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Abstract

Neural image classifiers can often learn to
make predictions by overly relying on non-
predictive features that are spuriously corre-
lated with the class labels in the training data.
This leads to poor performance in real-world
atypical scenarios where such features are ab-
sent. This paper presents ASPIRE (Language-
guided Data Augmentation for SPurIous cor-
relation REmoval), a simple yet effective solu-
tion for supplementing the training dataset with
images without spurious features, for robust
learning against spurious correlations via better
generalization. ASPIRE, guided by language
at various steps, can generate non-spurious im-
ages without requiring any group labeling or
existing non-spurious images in the training set.
Precisely, we employ LLMs to first extract fore-
ground and background features from textual
descriptions of an image, followed by advanced
language-guided image editing to discover the
features that are spuriously correlated with the
class label. Finally, we personalize a text-to-
image generation model using the edited im-
ages to generate diverse in-domain images with-
out spurious features. ASPIRE is complemen-
tary to all prior robust training methods in lit-
erature, and we demonstrate its effectiveness
across 4 datasets and 9 baselines and show that
ASPIRE improves the worst-group classifica-
tion accuracy of prior methods by 1% - 38%.
We also contribute a novel test set for the chal-
lenging Hard ImageNet dataset 1.

1 Introduction

Spurious correlations are unintended associations
or biases learned by models between the input im-
age and the target label, often resulting from factors
like data selection biases (Torralba and Efros, 2011;
Jabri et al., 2016). The repeated co-occurrence of

1Code and data: https://github.com/Sreyan88/ASPIRE
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Figure 1: Overview of ASPIRE. Given a training dataset,
ASPIRE automatically detects non-predictive spuriously corre-
lated features for each class (e.g., indoor background for small
dogs) and generates synthetic images without them (small
dogs in an outdoor background). These images can then be
added to the train set to learn a more robust image classifier.

certain features (like foreground objects or back-
grounds), with a more than average chance, within
instances of a particular class leads the model to
learn shortcuts and focus on these spurious non-
predictive features for prediction than core ones.
For example, most of the images in ImageNet
dataset (Deng et al., 2009) labeled as Dog Sled
also show a dog, and image classifiers trained on
ImageNet fail to correctly identify an image of a
dog sled without a dog in it.

Instances of a class in the training set where the
co-occurring spurious features are present are com-
monly known as majority groups, while atypical
instances where such spurious features are absent
are known as minority groups. Deep neural net-
works trained on these datasets poorly generalize
on minority groups (naturally due to their scarcity)
and thus can exhibit significant performance degra-
dation on minority groups in the test (Sagawa et al.,
2019), or in real-world scenarios when encounter-
ing domain shift (Arjovsky et al., 2019). When
training over-parameterized deep neural networks,
there are multiple solutions with the same loss val-
ues at any given training stage, and the optimizer
usually gravitates towards a solution with lesser
complexity (or tends to learn a shortcut) (Wilson
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et al., 2017; Valle-Perez et al., 2018; Arpit et al.,
2017; Kalimeris et al., 2019). When faced with
co-occurring spurious features, the optimizer may
preferentially utilize them, as they often require
less complexity than the anticipated semantic sig-
nals of interest (Bruna and Mallat, 2013; Bruna
et al., 2015; Brendel and Bethge, 2019; Khani
and Liang, 2021). Even powerful classifiers like
CLIP and ViT undergo a significant drop in per-
formance when exposed to minority group images
in the test (Yang et al., 2023; Kirichenko et al.,
2023). Teaching meaningful data representations
to deep neural networks that yield good perfor-
mance on a target downstream task while avoiding
over-reliance on spurious features remains a central
challenge in CV.

Motivation. Learning classifiers robust to spurious
correlations is an active area of research (Sagawa*
et al., 2020; Liu et al., 2021a; Kirichenko et al.,
2023), and has the potential to improve various
Computer Vision (CV) applications such as visual
question-answering (Liu et al., 2023d), retrieval
(Kong et al., 2023; Kim et al., 2023), classification
(Liu et al., 2021a), etc. have shown to consistently
In prior work, researchers generally employed dif-
ferent learning techniques with the assumption that
annotated data for the minority groups existed in
the training dataset. Most of these works are built
on the same base principle: improved generaliza-
tion on minority groups can lead to a more robust
classifier. Despite extensive research in deep learn-
ing indicating that more data may lead to better
generalization, little effort has been made to lever-
age this principle specifically for building robust
classifiers. Additionally, we argue that it is imprac-
tical to manually collect and label minority group
images for real-world, large-scale datasets. For
example, in more complex datasets like the Hard
ImageNet, beyond the commonly evaluated CelebA
(Liu et al., 2015) and Waterbirds (Welinder et al.,
2010), a single class of images may have multiple
spuriously correlated features. Thus, identifying all
such features through human perception to collect
and label minority group images is a difficult task.

Main Contributions. In this paper, we present AS-
PIRE, a novel technique to augment existing image
classification datasets with diverse non-spurious
images for building robust image classifiers. In-
tuitively, our solution exploits the fact that more
data can lead to better generalization on minor-
ity groups (Sagawa et al., 2020; Liu et al., 2021b).

Guided by language, ASPIRE does not depend
on any additional image annotations or human-
labeled non-spurious data and only requires a train-
ing dataset and a standard model trained using Em-
pirical Risk Minimization (ERM) to identify most
of the spurious correlated features for each class in
the training dataset. ASPIRE first selects a small
portion of the total instances in the training set,
misclassified by a classifier after ERM training.
These selected images are then captioned, and an
LLM extracts the tokens from the caption that de-
scribe the foreground objects and background. This
is followed by editing the image using advanced
language-guided image editing pipelines to remove
or replace one object at a time and predicting the
class of the edited image using the standard ERM
classifier. We attribute the objects or background
features that lead to the highest miss-prediction
(due to its absence) as plausible spurious correla-
tions learned by the model. Finally, we personalize
a diffusion model on the edited images to generate
diverse in-domain synthetic images for each class
with our desired features, i.e., without the plausi-
ble spurious correlations detected by ASPIRE. To
summarize, our main contributions are as follows:

• We propose ASPIRE, a method to expand ex-
isting datasets with non-spurious images to
build more robust image classifiers. ASPIRE
is dataset-agnostic (works with any dataset
with one or multiple spuriously correlated
features per class), training-method agnostic
(complements all other methodologies pro-
posed in prior work), and does not need any
additional labeled supervision of spurious fea-
tures or non-spurious images.

• We extensively evaluate ASPIRE on 4 datasets
and 9 baselines and show that augmentations
generated by ASPIRE improve the worst-
group accuracy of all baselines. Additionally,
we perform extensive qualitative analysis to
prove the effectiveness of ASPIRE.

• We contribute a novel test set for the Hard Im-
ageNet dataset (Moayeri et al., 2022) equally
balanced with spurious and non-spurious im-
ages to promote research in this space.

2 Methodology

Preliminaries. In this section, we provide an
overview of our proposed approach. Fig. 2 pic-
torially describes the various steps in ASPIRE.
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Figure 2: Illustration of ASPIRE: ASPIRE follows a 6-step process to improve the robustness against spurious correlations.
1 We first train a base classifier E using ERM on the entire training set and extract images with features that are spuriously

correlated to construct Dhold. 2 We caption each image in Dhold. 3 We feed the caption to a LLM and extract the foreground
objects and background for each image. 4a We remove one foreground object at a time and predict the class of the edited image
E . If E predicts incorrectly, we consider the object as a plausible spurious correlation learned by E for that class. 4b We edit the
image to change its original background with an alternative background suggested by the LLM and follow the process to similar
to 4a . 5 We personalize a text-to-image diffusion model using edited images from the previous step for the top-k unique items
leading to the highest number of wrong predictions. 6 We re-train E using the generated augmentations to obtain Ê .

Let’s assume we have a training dataset Dtrain

= {xi,yi}, where every group of images belong-
ing to a particular class predominantly has images
with co-occurring spurious features, also known
as the majority group. Dtrain might have a much
smaller number of non-spurious images, or might
not, which is also known as the minority group.
We do not assume our training dataset to have any
group labeling or additional supervision, like label-
ing for spurious objects. We also have a test dataset
Dtest = {xi,yi} where both groups are represented
equally. Additionally, we have a model E trained
on Dtrain, using naive Empirical Risk Minimiza-
tion (ERM). Thus, E would already identify the
majority group images in Dtest with remarkable
accuracy; our primary objective is to improve the
performance of the classifier on the minority group
without hurting the model’s overall performance.
The next subsections describe each step in detail.
(1) Extracting Dhold using E . We use E to ex-
tract a small hold-out set from Dtrain, which we
denote as Dhold. Dhold should consist of images
with spurious correlations in the train (or the ma-
jority group), which we will use in our later stages
to detect the specific features that are the spurious
correlations. Precisely, we first identify training
examples that are correctly classified by a standard
ERM model and then randomly select p% of them
for constructing Dhold. We are inspired by prior
work in this space and build on the heuristic that

a well-trained classifier tends to have low majority
group loss (and subsequently high majority group
accuracy) (Liu et al., 2021a; Nam et al., 2020).

(2) Image Captioning on Dhold. As mentioned
earlier, ASPIRE depends on language guidance
to achieve its primary objective of generating syn-
thetic, non-spurious images. Thus, in this step,
we generate a textual description of each image
in Dhold, which can capture foreground and back-
ground information in the image. To accomplish
this, we use a state-of-the-art image captioning
model, GIT (Wang et al., 2022). We expect our im-
age description to include information about most
of the visible foreground objects and the predomi-
nant background, and we found captions generated
by GIT to meet these requirements and not suffer
from spurious correlations themselves. As caption-
ing tools get better, we acknowledge that replacing
GIT with its improved counterparts will improve
the performance of ASPIRE even further.

(3) Extracting objects and backgrounds from
captions. After captioning, we use LLMs to ex-
tract the phrases in the caption that correspond to
foreground and background objects and the single
predominant background. We assume our search
space for identifying spurious correlations to be
bounded within them, which is a reasonable as-
sumption in most real-world cases and also in line
with most prior work in this space (Joshi et al.,
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2023). Recent LLMs have been shown to possess
superior reasoning abilities, and we employ GPT-4
for our task (OpenAI, 2023). LLaMa-2 70B (Tou-
vron et al., 2023) also proved to be competitive
in this task. However, GPT-4 made fewer mis-
takes. An example of the input and output of this
step of ASPIRE is as follows: Original Caption:
“A man with two dogs and a sled in the snow.",
Original Label: “Dog Sled". Output: foreground:
[“man",“dogs"], background:[“snow"], alternate
background:[“desert"]. For simplicity, let us de-
note the list of identified foreground and back-
ground objects for image xi as Fi and the pre-
dominant background as Bi (more about the alter-
nate background in Step 4.b.). The task of extract-
ing objects and backgrounds from text captions is
effectively an information extraction task that in-
volves understanding the structure of the sentence
and the relationship between the words, and we
found LLMs to deal better with anomalies and out-
of-distribution text scenarios than traditional NLP
methodologies (algorithmic details about the tradi-
tional NLP method can also be found in Appendix
A.2). Additionally, we want the identified objects
or background to ignore the actual class label. This
is crucial for the ASPIRE pipeline, as we do not
want to edit the core feature in the image (discussed
in detail in the next subsections). This can also be
challenging as the class label may or may not ex-
actly appear in the caption. However, we found
LLMs to complete this task with remarkable ac-
curacy and ASPIRE to be able to handle minor
errors (due to top-k selection described later in this
section). We use a single generic prompt with an-
notated exemplars for all datasets, which can be
found in Appendix A.6.

(4.a.) Identifying spurious foreground objects.
The primary objective of this step is to identify one
or several unique features per class that are plausi-
ble spurious correlations. To achieve this, we build
on recent advancements in language-guided image
in-painting to remove one object at a time identi-
fied in Fi followed by allowing E to predict the
class of the edited image. If E predicts the image
correctly, we do not do anything with that image.
If E predicts an image incorrectly, we identify the
removed object as a plausible spurious correlation
for the class c in the dataset and add the image to a
set Dsynth (which we later use to personalize text-
to-image generation). Additionally, we add the text
phrase of the spurious object to another set Tsynth.

Precisely, for every fore-ground object f in Fi,
we first localize the object using Grounding DINO
(Liu et al., 2023c), which takes as input the text
phrase of f identified from the caption and out-
puts a bounding box bb for f . This is followed by
extracting the segmentation map M for f using
Segment Anything (Kirillov et al., 2023), which
accepts bb as the segmentation prompt. M is then
used to remove f from xi using LaMa image in-
painting (Suvorov et al., 2022). For detailed infor-
mation on the workings of Grounding DINO, Seg-
ment Anything, and LaMa, we request our readers
refer to the original paper.

(4.b.) Identifying spurious backgrounds. The pri-
mary objective of this step is to identify if the pre-
dominant background of the image xi serves as a
spurious correlation for the particular class c of im-
ages in the dataset to which xi belongs. Following
a hypothesis similar to (4.a.), we assume that if re-
moving the background b in Bi from xi can lead E
to a wrong prediction, b can be a plausible spurious
correlation. However, removing the background
altogether (and keeping just the foreground items)
not only disrupts the image semantics but is also
not representative of real-world cases. Prior work
also shows that removing the background forces
the model to pay attention to foreground objects
(Kirichenko et al., 2023) which are not suitable for
our use case. Thus, we employ recent advances
in instruction-based image editing to achieve this
task. We first leverage the superior reasoning abili-
ties of an LLM to suggest an alternate contrasting
background b̃ for the image from its caption. Next,
we instruct InstructPix2Pix (Brooks et al., 2023) to
convert the background of xi from b to b̃. Similar to
the previous step, if E predicts the image correctly,
we do not do anything with that image. However,
if E predicts an image incorrectly, we identify the
original background as a plausible spurious corre-
lation and add the edited image to Dsynth while we
add the original text phrase of the background from
the caption to Tsynth.

(5) Non-spurious augmentation generation. The
primary objective of this step is to generate in-
domain non-spurious images Daug for every class
in the dataset Dtrain. These generated augmenta-
tions can then be used to supplement the training
dataset Dtrain followed by re-training E to reduce
its reliance on the spurious correlations. Generat-
ing in-domain augmentations without non-spurious
features is crucial to the success of our approach
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as out-of-distribution samples may adversely affect
model performance (Trabucco et al., 2023). The
most trivial approach would be to generate Daug by
prompting any open-source text-to-image model.
However, there exist two primary roadblocks to
this approach: (1) Open-source diffusion models
trained on internet-scale data generate diverse im-
ages for diverse prompts. Thus, prompting these
models does not confirm the consistency of gener-
ations with the underlying distribution. (2) These
models also posses spurious correlations or biases
themselves (Trabucco et al., 2023). For example,
prompting Stable Diffusion with the prompt: “pic-
ture of a dog sled” generates dog sleds with dogs
most of the time. Attaching negative words with
the prompts (like “picture of a dog sled without
a dog”) often leads to the same spurious images
as Stable Diffusion (and most image generation
models) are known to not adhere to such negation
in prompts (Tong et al., 2024).

To overcome the aforementioned problems and
generate in-domain images with the desired non-
spurious features, we resort to personalizing a text-
to-image generation model. Specifically, we train
Stable Diffusion using textual-inversion (Gal et al.,
2023) with samples from top-k phrases in Tsynth,
and their corresponding images in Dsynth. Textual-
inversion effectively learns concepts and style from
a small set of images for each class in Dsynth by
just fine-tuning a single token in the embedding
layer (which in our case is just the original class
label) without over-fitting the generation model.
Dsynth is the perfect candidate for extracting this
small set as it contains non-spurious images, i.e.,
images without spurious features and concepts. Fi-
nally, we prompt the fine-tuned model to generate
n× diverse samples for Daug.

Top-k selection. Recall that Dsynth and their cor-
responding text phrases in Tsynth represent all
wrongly predicted edited instances, i.e., they have a
diverse set of foreground objects and backgrounds
for each class. Thus, we attribute only the top-k
unique items in Tsynth with the highest frequen-
cies as the spurious correlation associated with that
class and use images from only the top-k items for
diffusion personalization. However, due to diver-
sity in generated captions, text phrases correspond-
ing to the same type of objects and backgrounds
may be represented in Tsynth in diverse forms, for
e.g., [“dogs”,“dog”,“two dogs”, ⋯]. Thus, before
selecting the top-k items, we first collapse all the

similar phrases to one by first finding the root for all
phrases in Tsynth by stemming and then calculating
the cosine similarity between the glove embedding
of the roots (to account for dissimilar roots, for
e.g., “snow” and “snowy mountain”). Items with a
cosine similarity of ≥ 0.90 are collapsed into one.
(6) Re-training the base classifier E . Once we
have generated Daug, we add the generated images
to the existing Dtrain to re-train our standard classi-
fier E . As mentioned earlier, the ASPIRE augmen-
tation methodology is training-method-agnostic,
and the augmentations generated can be coupled
with any existing training approach from literature.
The next Section describes how we add ASPIRE
augmentations to our baseline training pipelines.

3 Experimental Setup

Datasets. To evaluate the effectiveness of ASPIRE,
we experiment on 4 benchmark datasets, includ-
ing Waterbirds (Sagawa et al., 2019), CelebA (Liu
et al., 2015), SPUCO Dogs (Joshi et al., 2023) and
Hard ImageNet (Moayeri et al., 2022). The Water-
birds dataset, generated synthetically by combining
images of birds from the CUB dataset (Wah et al.,
2011) and backgrounds from the Places dataset
(Zhou et al., 2017), has 4 groups of images in train-
ing and testing datasets including waterbirds on
water background, waterbirds on land background,
landbirds on water background and landbirds on
land background. The minority groups for the
dataset (groups with the least number of samples
in the training set) are waterbirds on land and land-
birds on water. The main challenge is correctly
identifying the minority groups in the test. For
CelebA, we perform the hair color prediction task,
which has 4 groups of images, including blond
and non-blond males and blond and non-blond fe-
males. The minority group is blond males. SPUCO
Dogs has 4 groups of images, including big dogs
in indoor and outdoor settings and small dogs in
indoor and outdoor settings. The minority groups
are big dogs indoors and small dogs outdoors. The
Hard ImageNet dataset has images from 15 Ima-
geNet synsets and is more complex than the other 3
datasets, does not have group labeling, and has mul-
tiple spurious correlations for each class. For more
details, we request our readers to refer to Moay-
eri et al. (2022). Since the dataset does not have
a test set, we contribute a novel expert-annotated
test dataset with 25 spurious and 25 non-spurious
images per class. The spurious and non-spurious
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Method Waterbirds CelebA SpucoDogs Hard ImageNet

Worst-group Acc. (%) Avg Acc. (%) Worst-group Acc. (%) Avg Acc. (%) Worst-group Acc. (%) Avg Acc. (%) Worst-group Acc. (%) Avg Acc. (%)

ERM 74.4 96.9 43.4 95.5 42.3 74.5 12.6 74.3
ERM + Azizi et al. 71.8 97.1 36.2 96.7 39.6 75.4 10.7 76.7
ERM + Gowal et al. 75.7 85.6 45.7 96.4 46.8 73.7 23.3 83.4

ERM + ASPIRE 78.7±1.31 (+4.3) 89.6±1.10 50.5±0.79 (+7.1) 95.4±1.08 51.6±0.86 (+9.3) 75.5±1.18 50.1±1.26 (+37.5) 96.5±1.32
LfF (Nam et al., 2020) 78.0 91.2 77.2 85.1 70.2 80.8 58.8 92.5
LfF + Azizi et al. 74.2 92.3 74.4 85.7 67.5 81.6 54.3 92.6
LfF + Gowal et al. 81.0 89.3 78.2 85.8 72.9 80.9 60.3 92.7

LfF + ASPIRE 83.2±0.20 (+5.2) 91.4±1.12 81.7±0.43 (+4.5) 86.3±1.25 75.4±0.38 (+5.2) 80.9±0.31 63.8±0.30 (+5.0) 92.7±0.21
Group DRO (Sagawa et al., 2019) 91.4 93.5 88.9 92.9 75.4 82.8 65.6 91.8
Group DRO + Azizi et al. 88.2 94.1 85.6 93.2 71.7 84.1 62.8 92.9
Group DRO + Gowal et al. 91.6 94.2 89.8 93.7 76.3 83.4 65.5 91.7

Group DRO + ASPIRE 92.8±0.49 (+1.4) 94.6±0.49 90.1±1.08 (+1.2) 94.3±0.92 78.7±1.26 (+3.3) 84.3±0.58 67.4±1.01 (+1.8) 92.4±0.59

JTT (Liu et al., 2021b) 86.7 93.3 81.1 88.0 73.0 80.4 63.5 90.6
JTT + Azizi et al. 83.2 94.9 78.3 90.2 71.8 82.2 61.4 92.4
JTT + Gowal et al. 87.5 94.2 83.8 89.6 74.1 81.1 64.1 91.9

JTT + ASPIRE 90.2±1.16 (+3.5) 94.6±1.24 85.7±0.64 (+4.6) 91.6±0.75 75.5±1.33 (+2.5) 81.7±1.12 65.2±0.54 (+1.7) 92.9±0.82
DivDis (Lee et al., 2022) 85.6 87.3 55.0 90.8 39.3 65.5 15.5 71.8
DivDis + Azizi et al. 84.2 88.6 53.7 92.2 37.5 66.4 13.7 77.2
DivDis + Gowal et al. 86.3 87.4 56.1 91.2 42.1 66.3 23.9 76.9

DivDis + ASPIRE 87.2±0.49 (+1.6) 87.8±0.84 57.4±1.13 (+2.4) 91.6±0.66 43.6±1.48 (+4.3) 67.1±1.22 35.5±0.82 (+20.0) 77.6±0.34
SUBG (Idrissi et al., 2022) 88.9 91.2 86.2 89.1 74.2 81.5 62.3 90.9
SUBG + Azizi et al. 86.5 91.8 85.4 91.3 72.3 81.6 60.5 92.9
SUBG + Gowal et al. 89.7 91.7 88.2 89.9 75.6 81.7 64.8 91.6

SUBG + ASPIRE 90.7±0.62 (+1.8) 92.1±0.88 88.6±1.37 (+2.4) 90.1±0.64 77.5±0.73 (+3.3) 83.5±0.92 66.7±1.22 (+4.4) 92.4±0.63

Correct-n-Contrast (Zhang et al., 2022) 88.7 90.6 88.1 89.4 73.7 81.2 60.5 91.7
Correct-n-Contrast + Azizi et al. 84.3 93.4 85.2 91.3 70.8 85.6 58.7 93.3
Correct-n-Contrast + Gowal et al. 89.1 91.7 88.7 90.6 74.9 82.6 63.2 92.1

Correct-n-Contrast + ASPIRE 90.8±1.18 (+2.1) 92.6±1.48 89.9±1.45 (+1.8) 91.3±0.28 76.8±1.10 (+3.1) 83.1±1.04 65.9±0.94 (+5.4) 91.9±1.11

MaskTune (Taghanaki et al., 2022) 78.0 91.2 77.9 92.5 31.6 59.2 33.0 58.5
MaskTune + Azizi et al. 75.8 93.4 73.3 93.5 26.3 63.4 28.9 61.3
MaskTune + Gowal et al. 79.3 85.2 78.8 88.1 35.2 60.7 35.3 55.8

MaskTune + ASPIRE 81.6±1.28 (+3.6) 91.3±0.54 81.2±0.22 (+3.3) 92.8±0.38 37.5±0.33 (+5.9) 61.3±1.05 41.0±0.61 (+8.0) 60.2±0.37

DFR (Kirichenko et al., 2023) 81.7 90.1 80.5 85.3 78.8 83.2 33.3 95.7
DFR + Azizi et al. 78.6 92.7 78.3 88.4 72.1 85.1 29.5 96.3
DFR + Gowal et al. 83.1 86.5 83.4 86.2 81.0 84.4 35.2 92.0

DFR + ASPIRE 85.3±1.34 (+3.6) 91.7±0.79 85.5±0.64 (+5.0) 89.5±0.51 84.2±0.83 (+5.4) 87.5±0.57 37.5±0.39 (+4.2) 96.2±0.91

Table 1: Average and worst-group test accuracies of all baselines trained with and without ASPIRE augmentations. ASPIRE
substantially improves the worst-group accuracy of all baselines (in the range of 1% - 38%) with just 1× more augmentations.

features for each class were inspired by the origi-
nal paper. More details about dataset statistics and
annotation can be found in Appendix A.1.

Baselines. To prove the efficacy of ASPIRE aug-
mentations, we add ASPIRE augmentations to
the original training pipeline for various robust
training methods proposed in literature. Precisely,
we employ Group DRO (Sagawa et al., 2019),
SUBG (Idrissi et al., 2022), Just Train Twice (JTT),
Learning from Failure (LfF) (Nam et al., 2020),
Correct-n-Contrast (CnC) (Zhang et al., 2022),
Deep Feature Reweighting (DFR). (Kirichenko
et al., 2023) and MaskTune (Asgari et al., 2022),
To this list, we add the standard Empirical Risk
Minimization (ERM) baseline, trained using SGD
without any additional modifications. Additionally,
we compare ASPIRE augmentations with augmen-
tations generated using the methods proposed by
Gowal et al. (2021) and Azizi et al. (2023). More
details on baselines and how ASPIRE augmenta-
tions were added for training can be found in Ap-
pendix A.4. We do not experiment with LVLMs
like LLaVa (Liu et al., 2023a) as there is no simple
method to fine-tune them for robustness against
spurious correlations proposed in literature. AS-

Worst-group Acc.(%) Avg. Acc.(%)
ASPIRE - Step 4.a. 70.65 86.54
ASPIRE - Step 4.b. 66.40 82.67
ASPIRE - Step 5. 65.75 81.44

ASPIRE 71.80 87.39

Table 2: Ablation study of ASPIRE. “-” indicates that the
step was removed from the ASPIRE pipeline. All results are
averaged across all datasets.

PIRE is only meant to complement methods pro-
posed on the standard framework of fine-tuning
vision encoders for image classification
Hyper-parameters. For training the base ERM
model, we train the model for 100 epochs with a
learning rate of 1e−3 using the SGD optimizer with
a weight decay of 1e−4. For training all other base-
lines, we use the original hyper-parameter settings
proposed by the authors in their original paper. This
includes the seed settings and the number of runs
for every model. We use just 1 × augmentations
of non-spurious images. Though this is possible
for us as all our current datasets are also anno-
tated with group labels, the number of ASPIRE
augmentations to be added can be decided using
hyper-parameter search, and we noticed no signs of
over-fitting till 3× augmentations (see Appendix 1).
For top-k, we resort to k=3 post a hyper-parameter
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search among k={1,2,3,4,5}. k=3 seemed to cap-
ture the most major spurious correlations while
ignoring the minor ones. Examples of extracted
top-k can be found in Figure 4 and Appendix 1. For
prompting InstructPix2Pix, we use Text CFG=7.5
and Image CFG=1.5. Prompt in Appendix A.6.

4 Results and Analysis

4.1 Quantitative Analysis

Table 1 compares the results of 9 baselines trained
with and without ASPIRE augmentations. Worst-
group accuracy corresponds to the accuracy of mi-
nority groups (or non-spurious images) in the test.
As we clearly see, with just 1× augmentations, AS-
PIRE improves the average accuracy of our base-
lines by 0.1%-22.2% and the worst-group accuracy
of our baselines by 1.2%-37.5%. ASPIRE consis-
tently achieves higher gains in worst-group accu-
racy and only undergoes a slight drop in average
accuracy in some settings, which is in line with
prior art and our primary motivation of improv-
ing robustness against spurious correlations. We
notice the highest gains in Hard ImageNet, a fun-
damentally more difficult dataset with no minority
group images in the training dataset and multiple
spurious correlations per class. Our standard ERM
model also witnesses the highest gains among all
other baselines. On average, our 2-stage training
baselines improve by a higher margin on average
than 1-stage baselines due to improved explicit
generalization over ASPIRE augmentations. The
method proposed by Gowal et al. (2021) consis-
tently underperforms ASPIRE, thereby highlight-
ing that explicitly removing spurious features in
the generated dataset improves robustness. On
the other hand, the method proposed by Azizi
et al. (2023) significantly underperforms ASPIRE
in worst group accuracy but outperforms in average
accuracy in some settings. This is due to the fact
that standard data augmentation amplifies spurious
correlations already present in the training set as it
generates images with similar features to those on
which it is conditioned.
Ablations. Table 2 removes certain key compo-
nents in the ASPIRE pipeline to prove their effi-
cacy. As we can see, the ASPIRE performance
decreases significantly when the image generation
step is removed (only edited images are used to
train the robust classifier). Additionally, ASPIRE
undergoes a sharper drop in performance when
foreground identification is removed than the back-

(a) Without augmentations. (b) With augmentations.

(c) Without augmentations. (d) With augmentations.

Figure 3: GradCAM visualizations of the features used by
the standard ERM model trained with and w/o ASPIRE aug-
mentations on the Hard ImageNet dataset (Balance beam top
and Volleyball bottom). As clearly visible, when trained with
ASPIRE augmentations, the model tends to focus better on
core features than spurious ones (more in Appendix B).

ground, which we attribute to the design of the test
set minority groups of existing datasets.

4.2 Qualitative Analysis
Fig. 3 illustrates the GradCAM visualizations
of the features used by the standard ERM model
trained with and w/o ASPIRE augmentations for
two classes from the Hard ImageNet dataset, Vol-
leyball and Horizontal Bar. When trained with
ASPIRE augmentations, the model tends to focus
better on core features corresponding to the actual
class than spurious ones. Fig. 4 illustrates ex-
amples of original images, edited images (edited
by the ASPIRE pipeline), and ASPIRE-generated
augmentations. ASPIRE successfully captures the
major spurious cues learned by a model (shown in
top-k) and generates diverse images without them.
We show more examples in Appendix B and C and
illustrate some failure cases in Appendix D.

5 Literature Review

Geirhos et al. (2020) provides a detailed survey on
how image classification models perform poorly
when trained on datasets with spurious correlations.
Following this, a lot of works explore SGD train-
ing dynamics and inductive biases of such models
in the presence of spurious correlations (Nagara-
jan et al., 2021; Pezeshki et al., 2021; Rahaman
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Figure 4: Examples of Original Images, Edited Images from the ASPIRE pipeline and Generated Augmentations. To the
left of the Generated Augmentations, we also mention the top-k spurious correlations discovered by ASPIRE for the particular
class. ASPIRE generates diverse augmentations with the desired non-spurious features that can be used to train robust models.

et al., 2019). Shah et al. (2020) shows how deep
neural networks, trained using ERM, can take short-
cuts and learn to rely on spurious features rather
than core features for a class. They call this phe-
nomenon the extreme simplicity bias. Hermann
and Lampinen (2020) and Jacobsen et al. (2019)
further present examples with both natural and syn-
thetic images, highlighting instances where these

networks overlook core features. Shinoda et al.
(2023) explore the types of shortcuts that are more
likely to be learned.

A plethora of methods in literature propose novel
training strategies for improving robustness against
spurious correlations (Ben-Tal et al., 2011; Hu
et al., 2018; Sagawa* et al., 2020; Oren et al., 2019;
Zhang et al., 2021). A detailed explanation of all
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these methods can be found in Section 3 and Ap-
pendix A.4.

The use of synthetic data to improve the perfor-
mance of downstream CV tasks has been explored
extensively in the past. For data-driven genera-
tive models, GANs have remained the predomi-
nant approach to date (Brock et al., 2018; Li et al.,
2022). Very recently, He et al. (He et al., 2022) em-
ploy large-scale text-to-image models like GLIDE
(Nichol et al., 2021) to augment training data with
synthetic images and show improvement in image
classification performance.

Prior work explores language guidance for im-
age generation for varied objectives. For example,
Prabhu et al. (2023) proposes to generate coun-
terfactual images for stress-testing image classi-
fication models. On similar lines, Wiles et al.
(2022) and Vendrow et al. (2023) propose to iden-
tify failure cases and spurious correlations using
augmented data generated using language guidance.
Finally, Dunlap et al. (2023) proposes to adapt a
model to new domains using augmented data. To
the best of our knowledge, generative data aug-
mentation with or without language guidance for
improving robustness against spurious correlations
has not yet been explored.

6 Conclusion

In this paper, we present ASPIRE, a novel data
augmentation methodology to augment existing
datasets with non-spurious minority group images
to build robust and de-biased image classifiers. We
evaluate ASPIRE on 4 benchmark datasets with 9
baselines and show that ASPIRE augmentations
improve the worst-group accuracy of all baselines
while maintaining average accuracies.

Limitations and Future Work

As part of future work, we would like to address
the current limitations of ASPIRE, which include:

1. ASPIRE is limited to how well image caption-
ing models can describe the image. Though
captioning models improve over time, we
would like to explore novel ways to resolve
this bottleneck. For example, Large Multi-
Modal Language Models like LLaVa (Liu
et al., 2023b) have been shown to perform
exceptionally well at generating detailed cap-
tions of input images.

2. The edited images used to personalize text-to-
image generation may sometimes be of low
quality, leading to poor augmentations in more
complex datasets, and we would like to ex-
plore ways to resolve this bottleneck. We also
acknowledge that the advancement of text-to-
image diffusion models to better follow text
prompts will eventually lead to performance
improvement of ASPIRE.

3. The different components of ASPIRE add
computational overhead to the ASPIRE
pipeline (over just the ERM classifier). How-
ever, it should be noted that a wealth of litera-
ture in offline data augmentation for NLP and
CV tasks (through synthetic data generation)
almost always employs computationally ex-
pensive foundation models for additional data
generation. Textual-inversion fine-tuning of
diffusion models used in our experiments is
also computationally cheaper than full fine-
tuning. Lastly, as part of future work, we
would like to explore computationally cheaper
alternatives to an LLM for information extrac-
tion from captions. Additionally, the augmen-
tation process is completely offline and needs
to be done just once for each dataset.

4. We also illustrate some failure cases of AS-
PIRE in Appendix D.

Ethics Statement

Image generation models are prone to generating
harmful, obscene and offensive context for certain
classes pf objects, we prevent this from happen-
ing in ASPIRE by using a safety checker for the
Stable Diffusion model which estimates whether
a generated images could be considered offensive
or harmful. For the CelebA dataset, ASPIRE per-
forms modification where genders of people are
swapped to debias the model towards certain at-
tributes related a class. This approach is used only
to improve the fairness and debiasing of the model.
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A Appendix

A.1 Dataset Details

Table A.1 shows dataset details for all 4 datasets
used in our experiments. As clearly visible, there
is a notable disparity between the number of im-
ages representing minority groups (non-spurious
images) and those representing majority groups
(images with spuriously correlated features). In
contrast, the test set for each dataset maintains
a balanced representation between the minority
and majority groups. This can lead classifiers to
quickly adopt spurious correlations, resulting in
sub-optimal performance on the test set.
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Dataset Train Test

Majority Minority Majority Minority
Group Group Group Group

Hard ImageNet 19097 0 375 375
Waterbirds 4555 240 2897 2897
CelebA 161383 1387 19782 180
Spuco Dogs 17000 1000 1000 1000

Table 3: Dataset details

A.2 Algorithm

Algorithm 1 describes algorithmically the ASPIRE
pipeline. Readers can refer to the algorithm for a
detailed step-by-step understanding of the work-
ings of ASPIRE.

A.3 Traditional NLP algorithm details

Introduction Extracting foreground objects and
the background from a caption using traditional
Natural Language Processing (NLP) techniques
and libraries like SpaCy involves several steps.
Here’s a general approach:
Text Preprocessing First, preprocess the text to
ensure it’s in a suitable format for analysis. This
might include:

• Lowercasing all words.

• Removing punctuation and special characters.

• Tokenization: Breaking the text into individ-
ual words (tokens).

Part-of-Speech Tagging Use SpaCy to perform
part-of-speech (POS) tagging, which identifies the
grammatical parts of speech for each word (e.g.,
noun, verb, adjective). This is crucial for identify-
ing potential objects and elements of the scene.
Named Entity Recognition (NER) Employ
Named Entity Recognition to identify named en-
tities in the text, which can include names of peo-
ple, places, organizations, or other proper nouns.
These entities can be part of the foreground or back-
ground.
Dependency Parsing Dependency parsing helps
understand the grammatical structure of the sen-
tence, showing how words relate to each other.
This is useful to distinguish between main subjects
(likely foreground objects) and contextual elements
(possibly background).
Chunking or Phrase Detection Use chunking or
phrase detection to group together contiguous se-
quences of tokens that form meaningful phrases.

Noun phrases, in particular, are often key in identi-
fying objects and scene elements.
Identifying Foreground and Background Fore-
ground Objects Typically, these are nouns or noun
phrases that are the main subjects or objects of the
sentence. They often appear with adjectives and
are part of active clauses.
Background Information This can include de-
scriptions of settings, locations, or contexts. Ad-
verbial phrases and clauses, as well as descriptive
language, can signal background details.
SpaCy Implementation Here’s a simple imple-
mentation using SpaCy:

import spacy

# Load the SpaCy model
nlp = spacy.load("en_core_web_sm")

def extract_foreground_background(text):
doc = nlp(text)

foreground = []
background = []

for token in doc:
# Check for nouns and proper nouns

for foreground
if token.pos_ in ["NOUN", "PROPN"]:

foreground.append(token.text)

# Background might be set by
adverbial phrases or adjectives

if token.pos_ in ["ADJ", "ADV"]:
background.append(token.text)

# Check for named entities
if token.ent_type_:
if token.ent_type_ in ["PERSON",

"ORG", "GPE"]:
foreground.append(token.text)
else:
background.append(token.text)

return foreground, background

# Example Usage
text = "The cat sat on the mat in the
sunny room."
foreground, background =
extract_foreground_background(text)
print("Foreground:", foreground)
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print("Background:", background)

A.4 Details on Baselines

To maintain training efficiency, for training each
baseline with ASPIRE augmentations, we add only
1× more augmentations to the original dataset for
CelebA, Waterbirds, and SPUCO Dogs, or effec-
tively or effectively double the number of non-
spurious minority group images in each dataset.
These 3 datasets have labeled minority groups, and
thus, the number of augmentations to be added
amounted to the total minority group images in
each class of the original dataset. For Hard Im-
ageNet, we add as many more augmentations as
the total number of original training samples in
each class of the original dataset. We elaborate
on the rationale behind the choice of our baseline
setup in Appendix A.5, where we also describe
why we choose not to compare ASPIRE with large
multi-modal models. We next describe how we
add ASPIRE augmentations to the original training
pipeline for different baselines.
Emperical Risk Minimization (ERM) For this
baseline, we compare a ResNet-50 model trained
using ERM (with SGD) on the original dataset
with a ResNet-50 model trained on the original
dataset augmented with ASPIRE augmentations.
For ERM, we just add ASPIRE augmentations to
the initial training set.
1-stage training baselines. Group DRO (Sagawa
et al., 2019) is a state-of-the-art method that
uses group information on train and adaptively
upweights worst-group examples during training.
SUBG (Idrissi et al., 2022) is ERM applied to a
random subset of the data where the groups are
equally represented, which was recently shown to
be a strong baseline. We also add ASPIRE augmen-
tations to the initial training set for both baselines.
2-stage training baselines. Just Train Twice
(JTT). JTT follows a 2-stage training process
wherein they first identify training examples that
are misclassified by a standard ERM model, and
then train the final model by upweighting the ex-
amples identified in the first stage. Learning from
Failure (LfF). (Nam et al., 2020) Similar to JTT,
LfF follows a 2-stage training process wherein
they first identify training examples that are mis-
classified by a biased ERM model, and then train
the final model by re-weight training samples us-
ing the relative difficulty score based on the loss
of the biased model. Correct-n-Contrast (CnC)

(Zhang et al., 2022) detects the minority group
examples similarly to JTT and uses a contrastive
objective to learn representations robust to spurious
correlations. Deep Feature Reweighting (DFR).
(Kirichenko et al., 2023) DFR follows a 2-stage
training process wherein they first fine-tune a pre-
trained ResNet model (pre-trained on the entire Im-
ageNet dataset) using ERM on the entire train split
followed by re-training the last layer using a small
set from the train with an equal number of instances
for both majority and minority groups. MaskTune.
(Asgari et al., 2022) follows a 2-stage training pro-
cess, wherein they first fine-tune a ResNet model
on a dataset using ERM on the entire train split fol-
lowed by re-training the model with new masked
data for one full epoch. For all these baselines, we
add ASPIRE augmentations to the set used in the
second stage of training.

A.5 Choice of Baselines

To the best of our knowledge, there exists no prior
method in literature that generates minority group
images to expand the training set. Most work has
focused on devising novel training methods for ro-
bust classification, all of which are complementary
to ASPIRE and compared to our method in this
paper. As also mentioned in Section 5 of our paper,
generative data augmentation for improving over-
all accuracy has been explored but is unrelated to
our method. Additionally, the primary aim of AS-
PIRE is to improve the downstream performance
of image classification models. We acknowledge
that other types of models, like instruction-tuned
Vision-Language Models (Liu et al., 2023b), might
identify and classify the image correctly into a pre-
defined class given specific prompts (again, this is
an underexplored area in CV), but comparing this
is beyond the scope of this paper and experimental
setting. Our setting is consistent with most prior
art in (methods listed in Table 1).

A.6 Prompts

GPT-4.The general-purpose prompt we use for
GPT-4 is listed as follows: I will provide you with a
list of tuples. Each tuple in the list has 2 items: the
first is a caption of an image and the second is the
label of the image. For each, you will have to re-
turn a JSON with 3 lists. One list should be the list
of all phrases from the caption that are objects that
appear in the foreground of the image but ignore
objects that correspond to the actual label (the la-
bel for the phrase might not be present exactly in
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Algorithm 1 ASPIRE Data Augmentation Algorithm
Data: Image Classification Dataset Dtrain → {xi (Image), yi (Label)};
E = Classifier(xi, yi) // Image classification model
C = Captioning(xi) // Image captioning model
L = LLM(Prompt, Captions, y) // LLM to extract foreground and background objects.
BG = InstructPix2Pix(b, b̃, xi) // InstructPix2Pix to convert background of an image.
G = GroundingDino(f, xi) // Creates bounding box around objects.
S = SegmentAnything(bb) // Extracts image segmentation maps from bounding boxes.
I = InpaintAnything(M, xi) // Removal of objects corresponding to segmentation maps.
Dcorrect ← ∅ for xi in Dtrain do
// Consider only the images which are predicted correctly.

if E(xi) == yi then
Dcorrect ← Dcorrect ∪ {(xi, yi)};

end
end
Sample p% of Dcorrect to create Dhold.
Dcaptions ← C(Dhold) // Caption the images in the holdout set.
Fi,Bi ← L(Prompt,Dcaptions,Dy

hold) // Extract foreground and background objects by
prompting the LLM.
Dsynth ← ∅, Tsynth ← ∅;
for {f} in Fi do

bb ← G(f, xi); // Create the bounding boxes.
M ← S(bb); // Extract the segmentation maps.

x
mod
i ← I(M); // Modify image by removing the foreground object.

// Consider only the images which are predicted wrong after modification.
if ycorrecti ≠ E(xmod

i ) then
Dsynth ← Dsynth ∪ {xmod

i };
Tsynth ← Tsynth ∪ {f};

end
end
for {b, b̃} in Bi do

x
mod
i ← BG(b, b̃, xi);// Change image background as suggested by the LLM.
// Consider only the images which are predicted wrong after modification.
if ycorrecti ≠ E(xmod

i ) then
Dsynth ← Dsynth ∪ {xmod

i };
Tsynth ← Tsynth ∪ {b};

end
end
// Collapse synthetic dataset based on text phrases that are similar to each other.
Select top-k items that have the highest count per image class in the dataset.
T k
synth,Dk

synth ← TopK(Col(Tsynth,Dsynth))
Train the Stable Diffusion model SD using Dk

synth.
Generate Daug from SD.
// Creating a new training dataset by combining the augmentations with the original
training data.
Dnew

train ← Dtrain ∪Daug;
// Retrain the original image captioning model on the new training data.
Retrain E on Dnew

train.
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the caption) (named ’foreground’). The second list
should have the single predominant background of
the image to the foreground objects (named ’back-
ground’). If you do not find a phrase that corre-
sponds to the background, return an empty list for
the background. The third is an alternative back-
ground for the image, an alternative to the back-
ground you suggested earlier (named ’alt’). Here
are some examples which also show the format in
which you need to return the output. Please just re-
turn the JSON in the following format: Exemplars
⋯ and here is the caption:. We will provide the
exemplars on our GitHub.

InstructPix2Pix.The prompt we use for Instruct-
Pix2Pix is: turn the background from original back-
ground to alternative background.

A.7 Examples of top-k identified by ASPIRE

Table 4 shows the top-k spuriously correlated fea-
tures (or groups of features) for each class and
for each dataset. As mentioned earlier, due to di-
versity in captions, the same kind of foreground
object or background may be expressed with differ-
ent phrases. ASPIRE thus returns groups of top-k
items rather than a single top-k item for each k.

A.8 Collection of Test-Set for Hard ImageNet

Our institution’s Institutional Review Board(IRB)
has granted approval for the data collection. We
followed the following steps for collecting a test
set of the Hard ImageNet dataset:

1. We first identified spurious features in the
Hard ImageNet and verbalized them. These
features were identified from annotations in
the original proposed dataset by Moayeri et al.
(2022).

2. 3 annotators with extensive vision and lan-
guage experience collected 1/3rd of the total
750 images. The annotators were not hired
from any crowdsourcing platform and, in fact,
were volunteers from our organization. The
only instruction that was provided was that the
image should have the primary target label of
the image, and while majority group images
should have the identified spurious features,
minority group images should not.

3. Post this step, each annotator validated the
images collected by the other annotators.

(a) Original Image (b) Edited Image

(c) Original Image (d) Edited Image
Figure 5: Images illustrating cases of ASPIRE failures.

4. We filter the images for offensive content and
replace them with non-offensive images, if
any.

B GradCam Visualizations

Figure 6 and 7 illustrates the GradCAM visual-
izations of the features used by the last layer of a
standard ERM model (ResNet-50), for prediction
on the test set images, trained with and w/o AS-
PIRE augmentations on all 4 datasets used in our
experiments. For a fair comparison and to clearly
show the benefits of ASPIRE, we show GradCAM
visualizations only for the standard ERM model, as
all other baselines perform explicit steps to reduce
reliance on such features. Standard ERM training
is also still the most widely used methodology for
training image classifiers.

While Fig. 6 shows examples of the majority
group images from the test set with spurious fea-
tures, Figure 7 shows examples of minority group
images without any spurious features. For Fig. 7
we show examples where the ERM classifier pre-
dicted the class of the image incorrectly (due to
the absence of spurious features) while the one
trained with ASPIRE predicted the class correctly.
As we clearly see, in both cases, when trained with
ASPIRE augmentations, the model learns to focus
on core features rather than spurious ones while
making predictions.

C Generation Examples

Table 8 shows examples of original images from
the train set, the edited images from the ASPIRE
pipeline and augmentations generated using AS-
PIRE. To the left of the generated augmentations,
we also mention the top-k spurious correlations
discovered by ASPIRE for the particular class. AS-
PIRE generates diverse augmentations with the de-
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Dataset Class Top-k groups

{volleyball player, female volleyball player, two volleyball players}
Volleyball {woman, young girl, girl, women}

{beach, sandy beach}
{keyboard, computer keyboard}

Spacebar {number pad}
{mouse}

{girl, little girl, young girl, two girls}
Horizontal bar {ballet, ballet barre}

{olympic games}
{boy, little boy, two boys}

Snorkel {blue swimsuit, swimsuit}
{water, ocean}

{child, children, child’s feet}
Balance Beam {female gymnast, gymnast, gymnasts}

{split, leg split}
{back of the car, back of a car}

Seatbelt {handle, door handle}
{seat, car seat, back seat}

{two dogs, dogs, dog, husky dogs, dog team}
Dog sled {snowy hill, snowy landscape, snowy slope}

{snow}
{woman, young woman, women}

Hard ImageNet Miniskirt -

{pink hat, hats}
Sunglasses {woman, blonde woman, women}

{man, man’s face}
{tree, tree branch, branch}

Howler monkey {log, wooden bench, wooden beam}
{leaves}

{hockey player, hockey players, ice hockey players}
Puck {ice, ice rink}

{hockey logo, hockey stick}
{boy, young boy, little boy}

Swimming cap {pool, swimming pool, pool edge}
{swimmer, swimmers}

{chairs, chair, lawn chair}
Patio {building, buildings}

{deck, new deck}
{mountain, mountain top, snowy mountain, snowy mountain side}

Ski {ski poles, ski slope, ski lift}
{person, group of people}

{baseball field, field}
Baseball player {baseball game, game}

{stadium}
{ lake, stream, pond}

Waterbird {beach, sand}
{water, river bank}

Waterbirds {forest, bamboo forest}
Landbird {woods, trees}

{branch, branches}
{field, grass field, green field, grassy field, green grass covered field, lush green field}

Big dog {ground, playground}
{floor, concrete floor}

Spuco Dogs {blanket, blue blanket, green blanket, red blanket, white blanket}
Small dog {bed, dog bed, blue dog bed, small bed}

{couch, red couch, gray couch}
Blonde {woman, lady}

CelebA Not blonde -

Table 4: Details of Top-k (k=3 for our experiments) spuriously correlated features per dataset and per class identified
by ASPIRE. As discussed in the main paper, due to the fact that our captioning model generates diverse and variable
phrases for the same type of object, we collapse these phrases into groups and instead work with groups (using the
algorithm explained in Section 3 of the main paper) of spurious features. Groups in {} show spurious foreground
objects while groups in {} are spurious backgrounds.

sired non-spurious features that can be used to train
robust models

D ASPIRE Failure Cases

This section lists some failure cases of our pro-
posed ASPIRE framework. As APSIRE leverages

external models in its pipeline, the success of AS-
PIRE at times depends on the capabilities of these
models. For generating augmentations, we notice
the following failure cases:

1. Superimposition of other foreground ob-
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jects on the foreground object of interest.
Recall that ASPIRE detects foreground ob-
jects to remove (for spurious correlation de-
tection) by parsing captions. These objects are
then removed to detect if the object is spuri-
ous or not. In cases where another foreground
object in the image is superimposing the fore-
ground object, though the language-grounded
pipeline is able to detect it properly, the in-
painting model is at times unable to precisely
remove just that object without not removing
the superimposing foreground object and re-
moves both the original object and the object
superimposing it. An example is a human
wearing spectacles, where we only want to
remove the human, but the inpainting model
removes both the human and the spectacles
it is wearing. We provide an example of this
case in Figure 5 (bottom row).

2. Foreground objects change on changing
background. InstructPix2Pix, at times,
tends to change the foreground object when
prompted to change the background signifi-
cantly, for example, changing outdoor back-
ground → indoor background. We provide an
example of this case in Figure 5 (top row).

3. Bias in Stable Diffusion. Although our Sta-
ble Diffusion fine-tuning step, with textual
inversion, helps overcome its current biases,
limited samples present for fine-tuning some-
times hurt this adaptation. For example, even
after fine-tuning, Stable Diffusion might gen-
erate images of dog sled with dogs in it.

E Additional Details

E.1 Model Parameters
Git-Large-Coco has ≈ 300M parameters with a
CLIP/ViT-L/14 image encoder and a 6 layer trans-
former decoder with 12 attention heads and 768
hidden-state. Stable Diffusion is a ≈ 860M pa-
rameter UNet and ≈ 123M parameter text encoder
model. ResNet-50 has ≈ 25M parameters with 50
layers.

E.2 Compute Infrastructure
All our experiments are conducted on NVIDIA
A100 GPUs. We batch prompted LLaMa-2 13B,
with a BS of 16, where LLaMa-2 performed dis-
tributed inference on 4 A100 GPUs. That translates
to 52.51 TFLOPs per batch. Fine-tuning SD with

textual inversion with a BS of 8 takes and an avg.
of ≈1 hour. For generating 1× augmentation, we
use 1 A100 GPU for an average ≈1.2 hours in total.

E.3 Implementation Software and Packages
We implement all our models in PyTorch2 and
use the HuggingFace3 implementations of ERM,
Git (Wang et al., 2022), LLaMa-2 13B (Touvron
et al., 2023) and InstructPix2Pix (Brooks et al.,
2023). We also use the following code/components
in our pipeline Grounding DINO4 (Liu et al.,
2023c), Segment Anything5 (Kirillov et al., 2023)
and Stable Diffusion using textual-inversion6 (Gal
et al., 2023).

We also use the following repositories for run-
ning the baselines: Group DRO7 (Sagawa et al.,
2019), SUBG8 (Idrissi et al., 2022), JTT9 (Liu
et al., 2021b), Learning from Failure 10 (Nam et al.,
2020), Correct-n-Contrast11 (Zhang et al., 2022),
Deep Feature Reweighting12 (Kirichenko et al.,
2023), MaskTune13 (Asgari et al., 2022) and Di-
vDis14 (Lee et al., 2022).

All the above GitHub code has been released
under an MIT license, free for research use.

E.4 Dataset Links
We use the Waterbirds 15, SPUCO Dogs 16, Hard
ImageNet 17 and the CelebA 18 dataset. All the
datasets are free for research use.

E.5 Potential Risks
Generative models are prone to hallucinate and po-
tentially generate nonsensical, unfaithful or harm-
ful content to the provided source input that it is
conditioned on.

2https://pytorch.org/
3https://huggingface.co/
4https://github.com/IDEA-Research/GroundingDINO
5https://github.com/facebookresearch/segment-anything
6https://github.com/rinongal/textual_inversion
7https://github.com/kohpangwei/group_DRO
8https://github.com/facebookresearch/BalancingGroups
9https://github.com/anniesch/jtt

10https://github.com/alinlab/LfF
11https://github.com/HazyResearch/correct-n-contrast
12https://github.com/PolinaKirichenko/deep_feature_reweighting
13https://github.com/aliasgharkhani/masktune
14https://github.com/yoonholee/DivDis
15https://www.vision.caltech.edu/visipedia/CUB-200.html
16https://github.com/BigML-CS-UCLA/SpuCo
17https://openreview.net/forum?id=76w7bsdViZf
18https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
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(a) Dog sled w/o ASPIRE (b) Dog sled w/ ASPIRE (c) Puck w/o ASPIRE (d) Puck w/ ASPIRE

(e) Blonde female w/o
ASPIRE

(f) Blonde female w/ AS-
PIRE

(g) Blonde female w/o
ASPIRE

(h) Blonde female w/ AS-
PIRE

(i) Waterbird w/o AS-
PIRE (j) Waterbird w/ ASPIRE

(k) Landbird w/o AS-
PIRE (l) Landbird w/ ASPIRE

(m) Bigdog w/o ASPIRE (n) Bigdog w/ ASPIRE
(o) Smalldog w/o AS-
PIRE (p) Smalldog w/ ASPIRE

Figure 6: GradCam visualizations of features used by the last layer of a standard ERM model to predict majority
group images (with spuriously correlated features) from the test set of 4 datasets.
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(a) Seatbelt w/o ASPIRE (b) Seatbelt w/ ASPIRE (c) Dogsled w/o ASPIRE (d) Dogsled w/ ASPIRE

(e) Male blonde w/o AS-
PIRE

(f) Male blonde w/ AS-
PIRE

(g) Male blonde w/o AS-
PIRE

(h) Male blonde w/ AS-
PIRE

(i) Waterbird w/o AS-
PIRE (j) Waterbird w/ ASPIRE (k) Landbird w/ ASPIRE (l) Landbird w/o ASPIRE

(m) Bigdog w/o ASPIRE (n) Bigdog w/ ASPIRE
(o) Smalldog w/o AS-
PIRE (p) Smalldog w/ ASPIRE

Figure 7: GradCam visualizations of features used by the last layer of a standard ERM model to predict majority
group images (without spuriously correlated features) from the test set of 4 datasets.
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Figure 8: Examples of Original Images, Edited Images from the ASPIRE pipeline and Generated Augmentations.
To the left of the Generated Augmentations, we also mention the top-k spurious correlations discovered by ASPIRE
for the particular class. ASPIRE generates diverse augmentations with the desired non-spurious features that can be
used to train robust models.
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