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Abstract

Recently, neural networks have shown impres-
sive progress across diverse fields, with speech
processing being no exception. However, re-
cent breakthroughs in this area require exten-
sive offline training using large datasets and
tremendous computing resources. Unfortu-
nately, these models struggle to retain their pre-
viously acquired knowledge when learning new
tasks continually. In this paper, we investigate
the problem of learning sequence-to-sequence
models for spoken language understanding in
a class-incremental learning (CIL) setting and
we propose COCONUT , a CIL method that
relies on the combination of experience replay
and contrastive learning. Through a modified
version of the standard supervised contrastive
loss, COCONUT preserves the learned repre-
sentations by pulling closer samples from the
same class and pushing away the others. More-
over, we leverage a multimodal contrastive loss
that helps the model learn more discriminative
representations of the new data by aligning au-
dio and text features. We also investigate differ-
ent contrastive designs to combine the strengths
of the contrastive loss with teacher-student ar-
chitectures used for distillation. Experiments
on two established SLU datasets reveal the ef-
fectiveness of our proposed approach and sig-
nificant improvements over the baselines. We
also show that COCONUT can be combined
with methods that operate on the decoder side,
resulting in further metrics improvements.

1 Introduction

With the rapid progress of intelligent voice-enabled
personal assistants, the significance of Spoken Lan-
guage Understanding (SLU) has gained substantial
recognition in recent years (Arora et al., 2022; Qin
et al., 2021). Conventional SLU models deploy a
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cascaded pipeline of an automatic speech recogni-
tion (ASR) system followed by a natural language
understanding (NLU) module (Mesnil et al., 2014;
Horlock and King, 2003). ASR maps the input
speech into text representations, and NLU extracts
the target intent labels from the intermediate text.
Even though these approaches can leverage a vast
abundance of ASR and NLU data, they suffer from
ASR error propagation. Conversely, end-to-end
(E2E) SLU (Agrawal et al., 2022; Lugosch et al.,
2019; Saxon et al., 2021) has received more at-
tention in recent research because it uses a single
trainable model to map the speech audio directly to
the intent labels, bypassing the text transcript and
reducing latency and error propagation.

The assumption that the data distribution the
model will face after deployment aligns with what
it encountered during the training phase is brittle
and unrealistic. In fact, real-world scenarios entail
evolving streams of data where novel categories
(e.g., new vocabulary or intents) emerge sequen-
tially, known as continual learning (CL). Unfortu-
nately, while neural networks thrive in a stationary
environment, the situation is reversed in CL, re-
sulting in the “catastrophic forgetting” (CF) of the
existing knowledge in favor of fresh new informa-
tion (McCloskey and Cohen, 1989). Although the
majority of CL works have focused on computer vi-
sion tasks like image classification (Buzzega et al.,
2020; Wang et al., 2022c) and semantic segmen-
tation (Maracani et al., 2021; Yang et al., 2022a),
a few works have recently turned their attention
towards text (Wang et al., 2023a; Ke et al., 2023)
and speech (Cappellazzo et al., 2023a; Diwan et al.,
2023), as well as vision-language (Ni et al., 2023;
Zhu et al., 2023) and vision-audio (Mo et al., 2023;
Pian et al., 2023).

While most SLU works consider offline settings,
a thorough study of SLU under a class-incremental
learning (CIL) setup still lacks. In CIL, one single
model is adapted to a sequence of different tasks as
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incremental labels emerge sequentially. Recently,
Cappellazzo et al. (2023b) studied the problem of
CIL in ASR-SLU, where SLU is carried out in a
sequence-to-sequence (seq2seq) fashion, thus com-
puting the intent labels in an auto-regressive way
together with the ASR transcriptions. By doing this,
the model comprises three blocks: text and audio
encoders, and an ASR decoder. While in that work
the knowledge distillation (KD) principle applied
to the ASR decoder is used, in this paper, we exploit
the multi-modal audio-text setting and propose
COCONUT : COntinual Contrastive spOken
laNguage UndersTanding. COCONUT combines
experience replay (ER) and contrastive learning
principles. Whereas ER is a well-established ap-
proach in CL, whereby a bunch of old training sam-
ples are collected into a dedicated rehearsal mem-
ory buffer and interleaved with the data from the
new task (Rolnick et al., 2019; Bang et al., 2021),
only recently has contrastive learning been har-
nessed to learn representations continually. Both
supervised (Cha et al., 2021; Yang et al., 2022a)
and self-supervised (Fini et al., 2022; Wang et al.,
2022c) contrastive learning have proven useful to
lessen the CF issue. Specifically, COCONUT re-
lies on two contrastive learning-based losses that
operate on a shared embedding space where the
audio and text features are projected.

The first loss coined Negative-Student Positive-
Teacher (NSPT), is a modified version of the super-
vised contrastive learning loss that aims to consol-
idate what the model has learned in the previous
tasks. It also exploits KD (Hinton et al., 2015; Li
and Hoiem, 2017) to guide the current model (stu-
dent) to produce representations that resemble the
ones obtained with the model from the previous
tasks (teacher). For this reason, this loss is com-
puted only on the rehearsal data (i.e., the anchors).
A key difference between our loss and the standard
contrastive one is that the positive samples are com-
puted using the teacher (the positives only come
from the rehearsal data), whereas the negatives are
computed with the student. In this way, we avoid
stale and scattered representations for the new data.

The second loss is inspired by the recent progress
in multi-modal representation learning. Consid-
ering that for audio-text paired data, audio and
text represent the same information but in different
ways, it has been shown that aligning their repre-
sentations results in better performance for various
speech-related problems (Zhu et al., 2022; Ye et al.,
2022; Manco et al., 2022). Therefore, we propose

a multi-modal (MM) supervised contrastive loss
that, exclusively applied to the current task’s data,
brings audio and text representations belonging to
the same class into closer proximity in the shared
feature space, resulting in features that are more
transferable and resilient to CF. An overview of
COCONUT is illustrated in Figure 1.

In summary, our contributions are three-fold: ❶

we introduce COCONUT , a CL method that
makes use of two supervised contrastive learning
objectives to mitigate CF for seq2seq SLU mod-
els. In particular, through our proposed NSPT loss
we provide a detailed study of which models (stu-
dent/teacher) should be used at the numerator/de-
nominator (positives/negatives) of the contrastive
loss tailored for class-incremental learning. ❷

We conduct extensive experiments on two popular
SLU benchmarks demonstrating that COCONUT
achieves consistent improvements over the base-
lines. We also show that it can be combined with
KD applied to the ASR decoder, leading to further
improvements. Finally, ❸ we ablate the contribu-
tion of each loss and its components, showcasing
their pivotal role in COCONUT.

2 Problem Formulation

2.1 ASR-SLU Multi-task Learning
SLU is considered a more difficult task than ASR
and NLU since it involves both acoustic and se-
mantic interpretation (Tur and De Mori, 2011). For
this reason, it is common practice to include an
additional ASR objective such that the SLU labels
(in our case the intent labels) and the transcript are
generated in an auto-regressive fashion, resulting
in a multi-task learning setting (Arora et al., 2022;
Peng et al., 2023). By doing this, the text transcript
input to the model includes a class intent token that
is specific to the actual task.

Let θ be the parameters of a seq2seq ASR
model comprising an audio encoder, a text encoder
(i.e., embedding layer), and an ASR decoder. Let
x = [x0, . . . , xU−1] be an audio input sequence
of length U , and y = [ycls, ysep, y0, . . . , yJ−3] be
the “extended” input transcript of length J , where
with the term “extended” we refer to the original
transcript [y0, . . . , yJ−3] augmented with the intent
class token ycls and a special separation token ysep.
The goal of the ASR model is to find the most likely
extended transcript given the input sequence x:

ŷ = argmax
y∈Y∗

p(y|x; θ), (1)
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Figure 1: Overview of COCONUT . It uses two contrastive learning-based losses. The NSPT (negative-student
positive-teacher) loss is a supervised contrastive distillation loss that preserves the feature representations of the
past classes for both audio and text samples. The positive and negative samples are computed with the teacher and
student model, respectively. The MM (multi-modal) loss aims to align audio and text representations belonging to
the same new class. COCONUT produces features that are more transferable and resilient to catastrophic forgetting.

where Y∗ is the set of all token sequences. The
predicted intent is obtained extracting ycls from ŷ.

2.2 Class-Incremental Learning
For our experiments, we consider a CIL setting
where we adapt a single model to learn sequentially
N tasks corresponding to non-overlapping subsets
of classes (in our case intents). Put formally, the
training dataset is divided into N distinct tasks,
D = {D0, . . . ,DN−1}, based on the intent token
ycls, so that one intent is included in one and only
one task. The dataset Dn of task n comprises audio
signals Xn with associated transcriptions Yn, i.e.
Dn = (Xn,Yn). The CIL setting is challenging
in that the model must be able to distinguish all
classes until task n, thus at inference time the task
labels are not available (unlike in task-incremental
learning) (Hsu et al., 2018).

3 Proposed Approach

3.1 Standard Rehearsal-based Approach
We assume the availability of a rehearsal buffer,
M, in which we can store a few samples for each
class encountered in the previous tasks. During the
training phase of task n, Dn, we refer to B as a
mini-batch of samples (x, y), some of which come
from the current task and others from the rehearsal
memory. To increase the variance of the audio data,
we apply SpecAug (Park et al., 2019) to the au-
dio waveform x (see A.4 for more details). We do
not implement any augmentation technique for the
transcript y. We encode each modality separately
through a dedicated feature encoder. An audio en-
coder maps each audio input into a feature vector
hA ∈ RU×dA , where dA is the audio hidden size.

Similarly, a text encoder converts each text input
into a feature vector hT ∈ RJ×dT , where dT is the
text hidden size. At this point, if no specific CL
losses are used, the ASR decoder generates the out-
put sequence in an auto-regressive fashion, cross-
attending on the audio encoder’s representations
hA. Thus, at task n, we minimize the conventional
cross-entropy loss over the current mini-batch B:

LASR = − 1

|B|
∑

(x,y)∈B
log(p(y|x; θ)). (2)

3.2 COCONUT
Preliminaries. We introduce here some notations
for our proposed approach. Since we work with
audio and text sequences, we need to aggregate
the features we obtain with the encoders before
computing the contrastive loss. For the audio com-
ponent hA we apply a mean operation over its se-
quence length, whereas for text we only select the
feature related to the intent token. Then, as is com-
mon practice in contrastive learning (Radford et al.,
2021; Chen et al., 2020), the resulting embeddings
go through two separate linear projection layers
that map them into a shared embedding space. At
inference time, the projection layers are discarded.
Therefore, we get the projected embeddings a and
t in the following way:

a = gA(avg(hA)), t = gT(cls(hT)), (3)

where cls(·) is a function that extracts the feature
associated with the class token, gA(·) and gT(·) are
the projection layers, a ∈ RdS and t ∈ RdS , where
dS is the dimension of the shared space.

Furthermore, we introduce some notations for
the indices of samples coming from the current
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mini-batch B. Let Ic and Ir represent the set of
indices of the new task samples and the indices of
the samples from the rehearsal memory (old task
samples) in B, respectively. Also, let I = Ic ∪ Ir,
and we define P(k) as the set of indices of positive
samples (i.e., samples with the same intent token).

The objective of a standard supervised con-
trastive loss (SCL) (Khosla et al., 2020) is to
push the representations of samples with different
classes (negative pairs) farther apart while cluster-
ing representation of samples with the same class
(positive pairs) closely together. Suppose that we
get from the projection layers a generic represen-
tation zDi for the i-th element in the batch, where
z = {a, t} and the superscript D denotes whether
the representation is computed with the teacher or
student model. A generic formulation of the SCL
loss takes the following form:

LSCL =
∑

k∈I

−1

|P(k)|
∑

p∈P(k)

log
exp(zDk · zDp /τ)∑
i∈I exp(zDk · zDi /τ)

,

(4)
τ ∈ R+ is a fixed temperature scaling parameter.

Supervised Contrastive Distillation Loss
(NSPT). This loss combines the benefits of KD
with those of contrastive learning (Tian et al., 2020;
Sun et al., 2020). We recall that KD-based meth-
ods are very popular in CL and they exploit this
paradigm to penalize changes to the model’s in-
termediate or final outputs by fostering the pass
of the knowledge accrued in the teacher model
onto the student (Rebuffi et al., 2017; Douillard
et al., 2020; Cappellazzo et al., 2023a). Commonly,
we denote with teacher the model trained in the
previous task, and with student that trained in the
current task. Therefore, since the teacher conveys
information about the previous classes, we would
like to use it as a guide for the student through
a KD objective. In this way, the loss encourages
the student to produce audio and text embeddings
consistent with those obtained by the teacher. For
this reason, only the rehearsal samples are involved
in this process as the teacher had no chance to see
the current data. Additionally, we want to pull
closer embeddings sharing the same intent class
(i.e. the positives), while we push away the others
(i.e. the negatives, whose class is different). This is
obtained via a modified version of the standard su-
pervised contrastive loss tailored for our setting. In
fact, a standard one would use the teacher to com-
pute both the positives and the negatives (Khosla
et al., 2020). However, since the teacher is frozen

and it is pointless to compute the representations of
the samples from the current task using the teacher,
we propose to use the student for computing the
representations of the negatives. A small fraction
of negatives come from the rehearsal buffer, and
we also compute them using the student. We show
in section 4.3 that using the teacher deteriorates the
performance. Therefore, our contrastive distilla-
tion loss computes the embeddings of the anchor
and its corresponding negatives using the student,
while the positives come from the teacher (we call
this loss Negative-Student Positive-Teacher, NSPT).
On the contrary, for the standard contrastive loss
both the positives and negatives are computed with
the teacher (we call it Negative-Teacher Positive-
Teacher, NTPT). Figure 2 illustrates visually how
the NTPT and NSPT work in the shared embedding
space. The NSPT loss is computed for both audio
and text embeddings, leading to two components,
one for each modality, as follows:

LNSPT =
∑

k∈Ir

−1

|P(k)|
∑

p∈P(k)

[
log

exp(an
k · an−1

p /τ)∑
i∈I exp(an

k · an
i /τ)︸ ︷︷ ︸

LA

+

log
exp(tnk · tn−1

p /τ)∑
i∈I exp(tnk · tni /τ)︸ ︷︷ ︸

LT

]
,

(5)
where n and n− 1 denote whether the representa-
tion is obtained with the student or teacher, and LA
and LT represent the audio and text contributions,
respectively. We empirically validate that the intu-
ition of the NSPT loss is beneficial in section 4.3.

Supervised Multi-Modal Contrastive Loss.
This loss is introduced for two reasons. First of all,
since during the first task (no CL) the NSPT loss is
not computed (i.e., we do not have a teacher yet),
this means that the projector layers of the model are
not trained. This would be a problem from the sec-
ond task onwards in that the student would distill
the knowledge from the teacher with randomly ini-
tialized projectors. Second, we want to exploit the
multi-modal nature of our SLU CIL setting. Con-
sequently, we introduce a multi-modal (MM) loss
that aims to align audio and text representations
belonging to the same new class, and thus training
the projectors of the model from the very begin-
ning. This alignment is achieved via a supervised
multi-modal (i.e., audio-text) contrastive learning
objective where feature representations of samples
sharing the same intent token are attracted while
the others are pushed away. Similar to (Kwon et al.,
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Figure 2: Illustration of the NTPT loss and our proposed NSPT loss. Given an anchor sample from the current
mini-batch, the NTPT loss computes the negatives and positives using the teacher model (dashed circles). Instead,
the NSPT loss computes the positives with the teacher while the negatives are computed with the student model
(solid circles). If the features obtained with the teacher are scattered and static (the teacher is frozen), those obtained
with the student are more clustered and can be learned during the current task. Best viewed in color.

2023), we use the [CLS] text token (ycls) for per-
forming the multi-modal alignment. Furthermore,
following (Cha et al., 2021), we always treat the re-
hearsal samples as negatives, preventing them from
being anchors during the learning process. This
design choice is buttressed by two motivations: 1)
rehearsal data have been learned by the previous
model already and are preserved via the NSPT loss,
and 2) we encourage the model to produce clusters
for the new data that are separated from those of
the rehearsal data. The MM loss is defined as:

LMM =
∑

k∈Ic

−1

|P(k)|
∑

p∈P(k)

[
log

exp(an
k · tnp/τ)∑

i∈I exp(an
k · tni /τ)

+

log
exp(tnk · an

p/τ)∑
i∈I exp(tnk · an

i /τ)

]
.

(6)
The first term of the internal loss is the audio-to-text
component, whereas the second is the text-to-audio
component (Zhang et al., 2022). The presence
of both directions (A → T and T → A) makes
the MM loss symmetric. All in all, COCONUT
minimizes the following loss:

L = LASR + λMMLMM + λNSPTLNSPT, (7)

where lambdas are loss-specific weights. Note that
during the first task LNSPT is not computed.

4 Experiments

4.1 Experimental Setup and Implementation
Details

Datasets and CIL setting. We evaluate CO-
CONUT on two SLU datasets: the Fluent Speech
Commands (FSC) (Lugosch et al., 2019) and the

Spoken Language Understanding Resource Pack-
age (SLURP) (Bastianelli et al., 2020). FSC in-
cludes 30,043 English utterances, recorded at 16
kHz, resulting in 31 intent classes in total. The
SLURP dataset comprises around 56 hours of au-
dio of people interacting with a home assistant
(slurp_real), with the addition of 43.5 hours of syn-
thetic data (slurp_synth). It is considered the most
challenging SLU dataset due to its lexical complex-
ity. Each utterance is annotated with 3 semantics:
scenario, action, and entity. The pair (scenario,
action) defines an intent. Overall, there are 18 sce-
narios and 69 intents. For our experiments, we
only perform intent classification. Following (Cap-
pellazzo et al., 2023b), we use the scenario labels
as splitting criterion to define the CIL setting (we
refer to A.3 for more details on this). We exper-
iment on two configurations: 1) the datasets are
partitioned into 3 tasks, each task comprising 6
scenarios for SLURP (denoted as SLURP-3), and
10 intents for FSC (FSC-3); 2) a more challenging
configuration with 6 tasks, each task including 3
scenarios for SLURP (SLURP-6), and 5 intents for
FSC (FSC-6).

Implementation Details. For both datasets, the
text encoder is a standard text embedding layer
with size 768. For the audio encoder, we use a
Wav2vec 2.0 base model (Baevski et al., 2020) pre-
trained and fine-tuned on 960 hours of Librispeech
for SLURP (∼ 94.3M parameters), while we use
DistilHuBERT base (Chang et al., 2022) for FSC
(∼ 23.5M parameters). Both encoders have hid-
den sizes of 768. Since FSC is a less challenging
dataset than SLURP, we found that a smaller pre-
trained encoder is sufficient to achieve state-of-the-
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Table 1: Results in terms of Average Accuracy (↑), Last Accuracy (↑), and Average WER (↓) for different strategies
on FSC and SLURP datasets. All CL methods exploit a buffer whose size is 1% of the training dataset. Bold and
underscore numbers denote the best and second best method for a specific setting and metric, respectively. We show
in the last row that COCONUT and S-KD can be used together, leading to the best results. For simplicity, the values
of the last row are not in bold even though attain the best results.

Setting → FSC-3 FSC-6 SLURP-3 SLURP-6
————————— ————————— ————————— —————————

Metric → Avg Last Avg Avg Last Avg Avg Last Avg Avg Last Avg
Method ↓ Acc Acc WER Acc Acc WER Acc Acc WER Acc Acc WER

Offline 99.28 - 0.48 99.28 - 0.48 84.41 - 17.65 84.41 - 17.65
Fine-tuning 49.13 17.61 36.37 29.92 7.59 54.66 46.65 18.42 28.32 31.90 10.57 34.79

ER rand 79.17 69.81 15.87 68.61 63.71 24.04 71.44 61.88 21.25 66.57 58.22 24.50
ER iCaRL 82.04 74.00 13.45 69.76 64.12 23.22 71.94 63.22 21.06 68.08 62.29 26.05

T-KD 82.11 75.43 12.95 69.08 64.73 23.82 72.44 62.43 21.19 66.95 60.47 24.26
A-KD 84.79 78.12 11.54 73.54 67.05 20.36 72.10 63.84 20.67 68.52 62.51 24.29
S-KD 84.29 75.31 12.39 73.65 67.71 21.27 74.28 65.95 21.26 69.91 63.22 24.26
COCONUT 86.39 80.21 11.08 77.09 73.80 19.05 72.75 64.62 21.25 70.17 63.66 24.29

COCONUT+S-KD 87.64 80.45 10.49 77.57 74.01 18.47 75.58 67.39 20.61 71.91 65.41 24.16
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Figure 3: Left: the trend of the intent accuracy on the observed tasks for the FSC-6 setting. Right: the trend of the
intent accuracy on the observed tasks for SLURP-6.

art results. Moreover, experimenting with diverse
architectures helps evaluate the generalizability of
our proposed method. As in (Radford et al., 2021),
we employ linear projection layers to map from
each encoder’s representation to the audio-text em-
bedding space, whose dimension is 512. The ASR
decoder is transformer-based with 6 layers, hidden
size equal to 768, 8 attention heads, and the dimen-
sion of the feedforward layers is 2048. We set the
temperature τ to 0.1 for both NSPT and MM loss
(please refer to 4.4 for a detailed analysis).

For the tokenization we apply Byte-Pair Encod-
ing (BPE) (Sennrich et al., 2016) for SLURP, with
a vocabulary size of 1000 and BPE dropout equal
to 0.1, whereas for FSC, given the limited number
of unique words, we use word tokenization, result-
ing in 139 tokens. BPE automatically assigns to
each intent a dedicated token, whereas for FSC we

manually add the intent tokens. We refer the reader
to A.2 for an exhaustive description of the hyperpa-
rameters. Regarding the weight coefficients, we set
λMM to 0.1, and similarly to (Douillard et al., 2022;
Wu et al., 2019) we set λNSPT to Lp

Lp+Ln
, where Lp

and Ln count the number of past and new classes.

Baselines. Apart from the standard offline (1
task, no continual) and fine-tuning (no CL strate-
gies) baselines, we compare COCONUT against
standard experience replay (ER) methods with
random and iCaRL (Rebuffi et al., 2017) sampling
strategies. We note that ER is already a strong base-
line for FSC and SLURP. We also point out that
adapting standard CL strategies to our setting is not
trivial as they are usually proposed for classifica-
tion tasks and not for auto-regressive tasks. Plus,
we report two methods proposed in (Cappellazzo
et al., 2023b) that combine rehearsal and KD prin-
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Figure 4: Left: the trend of the WER on the observed tasks for the FSC-6 setting. Right: the accuracy of COCONUT
and other methods as a function of the memory size.

ciples: audio-KD (A-KD) that applies the KD on
the audio features of the rehearsal samples, and
seq-KD (S-KD) that, at the end of the current task,
stores the text transcriptions computed with beam
search only for the rehearsal samples and use them
as pseudo-transcriptions for the next task. This
method operates on the ASR decoder. For the sake
of completeness, we also report text-KD (T-KD),
the text counterpart of the A-KD.

Metrics. Following (Douillard et al., 2022), we
report the results in terms of the Avg Acc, which
is the average of the intent accuracies after each
training task, and the Last Acc, which is the intent
accuracy after the last task. We also report the Avg
WER, the average of the Word Error Rate (WER)
of the extended transcription after each task.

4.2 Main Results

In the first two rows of Table 1, we include the
upper and lower bounds represented by the offline
learning (which is in line with the state-of-the-art)
and fine-tuning approaches. For the fine-tuning
approach, we can notice how CF deteriorates the
knowledge of the prior classes. We then include ER
baselines with buffer capacity equal to 1% of the
dataset size. From these results we can see that ER-
based methods achieve good results for all metrics
and configurations, confirming themselves as solid
baselines. For FSC, COCONUT outperforms the
other baselines by a significant margin, in terms of
both accuracy and WER. Its combination with the
S-KD leads to additional improvements (last row).

If we turn our focus to SLURP we see that, for
the setting with 3 tasks, S-KD turns out to be the
best approach in terms of intent accuracy, followed
by COCONUT. For the WER, all the methods
achieve similar performance and do not provide

significant enhancements. We speculate that, as
only some words are task-specific while the others
are spread across multiple tasks, the text modality
is less affected by CF. It is also compelling to note
that the A-KD always achieves better performance
than T-KD, a trend that will also be observed for
the NSPT loss in the ablation studies. For SLURP-
6, COCONUT slightly surpasses S-KD in terms of
accuracy, and performs on par with the others for
the WER metric. This indicates that COCONUT
scales properly with the number of tasks. Addi-
tionally, we point out that, for SLURP, COCONUT
provides less noticeable improvements than FSC.
This can be attributable to the higher complexity
of the dataset due to its larger dictionary and to the
larger number of intents with respect to FSC (69
vs. 31). Finally, similar to FSC, the combination
of COCONUT with S-KD attains the best results,
confirming that fighting CF both at the encoders
and ASR decoder is an effective solution.

In Fig. 3 we illustrate the trend of the intent
accuracy after each task for FSC-6 and SLURP-
6. For FSC-6, COCONUT outperforms the other
baselines by a large margin after each task. For
SLURP-6, COCONUT has a similar trend as S-
KD, and their combination leads to a noteworthy
boost in performance. On the left part of Fig. 4 we
also show the trend of the WER task by task.

4.3 Ablation Study

Is COCONUT effective when we vary the buffer
memory size? On the right side of Fig. 4, we study
the trend of COCONUT for different quantities
of rehearsal samples per class. Note that 8 sam-
ples per class is equivalent to a buffer capacity of
1% of the entire training dataset. The maximum
gain provided by COCONUT with respect to the
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Table 2: Ablation on the use of NSPT and NTPT losses.

Dataset → FSC-6 SLURP-6

Metric → Avg Last Avg Last
Method ↓ Acc Acc Acc Acc

ER iCaRL 69.76 64.12 68.08 62.29
MM 71.12 67.76 68.78 62.94
MM + NTPT 74.05 67.61 68.91 62.57
MM + NSPT-AA 76.30 72.34 69.74 62.54
MM + NSPT-AN 66.37 63.89 64.72 56.84
MM + NSPT 77.09 73.80 70.17 63.66

ER baseline is reached for 4 and 8 samples per
class (9.27 and 6.69, respectively), while for the
extreme cases of 2 and 30 samples, the gap is re-
duced. This is explained by the fact that when few
samples are stored for each class, the effect of the
NSPT loss is highly reduced given its reliance on
the rehearsal data, whilst in the opposite case the
abundance of rehearsal data makes the ER baseline
already strong, thereby improving it becomes more
challenging. Regarding the latter case we note that
when we increase the buffer memory size, we im-
plicitly move toward the offline setting (the upper
bound), which is not the objective of this paper.

Ablation on the NSPT Loss. In Table 2 we
evaluate the difference in performance between the
standard NTPT loss and our proposed NSPT loss
and some of its variants. Specifically, we study
two design properties: 1) which samples should
be used as anchors? 2) Should the rehearsal nega-
tives be computed using the teacher model rather
than the student, unlike the negatives coming from
the new task? Regarding point (1), we study the
case where the anchor samples are both the re-
hearsal data (our proposed design) and the new
data. This means that in the outer sum of Equa-
tion 5 the samples are picked from I. Note that
this design choice requires to compute the loss for
all samples in the dataset, thus incurring an ap-
preciable increase in the computational cost. We
denote this variant where we Ablate the Anchor
design as NSPT-AA. As for the second point, we
compute the negatives coming from the rehearsal
memory using the teacher (the teacher has seen
those classes in the previous tasks), whereas the
samples from the current task are computed with
the student model. The denominators of Equa-
tion 5 become (we use z to refer to both a and t):∑

i∈Ic exp(z
n
k · zni /τ) +

∑
h∈Ir exp(z

n
k · zn−1

h /τ).
We call it NSPT-AN (Ablate Negatives).

Table 3: Ablation study of the MM (upper part) and
NSPT (bottom part) components. CLS: whether only
the intent class token is used; Anchor: whether ER data
are excluded from the anchors. LA/LT: whether the
audio/text component of NSPT loss is used.

CLS Anchor LA LT Avg Acc

70.10
✓ 70.49

✓ 71.09
✓ ✓ 71.12
✓ ✓ ✓ 76.84
✓ ✓ ✓ 73.11
✓ ✓ ✓ ✓ 77.09

Looking at Table 2, we see that for FSC-6, the
use of our proposed NSPT loss gives a considerable
improvement over the NTPT loss in terms of all
three considered metrics. For SLURP-6, the trend
is maintained, and now the NTPT even brings a
small deterioration over the MM baseline in terms
of Last Acc. Also, the MM loss alone contributes
positively over the ER baseline for both settings.
We recall that it is not possible to study the individ-
ual contribution of the NSPT loss because, without
the MM loss, the teacher projectors are randomly
initialized during the second task (see section 3.2).
Furthermore, we observe that the design choices of
(1) and (2) are crucial to obtaining superior perfor-
mance. Regarding the NSPT-AA loss, the model
is less sensitive to this design choice. However,
note that this loss is more expensive as it requires
extra computational cost owing to the use of all
samples in a mini-batch for its computation, thus
making it less appealing than our proposed NSPT
loss. Instead, the use of the NSPT-AN yields a
severe degradation in the performance. We sus-
pect that this happens because mixing the teacher
and student at the denominators makes the learning
process more complex as feature representations
of different models interact, inducing more inter-
ference and thus leading the model to make more
mistakes.

Ablation on the MM Loss. Finally, in Table 3
we study the design properties of the MM loss on
FSC-6, and with its best configuration, we deter-
mine the individual contribution of the audio and
text components to the NSPT loss. For the MM
loss, we see that using the intent token and pre-
venting the ER data from being anchors brings
additional improvements. For the NSPT loss, as
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Table 4: Ablation study of the temperature τ for the MM
loss. We experiment on FSC-6 by setting τ beforehand
and making it a learnable hyperparameter as is common
practice in offline settings (Radford et al., 2021). The
light-blue row corresponds to the value we used for our
experiments.

Metric → Avg Last Avg
Temp. (τ ) ↓ Acc Acc WER

0.07 71.06 64.75 22.07
0.1 71.12 67.76 22.88
0.2 71.01 62.35 22.78
Learnable 69.05 66.33 24.57

was evident for the A-KD and T-KD, with the for-
mer giving better results, here we also discover
that the audio component is predominant. Plus, the
concurrent use of both components brings a mod-
erate increase in accuracy, and this is due to the
alignment between audio and text via the MM loss.

4.4 On the Impact of the Temperature
Parameter

In this section we analyze the role of the tempera-
ture parameter in the CIL process for the MM loss
(see Equation 6) on the FSC-6 setting. We first
try to set the value beforehand (0.07, 0.1, 0.2), and
then we make the temperature a learnable hyperpa-
rameter (initial value is 0.07). Results are reported
in Table 4. We can observe that τ = 0.1 is the best
configuration for the accuracy metric. Note that,
however, the model does not seem very sensitive to
the temperature for the Avg Acc, whereas the Last
Acc is more influenced. Since the Avg Acc does
not change much across the three configurations,
yet the Last Acc sways much more, this means that
for τ = 0.1 the model struggles more during the
initial tasks, but it performs better towards the end
of the learning process. On the other hand, learning
τ task by task does not seem to be the right choice
as the Avg Acc and WER metrics deteriorate with
respect to the other three configurations where it
is fixed. In fact, we observed that during the first
tasks, the model is learning the optimal value for τ
until it finds it (this value approximately lies in the
range 0.134−0.142). This initial transitional phase
penalizes the accuracy of the first tasks, which in
turn leads to a deterioration in the Avg Acc metric.

5 Conclusion

In this work, we study the problem of E2E SLU us-
ing a seq-2-seq model for class-incremental learn-
ing. In order to mitigate catastrophic forgetting
we propose COCONUT , a CL approach that
exploits experience replay and contrastive learning
paradigms. On the one hand, it preserves the previ-
ously learned feature representations via an ad-hoc
supervised contrastive distillation loss, on the other
it contributes to aligning audio and text representa-
tions, thus resulting in more transferable and robust
to catastrophic forgetting representations. We show
that COCONUT outperforms the other baselines
and that synergizes with other KD techniques op-
erating on the decoder side. We finally dissect the
design choices of COCONUT through specific ab-
lation studies, showcasing that each component is
pivotal to attain the best results.

6 Limitations

Our work comes with some limitations. First of all,
the number of suitable SLU datasets for CIL set-
tings is limited since few datasets provide enough
intent classes. Then, we could not use batches
larger than 32 owing to computational limitations,
and it is known that contrastive learning benefits
from larger batches. Finally, as pointed out in the
paper, almost all CIL methods are proposed for
classification tasks, so their adaptation to our set-
ting is not trivial. For this reason, we focused more
on past baselines tailored for our setting, as well
as rehearsal approaches that confirm themselves as
strong approaches while being simple. Finally, we
do not see any potential risks linked to our work.
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A Appendix

A.1 Related Work

A vast array of CL strategies exist in the litera-
ture (Wang et al., 2023b; Zhou et al., 2023), which
can be categorized into some macro groups: reg-
ularization-based, experience replay, and archi-
tecture-based. Regularization methods contrast
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forgetting either by introducing some ad-hoc reg-
ularization terms that penalize changes to model
weights (Ebrahimi et al., 2020; Kirkpatrick et al.,
2017) or to model predictions (Hou et al., 2018;
Li and Hoiem, 2017; Fini et al., 2020). Experi-
ence replay approaches interleave the new data
with cherry-picked samples from the prior tasks
(Chaudhry et al., 2019; Bang et al., 2021; Buzzega
et al., 2020), or they incorporate regularization
terms with this additional data to steer the opti-
mization process and prevent catastrophic forget-
ting (Chaudhry et al., 2019; Wang et al., 2021;
Yang et al., 2022b). Finally, architecture methods
involve creating task-specific/adaptive parameters,
such as dedicated parameters to each task (Xue
et al., 2022; Wang et al., 2022a) or task-adaptive
sub-modules or subnetworks (Aljundi et al., 2017;
Ostapenko et al., 2021).

Contrastive learning (Oord et al., 2018; Chen
et al., 2020) is a popular approach in self-
supervised learning, but it can also be used in
supervised learning (Gui et al., 2023) and multi-
modal learning (Radford et al., 2021). Its objective
is to learn discriminative feature representations
by pushing apart different samples (negatives) and
bringing closer similar ones (positives). In the case
of supervised CIL, it has been shown that endow-
ing the model with contrastive learning objectives
results in more robust representations against CF.
For incremental semantic segmentation, Yang et al.
(2022a) and Zhao et al. (2023) propose to exploit
contrastive learning in conjunction with knowledge
distillation. For image classification, Wang et al.
(2022b) advance a contrastive learning strategy
based on the vision transformer architecture for
online CL.

A.2 Hyper-parameters
We list the main hyperparameters used for our ex-
periments in table 5. We also mention the num-
ber of epochs for each setting. For FSC-3, the
number of epochs for each task is {40,30,30},
while for SLURP-3 we use {40,25,25}. For FSC-
6 and SLURP-6 we use {40,30,30,30,30,30} and
{40,25,20,20,20,20} epochs, respectively. We fi-
nally note that we set lr = 5 · 10−4 for the text
encoder, the ASR decoder and the classifier, while
for the audio encoder we set a smaller learning rate,
lr = 5 · 10−5, because it is pre-trained. For our
experiments, we used a single Tesla V100 or Am-
pere A40 GPU. Finally, each experiment reports
the mean and standard deviation over 3 runs for

FSC and 2 runs for SLURP, respectively.

A.3 Additional Details on the Definition of the
CIL Setting for SLURP

As the SLURP dataset provides multiple levels of
annotations (scenario, action, entity[es]), in prin-
ciple one could decide to divide the dataset into
multiple CIL tasks following one of these criteria.
Following (Cappellazzo et al., 2023b), we use the
scenarios as splitting criterion because they repre-
sent more general concepts than the actions and
entities, and then the accuracy is computed on the
intent, defined as the pair (scenario,action). In ad-
dition to this, we define the order of the classes
in the various tasks depending on their cardinality,
meaning that the classes with more samples are
seen first by the model. This is done because the
cardinality of SLURP scenarios varies consistently
from class to class, and this should resemble a prac-
tical situation in which the model accrues sufficient
general knowledge, learning the largest scenarios
first, that will be useful for learning more specific
scenarios. All in all, we tried to be as consistent
with the original implementation in (Cappellazzo
et al., 2023b) as possible in order to ensure a fair
comparison with prior works.

A.4 SpecAug Details

In this section, we elaborate on the use of SpecAug
for augmenting the audio input data. SpecAug
(Park et al., 2019) is a popular augmentation tech-
nique that is applied directly on the log mel spec-
trogram of an audio signal, with the aim of making
the model invariant to features deformation. In the
original paper, they advance three different types of
distortions: time warping, and time and frequency
masking, where blocks of consecutive time steps
and frequency channels are zero-masked, respec-
tively. Since our audio encoders (i.e., DistilHu-
BERT and Wav2vec 2.0) work on the raw audio
waveforms, SpecAug is not applicable by default.
In order to circumvent this problem, we apply an
approximated version of SpecAug directly to the
raw waveform, as proposed in the SpeechBrain li-
brary (Ravanelli et al., 2021). We randomly drop
chunks of the audio waveform (by zero-masking)
and frequency bands (with band-drop filters). Un-
like the SpeechBrain implementation, we do not
apply speed perturbation. In more detail, with prob-
ability 0.5 we randomly drop up to 2 frequencies,
while with probability 0.5 we randomly drop up to
3 chunks of audio whose length is sampled from a
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Table 5: Training hyperparameters for FSC and SLURP.

Hyperparameter FSC SLURP

Batch Size 32
Optimizer AdamW
β1 0.9
β2 0.98
ϵ 10−6

lr 5 · 10−4

Weight Decay 0.1
Tokenizer Word Tok. BPE Tok.
Beam Search width 5 20
Temperature τ 0.1

Table 6: The accuracy of COCONUT and other methods
as a function of the memory size for the SLURP dataset.

Examples per class

Method 650 1260 2500

iCaRL 59.94 61.87 63.38
COCONUT 68.08 70.17 71.91
COCONUT + S-KD 70.15 71.41 72.10

uniform distribution ∼ U(0, 0.05 · len(x)), where
len(x) is the length of the considered audio wave-
form x.

A.5 Additional Results for SLURP
Similar to the study we proposed on the right side
of Fig. 4 for the FSC dataset, we here include a
similar one for SLURP, where we vary the number
of samples per class stored in the rehearsal mem-
ory. We report these additional results in Fig. 6.
Note that 1260 samples corresponds to 1% of the
training data, which is the % we used for our main
results. Similar to what we obtained for the FSC
dataset, we see that, as we increase the number
of retained samples to 2500, the gain brought by
COCONUT and its combination with S-KD is a
bit smaller but still significant, and this happens
because the iCaRL method becomes a stronger
and stronger baseline as we increase the % of data.
Also, we notice that adding the S-KD approach is
more beneficial when we have fewer samples in the
memory since the task is way more challenging.

A.6 Computational Time Analysis
In this section, we study the computational cost of
COCONUT and compare it with the other base-
lines. The computational time includes the training

and inference time, as well as the time needed for
selecting the rehearsal samples to store in the mem-
ory (the S-KD method also computes the pseudo-
labels that will be stored in the memory). The main
difference between the baselines (ER iCaRL, A-
KD, S-KD) and COCONUT is that the baselines
focus on the rehearsal data only, while COCONUT
is applied to both the rehearsal data (NSPT loss)
and the new data (MM loss), and so COCONUT
requires an additional compute time due to the MM
loss. Nevertheless, this additional time does not
hinder its applicability as it is somewhat limited.
Indeed, for the FSC-6 setting, the KD baselines
require an additional 3/7 % of computational time
with respect to the fine-tuning baseline, while CO-
CONUT requires around 11%. For SLURP-3, the
KD baselines require around 8% of additional com-
pute time, whereas COCONUT requires around
35%. Undoubtedly COCONUT requires slightly
more running time than the other KD baselines that
are only applied to the rehearsal samples, but this
overhead is minimal and consequently we believe
this is not an issue for a practical scenario, consider-
ing also that COCONUT leads to much-improved
performance. Additionally, from a memory over-
head point of view, COCONUT requires the storage
of the rehearsal samples and a copy of the model
from the previous task. These storage requirements
are the same as the A-KD baseline. Instead, the
S-KD approach, in addition to the aforementioned
storage requirements, also necessitates the storage
of the rehearsal text transcriptions generated with
beam search from the previous task, thus increas-
ing the requested memory overhead with respect to
COCONUT.

3740



0 100 200 300 400 500
Computational time (minutes)

ER iCaRL

A-KD

S-KD

COCONUT

M
et

ho
ds

FSC-6

0 200 400 600 800 1000
Computational time (minutes)

ER iCaRL

A-KD

S-KD

COCONUT

M
et

ho
ds

SLURP-6

Figure 5: Computational cost analysis of various CIL methods for FSC-6 (left) and SLURP-6 (right).

A.7 Future Work
COCONUT relies on two contrastive learning-
based losses applied to the projections of audio and
text encoders outputs. In principle, COCONUT
could be exploited in other multi-modal settings
such as audio-vision or vision-language. There-
fore, it would be interesting to study whether CO-
CONUT can be exploited in other different multi-
modal scenarios. Also, since these settings usually
involve a larger number of classes than ours, we
would be able to test how COCONUT scales to the
number of tasks.
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