+4,2 53,13 15,1 5,9 —+2,4 -13,0 8,11 —+7,14 —+6,10 0,12 — 10| [i§ : 12
6 —9,8F M, 12 —-14,5—11,7 —4,2 —3,13 .1 —59F82.4 -+13,0 »8,11 —»7,14 —6,10 - 0,12 — 10| 15 :12
6F9.8 +1,12 -14,5 -11,7 -+4,2 3,13 15,1 —5,9 —2,4 8.0 B98.11 —+ 7,14 —6,10 - 0,12 — 10| 15 :12
6—+98—1,12 —14,5—11,7 —+4,2 3,13 +15,1 —-5,9 -2,4 —13,0 — 8,11 [14 96 . 10 9§, 12 — 10| 15 :12
6 —9,81,12 — 14,5 .7 —+4,2-3,13 +15,1—=5,9 -+2,4 13,0 —8,11 —7,14=6,10 =012 — 10| 15 {12
6—9,8=1,12 -14,5—=11,7 —+4,2 —+3,13 — 15,1 [§,9 —2,4 — 13,0 98,11 — 7,14 6,10 —0,12 — 10| 15 :12

J

Figure 4: Visualization of multi-layer attention patterns on an example input. We show the attention from three
selected positions: the path position, register token at position 39, and register token at position 44. We show that the
path node starts backward chaining from the specified goal, while the two register tokens start backward chaining
from different subgoals. Each token is highlighted by the color of the token that most strongly attends to it. The
intensity of the color is based on the magnitude of the attention score. For details on how we select the register

tokens and more examples, see Appendix E.

the attention head in layer ¢ should be consistent
across trees that share the same node ¢ — 1 edges
above the goal. To test this, we generate a clean and
a corrupted graph that share the same node ¢ — 1
edges above the goal node. Then, we substitute
the output of the head on the clean graph with the
output of the head on the corrupted graph, and
measure the difference in the loss.

-100

% of Loss Recovered

-200 1 4 7 10 13

Path Length

Figure 5: To test whether the model predicts the next
step using backward chaining, we perform resampling
ablations on each head using causal scrubbing. We find
that we can recover close to 100 % of the performance
of the model for paths up to length L — 1, providing
strong evidence for our backward chaining hypothesis.

Results Figure 5 illustrates the effect of causal
scrubbing. We find that we can recover most of
the performance (close to 100 %) of the model for
paths up to length L — 1, providing strong evidence
for our hypothesis about backward chaining. We
also find that this hypothesis explains most of the
behavior of the attention heads in the first four
layers of the model even on paths that require more
than L — 1 steps; only the attention heads in the
final two layers act significantly different, such that
the model ends up confidently making incorrect

predictions after we apply causal scrubbing. This
highlights that the heads in these two layers cannot
be accurately described as deduction heads over
the entire data distribution.

5.3 Path Merging

In cases where the goal is more than L — 1 steps
away from the current position, the previously de-
scribed mechanism is insufficient. To address this,
the model does not only perform backward chain-
ing on the final token position, but in parallel on
multiple different token positions. We refer to these
tokens as “register tokens”. The resulting subpaths
are then merged on the final token position to facil-
itate more complex scenarios.

Observation: Register Tokens The role of reg-
ister tokens is to act as working memory. These are
tokens that do not contain any useful information
for the actual task; either they do not contain any
useful information to begin with, e.g. [,], or are
tokens whose information has been copied to other
positions and thus contain redundant information.
For more details on the role of register tokens in
our context, see Appendix D.

Mechanism: Path Merging To compute paths
for which backward chaining on the final token
position is not sufficient, the model uses register to-
kens to perform backward chaining in parallel from
multiple positions in the tree. To this end, similar to
backward chaining from the goal, it copies a node
into each of these register tokens which will then
be picked up by the deduction heads. This results
in a multiple subpaths being stored at different po-
sitions in the sequence. Then, the model can merge
these by finding overlapping subpaths.

To illustrate, let us assume that a subpath [B]—

4087

Table 2: F1 score of a linear probe trained to predict the
adjacency matrix of the subpath we hypothesise to be
encoded in the activations z} at register token positions.

x;

92.82

Linear {[R;] — [S;i1}

[CI—[G] has been stored in the final token position
and a different subpath [A]—[E]—[B] has been
stored in some register token. Then, during path
merging, the model copies the subpath stored in the
register token into the final token position, enabling
it to move up the tree multiple steps at a time.

Experiment: Linear Probe To validate that the
model is indeed generating subpaths in register
tokens, we train a linear probe to predict these sub-
paths given the residual stream at these register
token positions. We generate the training set for
the linear probe by inspecting the attention pat-
terns (see Figure 4). We observe that these approx-
imate hard-attention, which allows us to read off
the token positions from which the head is copy-
ing information. We extract the subpath we would
expect to be encoded at each of these register to-
kens and transform them into an adjacency matrix
representation. Then, we train the probe on a set
of 8,000 examples and evaluate it on a test set of
the same size. The probe achieves an F1 score
of 92.82 % when trained on the activations of layer
four, i.e. up to the the point where the model is
performing backward chaining.

Experiment: Register Token Patching To eval-
uate whether the subpaths stored in the register
tokens have a causal effect on the prediction of
the model, we perform resampling ablations (see
Chapter 3) on the register tokens positions in trees
which (i) contain sufficiently long paths such that
backward chaining on the final token position is
insufficient, and (ii) positions where nodes have
multiple child nodes, ensuring that the model has
to make a decision between multiple options. The
corrupted activations are extracted from another
tree in the same class as described above. We com-
pute the effect of this intervention using the logit
difference. We perform this intervention after layer
four, as we found that the behavior of all previous
layers is explained using our backward chaining
hypothesis (see Section 5.2).

Results Figure 6 illustrates the impact of patch-
ing the register tokens on the model predictions at

200

150

100

Logit Difference

50

1 4 7 10 13
Path Length

Figure 6: To test whether the model relies on subpaths
stored in register tokens, we perform resampling abla-
tions on the register token positions at x}. Here, we con-
ducted 10 separate runs, each involving 1000 samples.
For each run, we calculate the mean logit difference and
report the 95 % confidence interval for the average ef-
fects observed across the runs. The results demonstrate
that these subpaths are instrumental for paths longer
than L — 1 steps.

different path lengths. Our results show that the
intervention has no effect on performance up to
a path depth of 4 and minimal effect at depth 5,
which is consistent with our backward chaining
hypothesis. Beyond this depth, this intervention
has a significant effect on the performance. This
suggests that the encoded subpaths are causally rel-
evant for predicting next steps on paths that are
more than L — 1 steps away from the goal. How-
ever, our findings also indicate that the predictions
are not solely dependent on these subpaths derived,
but other factors besides the subpaths contribute
to the prediction. This includes the influence of a
one-step lookahead mechanism, which identifies
child nodes of the current position and increases
the probabilities of the children that are not leaves.

5.4 One-Step Lookahead

We find that the model uses an additional mecha-
nism, which identifies child nodes of the current
position and increases the prediction probabilities
of the children that are not leaf nodes of the tree.
This enables the model to make informed guesses
in cases where backward chaining is not sufficient.
This mechanism is particularly effective on long
paths as these have a lower branching factor in our
experimental setup. Thus, it is a pragmatic strategy
to minimize the training error.

Experiment: Linear Probes To validate that the
model represents the child nodes of the current
position, including whether they are leaf nodes, we

4088

Edge in Context
N
V o= e
o o »

:
:
15>2 -

-75

>0 >1 >2 >3 >4 >5 >6 >7

Output Token

Figure 7: Contribution of each target node position to the logits at the path position through the attention heads

L5.H1 and L6.H1 on a specific example.

use linear probes. The probes are trained to predict
this information given the activations on the final
token position. Table 3 reports the performance
of the linear probes measured using the F1 score.
Our analysis shows that the model starts to collect
information about the children and leaf nodes from
the fourth layer and represents both aspects in the
fifth layer.

Table 3: F1 score of linear probes trained to predict the
children of the current position and whether these are
leafs of the tree given the residual stream activations at
position [P;].

x} x? x§
Linear {[P;] — [Children;]} 0.00 47.88 98.20
Linear {[P;] — [Leafs;]} 0.00 49.71 95.76

Mechanism The results from linear probes sug-
gest that the attention heads in the final two layers
of the model are responsible for the one-step looka-
head mechanism. To better understand this mecha-
nism, we examine how these two attention heads
directly compose with the unembedding matrix.
Specifically, we compute the contribution of each
token to the logits through these attention heads.
Since each edge will be represented in the target
node (see Section 5.1), we focus on target node
positions (see Figure 7). By inspecting their query-
key (QK) circuits (Elhage et al., 2021), we find that
these two heads attend to the target node of every
edge except those for which the source node is the
current path position. Furthermore, we can break
the mechanism in their output-value (OV) circuits
into three components:

1. Each edge decreases the logit of its target node.

2. Each edge increases the logit of its source node.

3. Each token in the path decreases its logit.

As a result of these components, the logits of the
leaf nodes in the tree will decrease while the logits
of the children of the current position will increase.
For the other nodes, the logit increase from being
a parent, and the logit decrease from being a child
node which roughly cancel out, causing their logit
to remain constant.

6 Discussion

Register Tokens Our model uses some token po-
sitions as a form of working memory to store in-
termediate results. This observation aligns with
Darcet et al. (2023) which found that image mod-
els use some image patches to accumulate global
information while discarding spatial information.
Similarly, Goyal et al. (2023) show that adding un-
informative tokens at the end of each prompt can
enhance language model performance on down-
stream tasks without introducing additional param-
eters. Our findings suggest that these techniques
enable the model to store intermediate results and
perform more computations in parallel. This is con-
sistent with theoretical insights from Merrill et al.
(2022) which highlights how the effective state of
a transformer depends on the number of tokens in
the sequence.

Structural Recursion Transformers, which are
by definition non-recurrent, struggle with emulat-
ing structural recursion and extracting recursive
rules from data (Zhang et al., 2024). This aspect
of learning is crucial in domains such as program-
ming and formal mathematics, where understand-

4089

ing complex relationships relies on these abilities.
Our analysis provides insights into possible reasons
for this limitation. In our setting, training the model
using standard objectives for next-token prediction
forces the model to unroll the entire recursive struc-
ture in a single forward pass. This restricts their
abilities to process recursion, leading them to resort
to shortcut solutions (Liu et al., 2023).

Reasoning in Transformers There is an ongo-
ing debate about the reasoning capabilities of trans-
formers (Huang and Chang, 2023). Some argue
that these models might just be capable of memoriz-
ing patterns without gaining causal understanding,
which could lead to diminishing performance on
out-of-distribution data (Bender and Koller, 2020;
Floridi and Chiriatti, 2020; Bender et al., 2021;
Merrill et al., 2021). However, there are several ob-
servations that suggest that transformers might be
capable of more than just pattern recognition; e.g.
Olsson et al. (2022) found a simple algorithm im-
plemented in attention heads that contributes to the
in-context learning abilities of transformers and op-
erates independent of the specific tokens. This algo-
rithm is doing more than memorizing patterns and
can in some sense work out-of-distribution. In our
synthetic setting, we found that the model learned
an interpretable and meaningful backward chaining
algorithm, supporting the claim that transformers
might be capable of a form of reasoning that goes
beyond simple pattern memorization. These results
further complete the findings of Hou et al. (2023),
shedding light on the mechanisms transformer mod-
els might use to compute reasoning trees over infor-
mation provided in context. However, it is impor-
tant to note that findings from our synthetic settings
do not support the boarder claim that transformers
possess general reasoning capabilities, highlighting
the need for further investigations.

7 Conclusion

In this paper, we conducted a mechanistic analysis
of a transformer trained on pathfinding in trees.
Our results suggest that the model implements a
backward chaining algorithm that starts at the goal
node and climbs the tree one level per layer. To
solve more complex problems, where the required
reasoning depth exceeds the number of layers, it
executes the same mechanism in parallel across
multiple register tokens and combines the resulting
subpaths on the final token position. In addition,
it performs a simple one-step lookahead in which

it finds the child nodes of the current position and
evaluates whether they are leaf nodes.

Our findings in this synthetic setting demonstrate
the ability of a transformer to perform deductive
reasoning up to a certain reasoning depth, after
which it resorts to simple heuristics. By using par-
allelized computations to store intermediate results
in register tokens and then merging these results in
the final token position, the model demonstrates a
form of deductive reasoning that, while effective
within a given setting, is constrained by its architec-
ture. These observations suggests that transform-
ers may exhibit a inductive bias towards adopting
highly parallelized strategies for tasks involving
search, planning, or reasoning.

Limitations

Synthetic Task Our experiments were conducted
on a symbolic reasoning task (see Chapter 4.1).
This allowed us to bypass the complexities asso-
ciated with natural language, such as multi-token
embeddings (Nanda et al., 2023c). In addition,
our tokenization distinguishes tokens representing
source and target nodes of each edge, such as [15]
and [—15]. Therefore, our findings are specific
to our model and it remains unclear whether large
language models trained on natural language use
similar mechanisms to solve this task. However,
we anticipate that the motifs we discovered in our
synthetic setting can provide valuable insights into
the broader operating principles of transformers
and thus provide a basis for understanding more
complex models.

Input Format To prevent the model from learn-
ing shortcuts based on the order of the edges in
the prompt, we trained our model on shuffled edge
lists (see Section 4.2). However, our analysis is lim-
ited to sequences in which the edge list is presented
in backward order. By backward order we mean a
listing of edges that starts with the leaf nodes and
ascends level by level to the root node, as opposed
to a forward order where the listing starts with the
root node and progresses downwards through each
level. Our investigation does not extend to a de-
tailed examination of alternative arrangements of
the edge list. However, preliminary observations
suggest that the model uses similar mechanisms
with minor variations, such as the use of different
register tokens.

4090

Acknowledgements

Jannik Brinkmann is supported by the German Fed-
eral Ministry for Digital and Transport (BMDV)
and the German Federal Ministry for Economic
Affairs and Climate Action (BMWK). Abhay She-
shadri and Victor Levoso have been supported by
Lightspeed Grants.

References

Guillaume Alain and Yoshua Bengio. 2018. Under-
standing intermediate layers using linear classifier
probes.

Nora Belrose, Zach Furman, Logan Smith, Danny Ha-
lawi, Igor Ostrovsky, Lev McKinney, Stella Bider-
man, and Jacob Steinhardt. 2023. Eliciting latent
predictions from transformers with the tuned lens.

Emily M. Bender, Timnit Gebru, Angelina McMillan-
Major, and Shmargaret Shmitchell. 2021. On the
dangers of stochastic parrots: Can language mod-
els be too big? . In Proceedings of the 2021 ACM
Conference on Fairness, Accountability, and Trans-
parency, FAccT 21, page 610-623, New York, NY,
USA. Association for Computing Machinery.

Emily M. Bender and Alexander Koller. 2020. Climbing
towards NLU: On meaning, form, and understanding
in the age of data. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 5185-5198, Online. Association for
Computational Linguistics.

Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal.
2020. On the Ability and Limitations of Transform-
ers to Recognize Formal Languages. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
70967116, Online. Association for Computational
Linguistics.

Eugene Charles Catalan. 1838. Note sur une équation
aux différences finies. Journal de Mathématiques
Pures et Appliquées, 3:508-516.

Lawrence Chan, Adria Garriga-alonso, Nicholas
Goldowsky-Dill, Ryan Greenblatt, Jenny, Ansh Rad-
hakrishnan, Buck, and Nate Thomas. 2022. Causal
Scrubbing: a method for rigorously testing inter-
pretability hypotheses.

Bilal Chughtai, Lawrence Chan, and Neel Nanda. 2023.
Neural networks learn representation theory: Reverse
engineering how networks perform group operations.
In ICLR 2023 Workshop on Physics for Machine
Learning.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.

2021. Training verifiers to solve math word prob-
lems.

Arthur Conmy, Augustine N. Mavor-Parker, Aengus
Lynch, Stefan Heimersheim, and Adria Garriga-
Alonso. 2023. Towards automated circuit discovery
for mechanistic interpretability.

Timothée Darcet, Maxime Oquab, Julien Mairal, and
Piotr Bojanowski. 2023. Vision transformers need
registers.

Grégoire Delétang, Anian Ruoss, Jordi Grau-Moya, Tim
Genewein, Li Kevin Wenliang, Elliot Catt, Chris
Cundy, Marcus Hutter, Shane Legg, Joel Veness, and
Pedro A. Ortega. 2023. Neural networks and the
chomsky hierarchy.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom
Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly,
Nova DasSarma, Dawn Drain, Deep Ganguli, Zac
Hatfield-Dodds, Danny Hernandez, Andy Jones,
Jackson Kernion, Liane Lovitt, Kamal Ndousse,
Dario Amodei, Tom Brown, Jack Clark, Jared Ka-
plan, Sam McCandlish, and Chris Olah. 2021. A
mathematical framework for transformer circuits.
Transformer Circuits Thread. Https://transformer-
circuits.pub/2021/framework/index.html.

Luciano Floridi and Massimo Chiriatti. 2020. Gpt-3:
Its nature, scope, limits, and consequences. Minds
and Machines, 30(4):681-694.

Mor Geva, Jasmijn Bastings, Katja Filippova, and Amir
Globerson. 2023. Dissecting recall of factual associ-
ations in auto-regressive language models.

Olga Golovneva, Moya Chen, Spencer Poff, Martin
Corredor, Luke Zettlemoyer, Maryam Fazel-Zarandi,
and Asli Celikyilmaz. 2023. Roscoe: A suite of
metrics for scoring step-by-step reasoning.

Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Kr-
ishna Menon, Sanjiv Kumar, and Vaishnavh Nagara-
jan. 2023. Think before you speak: Training lan-
guage models with pause tokens.

Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart.
2008. Exploring network structure, dynamics, and
function using networkx. In Proceedings of the 7th
Python in Science Conference (SciPy2008), pages
11-15, Pasadena, CA USA.

Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhenting
Qi, Martin Riddell, Luke Benson, Lucy Sun, Eka-
terina Zubova, Yujie Qiao, Matthew Burtell, David
Peng, Jonathan Fan, Yixin Liu, Brian Wong, Mal-
colm Sailor, Ansong Ni, Linyong Nan, Jungo Kasai,
Tao Yu, Rui Zhang, Shafiq Joty, Alexander R. Fab-
bri, Wojciech Kryscinski, Xi Victoria Lin, Caiming
Xiong, and Dragomir Radev. 2022. Folio: Natural
language reasoning with first-order logic.

4091

http://arxiv.org/abs/1610.01644
http://arxiv.org/abs/1610.01644
http://arxiv.org/abs/1610.01644
http://arxiv.org/abs/2303.08112
http://arxiv.org/abs/2303.08112
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.18653/v1/2020.acl-main.463
https://doi.org/10.18653/v1/2020.acl-main.463
https://doi.org/10.18653/v1/2020.acl-main.463
https://doi.org/10.18653/v1/2020.emnlp-main.576
https://doi.org/10.18653/v1/2020.emnlp-main.576
https://www.lesswrong.com/posts/JvZhhzycHu2Yd57RN/causal-scrubbing-a-method-for-rigorously-testing
https://www.lesswrong.com/posts/JvZhhzycHu2Yd57RN/causal-scrubbing-a-method-for-rigorously-testing
https://www.lesswrong.com/posts/JvZhhzycHu2Yd57RN/causal-scrubbing-a-method-for-rigorously-testing
https://openreview.net/forum?id=j4_YHiTAN63
https://openreview.net/forum?id=j4_YHiTAN63
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2304.14997
http://arxiv.org/abs/2304.14997
http://arxiv.org/abs/2309.16588
http://arxiv.org/abs/2309.16588
http://arxiv.org/abs/2207.02098
http://arxiv.org/abs/2207.02098
https://doi.org/10.1007/s11023-020-09548-1
https://doi.org/10.1007/s11023-020-09548-1
http://arxiv.org/abs/2304.14767
http://arxiv.org/abs/2304.14767
http://arxiv.org/abs/2212.07919
http://arxiv.org/abs/2212.07919
http://arxiv.org/abs/2310.02226
http://arxiv.org/abs/2310.02226
http://arxiv.org/abs/2209.00840
http://arxiv.org/abs/2209.00840

Yifan Hou, Jiaoda Li, Yu Fei, Alessandro Stolfo,
Wangchunshu Zhou, Guangtao Zeng, Antoine Bosse-
lut, and Mrinmaya Sachan. 2023. Towards a mecha-
nistic interpretation of multi-step reasoning capabili-
ties of language models.

Jie Huang and Kevin Chen-Chuan Chang. 2023. To-
wards reasoning in large language models: A survey.
In Findings of the Association for Computational
Linguistics: ACL 2023, pages 1049-1065, Toronto,
Canada. Association for Computational Linguistics.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and
Igor Mordatch. 2022. Language models as zero-shot
planners: Extracting actionable knowledge for em-
bodied agents. In Proceedings of the 39th Interna-
tional Conference on Machine Learning, volume 162
of Proceedings of Machine Learning Research, pages
9118-9147. PMLR.

Michael Igorevich Ivanitskiy, Alex F. Spies, Tilman
Réuker, Guillaume Corlouer, Chris Mathwin, Lucia
Quirke, Can Rager, Rusheb Shah, Dan Valentine,
Cecilia Diniz Behn, Katsumi Inoue, and Samy Wu
Fung. 2023. Structured world representations in
maze-solving transformers.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2023. Large lan-
guage models are zero-shot reasoners.

Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Kr-
ishnamurthy, and Cyril Zhang. 2023. Transformers
learn shortcuts to automata. In The Eleventh Interna-
tional Conference on Learning Representations.

Samuel Marks and Max Tegmark. 2023. The geometry
of truth: Emergent linear structure in large language
model representations of true/false datasets.

Kevin Meng, David Bau, Alex J Andonian, and Yonatan
Belinkov. 2022. Locating and editing factual associ-
ations in GPT. In Advances in Neural Information
Processing Systems.

William Merrill, Yoav Goldberg, Roy Schwartz, and
Noah A. Smith. 2021. Provable limitations of acquir-
ing meaning from ungrounded form: What will future
language models understand? Transactions of the
Association for Computational Linguistics, 9:1047—
1060.

William Merrill, Ashish Sabharwal, and Noah A. Smith.
2022. Saturated transformers are constant-depth
threshold circuits. Transactions of the Association
for Computational Linguistics, 10:843-856.

Jack Merullo, Carsten Eickhoff, and Ellie Pavlick. 2024.
Circuit component reuse across tasks in transformer
language models.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013. Linguistic regularities in continuous space
word representations. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human

Language Technologies, pages 746-751, Atlanta,
Georgia. Association for Computational Linguistics.

Ulisse Mini, Peli Grietzer, Mrinank Sharma, Austin
Meek, Monte MacDiarmid, and Alexander Matt
Turner. 2023. Understanding and controlling a maze-
solving policy network.

Neel Nanda and Joseph Bloom. 2022. Transformer-
lens. https://github.com/neelnanda-io/
TransformerLens.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess
Smith, and Jacob Steinhardt. 2023a. Progress mea-
sures for grokking via mechanistic interpretability. In
The Eleventh International Conference on Learning
Representations.

Neel Nanda, Andrew Lee, and Martin Wattenberg.
2023b. Emergent linear representations in world
models of self-supervised sequence models. In Pro-
ceedings of the 6th BlackboxNLP Workshop: Ana-
lyzing and Interpreting Neural Networks for NLP,
pages 16-30, Singapore. Association for Computa-
tional Linguistics.

Neel Nanda, Senthooran Rajamanoharan, Janos Kramar,
and Rohin Shah. 2023c. Fact finding: Attempting to
reverse-engineer factual recall on the neuron level.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas
Joseph, Nova DasSarma, Tom Henighan, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Con-
erly, Dawn Drain, Deep Ganguli, Zac Hatfield-Dodds,
Danny Hernandez, Scott Johnston, Andy Jones, Jack-
son Kernion, Liane Lovitt, Kamal Ndousse, Dario
Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam
McCandlish, and Chris Olah. 2022. In-context learn-
ing and induction heads.

Jorge Pérez, Pablo Barceld, and Javier Marinkovic.
2021. Attention is turing-complete. Journal of Ma-
chine Learning Research, 22(75):1-35.

Stuart Russell and Peter Norvig. 2009. Artificial intelli-
gence, 3 edition. Pearson, Upper Saddle River, New
Jersey.

Tilman Réuker, Anson Ho, Stephen Casper, and Dylan
Hadfield-Menell. 2023. Toward transparent ai: A
survey on interpreting the inner structures of deep
neural networks.

Abulhair Saparov and He He. 2023. Language models
are greedy reasoners: A systematic formal analysis
of chain-of-thought. In The Eleventh International
Conference on Learning Representations.

Alessandro Stolfo, Yonatan Belinkov, and Mrinmaya
Sachan. 2023. A mechanistic interpretation of arith-
metic reasoning in language models using causal
mediation analysis. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 7035-7052, Singapore. Associa-
tion for Computational Linguistics.

4092

http://arxiv.org/abs/2310.14491
http://arxiv.org/abs/2310.14491
http://arxiv.org/abs/2310.14491
https://doi.org/10.18653/v1/2023.findings-acl.67
https://doi.org/10.18653/v1/2023.findings-acl.67
https://proceedings.mlr.press/v162/huang22a.html
https://proceedings.mlr.press/v162/huang22a.html
https://proceedings.mlr.press/v162/huang22a.html
http://arxiv.org/abs/2312.02566
http://arxiv.org/abs/2312.02566
http://arxiv.org/abs/2205.11916
http://arxiv.org/abs/2205.11916
https://openreview.net/forum?id=De4FYqjFueZ
https://openreview.net/forum?id=De4FYqjFueZ
http://arxiv.org/abs/2310.06824
http://arxiv.org/abs/2310.06824
http://arxiv.org/abs/2310.06824
https://openreview.net/forum?id=-h6WAS6eE4
https://openreview.net/forum?id=-h6WAS6eE4
https://doi.org/10.1162/tacl_a_00412
https://doi.org/10.1162/tacl_a_00412
https://doi.org/10.1162/tacl_a_00412
https://doi.org/10.1162/tacl_a_00493
https://doi.org/10.1162/tacl_a_00493
http://arxiv.org/abs/2310.08744
http://arxiv.org/abs/2310.08744
https://aclanthology.org/N13-1090
https://aclanthology.org/N13-1090
http://arxiv.org/abs/2310.08043
http://arxiv.org/abs/2310.08043
https://github.com/neelnanda-io/TransformerLens
https://github.com/neelnanda-io/TransformerLens
https://openreview.net/forum?id=9XFSbDPmdW
https://openreview.net/forum?id=9XFSbDPmdW
https://doi.org/10.18653/v1/2023.blackboxnlp-1.2
https://doi.org/10.18653/v1/2023.blackboxnlp-1.2
https://www.alignmentforum.org/posts/iGuwZTHWb6DFY3sKB/fact-finding-attempting-to-reverse-engineer-factual-recall
https://www.alignmentforum.org/posts/iGuwZTHWb6DFY3sKB/fact-finding-attempting-to-reverse-engineer-factual-recall
http://arxiv.org/abs/2209.11895
http://arxiv.org/abs/2209.11895
http://jmlr.org/papers/v22/20-302.html
http://arxiv.org/abs/2207.13243
http://arxiv.org/abs/2207.13243
http://arxiv.org/abs/2207.13243
https://openreview.net/forum?id=qFVVBzXxR2V
https://openreview.net/forum?id=qFVVBzXxR2V
https://openreview.net/forum?id=qFVVBzXxR2V
https://doi.org/10.18653/v1/2023.emnlp-main.435
https://doi.org/10.18653/v1/2023.emnlp-main.435
https://doi.org/10.18653/v1/2023.emnlp-main.435

Lena Strobl, William Merrill, Gail Weiss, David Chiang,
and Dana Angluin. 2023. Transformers as recogniz-
ers of formal languages: A survey on expressivity.

Aaquib Syed, Can Rager, and Arthur Conmy. 2023.
Attribution patching outperforms automated circuit
discovery.

Oyvind Tafjord, Bhavana Dalvi, and Peter Clark. 2021.
ProofWriter: Generating implications, proofs, and
abductive statements over natural language. In Find-
ings of the Association for Computational Linguis-
tics: ACL-IJCNLP 2021, pages 3621-3634, Online.
Association for Computational Linguistics.

Curt Tigges, Oskar John Hollinsworth, Atticus Geiger,
and Neel Nanda. 2023. Linear representations of
sentiment in large language models.

Karthik Valmeekam, Matthew Marquez, Alberto Olmo,
Sarath Sreedharan, and Subbarao Kambhampati.
2023. Planbench: An extensible benchmark for eval-
uating large language models on planning and rea-
soning about change. In Thirty-seventh Conference
on Neural Information Processing Systems Datasets
and Benchmarks Track.

Alexandre Variengien and Eric Winsor. 2023. Look
before you leap: A universal emergent decomposition
of retrieval tasks in language models.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need.

Jesse Vig and Yonatan Belinkov. 2019. Analyzing
the structure of attention in a transformer language
model. In Proceedings of the 2019 ACL Workshop
BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, pages 63-76, Florence, Italy. As-
sociation for Computational Linguistics.

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov,
Sharon Qian, Daniel Nevo, Yaron Singer, and Stu-
art Shieber. 2020. Investigating gender bias in lan-
guage models using causal mediation analysis. In
Advances in Neural Information Processing Systems,
volume 33, pages 12388-12401. Curran Associates,
Inc.

Boshi Wang, Sewon Min, Xiang Deng, Jiaming Shen,
You Wu, Luke Zettlemoyer, and Huan Sun. 2023a.
Towards understanding chain-of-thought prompting:
An empirical study of what matters. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2717-2739, Toronto, Canada. Association for
Computational Linguistics.

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy,
Buck Shlegeris, and Jacob Steinhardt. 2023b. Inter-
pretability in the wild: a circuit for indirect object
identification in GPT-2 small. In The Eleventh Inter-
national Conference on Learning Representations.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V Le,
and Denny Zhou. 2022. Chain of thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems.

Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat,
Sashank Reddi, and Sanjiv Kumar. 2020. Are
transformers universal approximators of sequence-
to-sequence functions? In International Conference
on Learning Representations.

Dylan Zhang, Curt Tigges, Zory Zhang, Stella Bi-
derman, Maxim Raginsky, and Talia Ringer. 2024.
Transformer-based models are not yet perfect at learn-
ing to emulate structural recursion.

Zigian Zhong, Ziming Liu, Max Tegmark, and Jacob
Andreas. 2023. The clock and the pizza: Two stories
in mechanistic explanation of neural networks.

A Extended Discussion of Mechanistic
Interpretability

Our work contributes to the emerging field of
mechanistic interpretability, which seeks to reverse-
engineer the internal mechanisms of neural net-
works into human-understandable algorithms (El-
hage et al., 2021). To this end, the model is con-
sidered a causal graph (Meng et al., 2022), with
the intent of finding interpretable and meaningful
subgraphs (circuits) that are responsible for solv-
ing the task in question, such as understanding
a circuit implementing modular addition (Nanda
et al., 2023a), or understanding a circuit responsi-
ble for indirect object identification (Wang et al.,
2023b). Similar works studied how models per-
form in-context learning using induction heads, as
found by Olsson et al. (2022), or how models per-
form retrieval tasks using an internal modular de-
composition as shown in Variengien and Winsor
(2023). Moreover, Merullo et al. (2024) provide
evidence that certain mechanisms are reused across
different tasks, indicating that models can use simi-
lar mechanisms to solve different tasks.

However, these studies of specific mechanisms
and circuits in language models required a lot of
manual effort. In addition, Zhong et al. (2023)
demonstrated that small changes in hyperparame-
ters and initializations can lead to the emergence of
qualitatively different algorithms. To address this,
some researchers attempted to automate the pro-
cess of finding these circuits using methods such as
automated circuit discovery (Conmy et al., 2023)
or edge attribution patching (Syed et al., 2023).

4093

http://arxiv.org/abs/2311.00208
http://arxiv.org/abs/2311.00208
http://arxiv.org/abs/2310.10348
http://arxiv.org/abs/2310.10348
https://doi.org/10.18653/v1/2021.findings-acl.317
https://doi.org/10.18653/v1/2021.findings-acl.317
http://arxiv.org/abs/2310.15154
http://arxiv.org/abs/2310.15154
https://openreview.net/forum?id=YXogl4uQUO
https://openreview.net/forum?id=YXogl4uQUO
https://openreview.net/forum?id=YXogl4uQUO
http://arxiv.org/abs/2312.10091
http://arxiv.org/abs/2312.10091
http://arxiv.org/abs/2312.10091
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://doi.org/10.18653/v1/W19-4808
https://doi.org/10.18653/v1/W19-4808
https://doi.org/10.18653/v1/W19-4808
https://proceedings.neurips.cc/paper_files/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://doi.org/10.18653/v1/2023.acl-long.153
https://doi.org/10.18653/v1/2023.acl-long.153
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=ByxRM0Ntvr
https://openreview.net/forum?id=ByxRM0Ntvr
https://openreview.net/forum?id=ByxRM0Ntvr
http://arxiv.org/abs/2401.12947
http://arxiv.org/abs/2401.12947
http://arxiv.org/abs/2306.17844
http://arxiv.org/abs/2306.17844

Similar research investigates how neural net-
works process and store information. For exam-
ple, Geva et al. (2023) explored how models recall
factual information, and Meng et al. (2022) studied
how this information can be localized and edited
without re-training. This also includes works on
understanding internal representations. In this con-
text, there is an ongoing debate about the linear
representation hypothesis (Mikolov et al., 2013),
which is the idea that high-level concepts are repre-
sented /inearly as directions in the representation
space. Here, a model is considered to linearly rep-
resent a concept, if it can be probed from the activa-
tions with a linear model. For example, Nanda et al.
(2023b) and Mini et al. (2023) studied the internal
representations of language models trained on a
board game and found that it develops a representa-
tion of the current board state that can be extracted
using linear probes. Importantly, they find that
whether the representation can be extracted using a
linear model depends on the encoding of the target
label. Other linear representations have been found
in language models; e.g. Tigges et al. (2023) find a
linear representation of sentiment in text and Marks
and Tegmark (2023) find a linear representation of
the truth value of input text. Ivanitskiy et al. (2023)
explored a transformer trained to perform a maze-
solving task and found that they can successfully
extract boundaries of the maze using linear probes.
They also observed attention heads that attend to
positions in the maze that are one step away from
the current position.

B Experimental Setup

B.1 Implementation and Computing

All experiments were carried out on a single
NVIDIA RTX A6000 GPU. The total computa-
tion time for training the transformer model was
less than 24 hours. To generate the trees, we
used networkx (Hagberg et al., 2008). For train-
ing and execution of all experiments, we used
TransformerLens (Nanda and Bloom, 2022). For
details on the model and training configuration, see
Tables 4 and 5.

B.2 Size of Training Set

Our dataset consists of 150,000 randomly gener-
ated examples, each including a labeled binary tree
with 16 nodes. The number of possible unlabeled
binary trees with n 4 1 nodes is given by the n-th

Table 4: Model Configuration

Parameter Value
of layers 6

of heads 1
Residual Stream dim. 128
Attention Head dim. 128
Feed-Forward dim. 512
Activation Function gelu
Vocabulary Size 35
Context Size 63

Table 5: Training Configuration

Parameter Value
Learning Rate le-3
Optimizer AdamW
Batch Size 64
Betas (0.9, 0.99)
Weight Decay 0.01
Catalan number (Catalan, 1838):
(2n)!
Cn)=———
(n) (n+1)!-n!

When considering labeled binary trees, this number
grows to (n+1)!-C(n) unique trees. This suggests
that memorization is infeasible, and generalization
is required for meaningful performance.

C Attention Head Composition

In this section, we perform additional experiments
to verify that L1.H1 performs edge token concate-
nation, and L2.H1 is a deduction head. Elhage
et al. (2021) show that transformers can learn in-
duction heads in two different ways involving dif-
ferent compositions: the K-composition, where the
Wi of the head reads from the output of the previ-
ous head, and V-composition, where the W4, of the
head reads from the output of the previous head.
Our findings suggest that the deduction heads we
found in our model are a result of K-composition.
In the following subsections, we adopt the conven-
tions of (Elhage et al., 2021).

Layer 1 - Edge Token Concatenation Head
L1.H1 serves as a variation of a previous token
head studied in Elhage et al. (2021), effectively
transferring source node information to the corre-
sponding target node in each edge. This is captured

4094

u N w N =
=) o <} o S} o
! 1 ! L 1)

-
"

Position Embedding in Query

[=2]
o
L

T T T T T T
0 10 20 30 40 50 60
Position Embedding in Key

Figure 8: Visualization of Mg -

in the QK-circuit:
MYy =Wp Wix Wi

M, g i (see Figure 8) shows that the attention values
are maximized when the query vector corresponds
to the position embedding of an incoming node,
and the key vector corresponds to the position em-
bedding of the immediately preceding outgoing
node. Then, following the goal node at position 45,
the head persistently attends to the goal position.

Layer 2 - Deduction Head L2.H1 is a deduction
head, which attends to the target node that matches
the goal at positions in the path. It then moves
information about the source node of that edge into
the last position in the window. It can be viewed as
a reverse induction head (Olsson et al., 2022) that
uses a K-composition (Elhage et al., 2021) to map
a sequence [A] [B] ... [A]l — [B], where [B]
represents target nodes and [A] represents source
nodes. This can again be verified by looking at the
QK-circuit:

Mbg = (MLP (WS, W)+ Wy W)W Wi

This matrix shows the interactions of the embed-
ding of the source and target tokens at layer 2 (see
Figure 9). Our analysis is complicated by the fact
that our model is not attention-only, as attention
heads can compose with each other through the
MLP, which makes similar analyses in later lay-
ers of the model intractable. However, our causal
scrubbing results provide evidence that the atten-
tion heads in the subsequent layers implement a
similar mechanism to L2.H1, but use the output
of the previous layer’s attention head to backward
chain further up the tree.

Key Token

T T T T T T T T T T T T T
012345678 9101112131415
Query Token (Goal Representation)

Figure 9: Visualization of a subset of Mé % showing
interactions between source and target node tokens.

D Register Tokens and Subgoals

In this section, we provide more details on the role
of the register tokens in our model. From each reg-
ister token position, the model attends to a random
node in the context and starts backward-chaining
from that node. The initial selection of a node by
the register token can be viewed as identifying a
subgoal, from which the model can perform back-
ward chaining. This precomputation occurs before
the actual goal is specified and occurs fully parallel
to the main backward-chaining mechanism. These
findings hint that transformers may exhibit an in-
ductive bias towards learning highly parallelized
algorithms when trained to perform search, plan-
ning, or reasoning.

To see whether there is any structure in the selec-
tion of subgoals, we empirically study which node
the register tokens select as subgoals across 1000
samples. The results are illustrated in Figures 10.

100

. 80

60

w
© ® o

40

= 20
~ M,

IR T TR N L IR R R I
O

A& OA D W oW
N

kS

Register Token Position

IS
[

Label Attended

Figure 10: Preferences in Subgoal Selection: Ratio of
register tokens attending to different subgoals aggre-
gated across 1000 trees. We consider a register token to
select a subgoal based on an attention threshold of 0.3.

We observe that the model usually attends to
the same tokens, e.g. position 36 attends to token
[6] most of the time. However, we observe an

4095

interesting dynamic in which the register token
selects a different subgoal in two cases:

1. If the node doesn’t occur before the register
token position, it cannot attend to it due to
causal masking.

2. If the node is a leaf node of the tree since it
doesn’t have a corresponding source token to
attend to.

To validate this, we again examine the probability
of the model selecting subgoals in trees where the
most common subgoal occurs before the register to-
ken position and is not a leaf node (see Figure 11).

. 100

80
. 60
. . 40
| »

QN’L”)““’)@’\%@,\QNSQ,\“),\,&,\")

w
=)

BN N W oW
N B © ®

Register Token Position
-

S
[

e
&
Label Attended

Figure 11: Preferences in Subgoal Selection: Ratio of
register tokens attending to different subgoals aggre-
gated across 1000 trees where the node it attends to
most often is not a leaf node of the tree and occurs be-
fore the register token. We consider a register token to
select a subgoal based on an attention threshold of 0.3.

Further exploration reveals that the subgoals se-
lected by each register token position can be some-
what understood through an examination of the
embedding matrices. We evaluate a selection of
seven register token positions that are used on sev-
eral different examples and show their preferred
subgoals. By composing the embedding and posi-
tion embedding matrices with the QK-circuit of the
first layer’s attention head, we define Rp as:

Rp = WpWhxWi

where Wg is the embedding matrix, Wp is the
position embedding matrix, and Wé, Wé are the
key and query projection matrices of L1.H1. This
explains how the model selects subgoals, by having
the key for each positional embedding of a register
token match with some specific source node token.

E Attention Patterns

Here, we visualize attention patterns of our model
on a few example inputs (see Figures 13 to 16), in

Position Embedding in Query

BB DR AW W W

G0 R N B © ® O
PR S T T

y

|| -

0.8
0.6

H >

0.2

S I

— T T T T T T T 0.0
b o A %Cb@,\,’\&\’,b,»b‘@

Token Embedding in Key

Figure 12: Plot of Rp

addition to the example illustrated in Figure 4, to
provide intuition for the backward chaining mecha-
nism. In each example, we highlight the attention
from the final token position and the register tokens
that are causally relevant for the prediction. To de-
termine these, we use attention knockout (Geva
et al., 2023) on the register token positions. This
prevents the final token from attending to register
tokens by zero-ing out the attention weights. This
allows us to test whether critical information prop-
agates from them. More formally, let a, b € [1, N
be two positions such that a <= b, we block xé
from attending to x/ at layer / < L by updating
the attention weights to that layer:

M = —ooVj € [1, H]

Thus, this restricts the source position from obtain-
ing information from the target position, at that par-
ticular layer. To avoid information leakage across
positions, we block attention edges in multiple lay-
ers rather than a single one. Specifically, we block
attention to the register tokens in the final two lay-
ers of the model.

4096

()
L1.H1 | 5—+6,15—7,11—2,13—+8,7—0,10—+15,9—1,1—5,10—+ 14,8 +4,6—12,14—13,4—9,2—3,0— 11|#@: 10

L2H1 | 5—+6,15—7,11—+2,13—8,7—0,10—15,9—1,1595,10— 14, 854 o l@. 14 — 13,4 —9,2— 3,0— 11]12:10
L3.H1 | 5F96 15— 7,11—2,13F%8,7—0,10— 15,988l 1—5,10—+ 14,8 4,6~ 12,14—13,4—9,2— 3,0~ 11[12:10
L4.H1 5—+6,15—7,11—2,13—+8,7—0,10—15,9— 1, 1[5, 10— 14,8+ 4,6 — 12, 145518, 4F¥9.2 — 3,0 —» 11|12:10
L5.H1 | 5—+6,15—7,11—2,13—8,7—0,10— 15,988l 1—5,10— 14,8 - 4,6 —12,14— 13 48,2 — 3,0—11]12:10
L6.H1 | 5—6,15—7,11—2,13558,7—0,10— 15,9=1,1—5,10— 14, 8F54,6 — 12, 145513, 48,2 — 3,0 — 11|12:10

| J

Figure 13: Visualization of multi-layer attention patterns on an example input, similar to Figure 4. We show the
attention from three different positions: path position, register token at position 39, and register token at position 45.

4)

L1.H1 1+4,6—+9,2-+6,9—1512—-+2,10—-+12,7—5,11—3,14—13,3—+14,4—10,15—0,8—1,13— 7,8~ 11|@:8
L2.H1 1—+4,6-+9,2—+6,9—15,12F82,10—12,7—5,11—3,14—13,3—14,4—10,15F48,8—+1,13— 7,8 - 11|0:8
L3.H1 1—+4,6—9,2—6,95908 12— 2, 108#2,7—5,11—3,14—13,3—-14,4—10,15—0,8—1,13—7,8—11|0:8
L4.H1 1—+4,6—9,2888.9—15,12—2,10—12,7—5,11—3,14—13,3— 14, 4540,15—0,8—1,13— 7,8 - 11|0:8
L5.H1 1+4,6—9,2—6,9—15 1289, 10—+12,7—5,11—3,14— 13,3—14,4—10,15—0,8 - 1,13—7,8 - 11|0:8

L6.H1 1—4,6—+9,2=56,9—+15,12—2, 108, 7—5,11— 3,14— 13,314 45910,15— 0,8 — 1,13~7,8 - 11|0:8
. J

Figure 14: Visualization of multi-layer attention patterns on an example input, similar to Figure 4. We show the
attention from three different positions: the path position and register token at position 41

()
L1.H1 14—4,13—15,2—5,0—12,10—+8,7—2,7—3,12—1,3—13,15—6,11—9,4— 11,6 — 10,5— 14,8 — 0|{:7

L2.H1 | 14—4,13—+15,2—5,0—12,10—8,7—2,7— 3,128,313, 15F86,11—9,4— 11,6+ 10,5—14,8—0|1:7
L3.H1 14— 4,13591§,2— 5,09, 10—+8,7—2,7—3,12—1,3—+13,15—6,11—9,4— 11,6 — 10,5~ 14,8 0|1:7
L4.H1 | 14—4,13—+15,2—5,0—-12,10—8,7—2,7—3,12— 1,348, 15—6,11—9,4— 11,6 —+10,5— 14, S0 |1:7
L5.H1 | 14—4,13—+15,2—5,0—12,10~58,7—2,7—3,12—1,3—13,15886,11— 9,4 — 11, 650, 5=514,8—0|1:[

L6.H1 | 14— 4, 1358, 255,012, 10E8,7—2,7— 3,12— 1, 358, 156, 11— 9,4 — 11,6 10,55 14, 85510 | L:7
|\ J

Figure 15: Visualization of multi-layer attention patterns on an example input, similar to Figure 4. We show the
attention from three different positions: the path position and register token at position 36

()

L1.H1 8—+6,10—+3,2—+5,3—-9,4—12,13—2,11—+13,5—0,15—+4,14—7,6—+14,12—11,10—15,9—8,0— 1|#:10
L2.H1 8—6,10+3,2—+5,3-9,4—12,13888,11—13,5—0,15—4,14— 7,6 — 14, 12l 10— 15,9— 8 , Ol | 1: 10
L3.H1 8—6,10—+3,2—5,3—9,4F002,13— 2, 115918, 558, 15—~ 4,14— 7,6 — 14,12—11,10—15,9—8,0—1]1:10
L4.H1 8—6,10—3,2—+5,3-9,4—12,13F88,11—13,5— 0,154 14— 7,6 — 14, 125l 10— 15,9— 8] 0— 1]1:10
L5.H1 8—6,10—+3,2—+5,3-+9,4—12,1352,115183,5~+0,15—4,14—7,6 — 14,12—11,10—15,9—8,0— 1|1:[§

L6.H1 | 8=56,10— 3,288 35519, 4512, 132592, 11 |8 5~ 0, 15254, 14— 7,6~ 14, 1251, 10 — 15,95518,0— 1|1:10
(. J

Figure 16: Visualization of multi-layer attention patterns on an example input, similar to Figure 4. We show the
attention from three different positions: path position, register token at position 41, and register token at position 42.

4097

F Additional Experiment on the One-Step
Lookahead

To evaluate the impact of the one-step lookahead,
we perform causal scrubbing that incorporates the
described mechanism. We reuse the experimen-
tal setup from Section 5.2 but add additional con-
straints to our resampling scheme. Specifically, we
avoid resampling the contributions of the target
node and register token positions through the atten-
tion heads of the last two layers. We visualize the
results in Figure 17.

100 o= *-—o M"
o
(9]
g
g 0
]
O:Ln L1.H1
8 L2.H1
— -100 L3.H1
S == |4.H1
° =g | 5.H1
S L6.H1

-200

1 4 7 10 13

Path Length

Figure 17: To test the impact of the one-step lookahead,
we replicate the causal srubbing experiment from Sec-
tion 5.2 but add additional constraints to our resampling
scheme. We find that we can recover most of the model
performance across the full training distribution.

G Tuned Lens

In this section, we provide an additional piece of
evidence in favor of the existence of the back-
ward chaining mechanism. To understand how
the predictions of a transformer are built layer-by-
layer, Belrose et al. (2023) develop the Tuned Lens,
a method that involves training a linear model to
translate the activations from an intermediate layer
directly to the input of the unembedding layer.
Inspired by this approach, we replace the last n
layers of the model with a linear transformation
trained to predict the next token from the resid-
ual stream activations x“~". Similar to the Tuned
Lens, this method allows us to skip over these lay-
ers and see the current best prediction that can be
made from the model’s residual stream. Intuitively,
this allows us to peek at the iterative computations
a transformer uses to compute the next token. Here,
we present a visualization of some example trees
and the results of the iterative computation (see Fig-
ures 18 to 21). These figures highlight the current
best prediction a linear transformation could make

based on the internal activations. We project the
logits output by the linear model back onto the tree
structure to better visualize the backward-chaining
procedure.

4098

Layer 1 Layer 2

2
=

Layer 3 Layer 4

"
..é:;
1

Layer 5 Layer 6

RN

Figure 18: Example 1 (Path Length 5): Results of a linear transformation to predict the next step based on the
residual stream activations after each layer, projected onto the tree structure. The yellow border highlights the
current best prediction(s) of the linear transformation.

3

4099

of. o?.of.
. ® ?.. @ ‘0

Layer 3 Layer 4

Ry iy

Layer 5 Layer 6

o’o’. o;..o
o"'. g ‘.

¢

Figure 19: Example 2 (Path Length 8): Results of a linear transformation to predict the next step based on the
residual stream activations after each layer, projected onto the tree structure. The yellow border highlights the
current best prediction(s) of the linear transformation.

4100

Layer 1 Layer 2

Layer 3 Layer 4

o," 0,0.

v

Layer 5 Layer 6

... @

Figure 20: Example 3 (Path Length 10): Results of a linear transformation to predict the next step based on the

residual stream activations after each layer, projected onto the tree structure. The yellow border highlights the
current best prediction(s) of the linear transformation.

4101

Layer 1 Layer 2

Layer 3 Layer 4

Layer 5 Layer 6

Figure 21: Example 4 (Path Length 13): Results of a linear transformation to predict the next step based on the
residual stream activations after each layer, projected onto the tree structure. The yellow border highlights the
current best prediction(s) of the linear transformation.

4102

